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Abstract

As a natural variant of domination in graphs, Dankelmann et al. [Domination
with exponential decay, Discrete Math. 309 (2009) 5877-5883] introduced expo-
nential domination, where vertices are considered to have some dominating power
that decreases exponentially with the distance, and the dominated vertices have to
accumulate a sufficient amount of this power emanating from the dominating ver-
tices. More precisely, if S is a set of vertices of a graph G, then S is an exponential

dominating set of G if
∑
v∈S

(
1
2

)dist(G,S)(u,v)−1
> 1 for every vertex u in V (G) \ S,

where dist(G,S)(u, v) is the distance between u ∈ V (G) \ S and v ∈ S in the graph
G − (S \ {v}). The exponential domination number γe(G) of G is the minimum
order of an exponential dominating set of G.

In the present paper we study exponential domination in subcubic graphs. Our
results are as follows: If G is a connected subcubic graph of order n(G), then

n(G)

6 log2(n(G) + 2) + 4
6 γe(G) 6

1

3
(n(G) + 2).

For every ε > 0, there is some g such that γe(G) 6 εn(G) for every cubic graph G
of girth at least g. For every 0 < α < 2

3 ln(2) , there are infinitely many cubic graphs

G with γe(G) 6 3n(G)
ln(n(G))α . If T is a subcubic tree, then γe(T ) > 1

6(n(T ) + 2). For

a given subcubic tree, γe(T ) can be determined in polynomial time. The minimum
exponential dominating set problem is APX-hard for subcubic graphs.

Keywords: domination; exponential domination; subcubic graph; cubic graph;
girth; cage
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1 Introduction

We consider finite, simple, and undirected graphs, and use standard notation and termi-
nology.

A set D of vertices of a graph G is dominating if every vertex not in D has a neighbor
in D. The domination number γ(G) of G, defined as the minimum cardinality of a
dominating set, is one of the most well studied quantities in graph theory [19]. As a
natural variant of this classical notion, Dankelmann et al. [10] introduce exponential
domination, where vertices are considered to have some dominating power that decreases
exponentially by the factor 1

2
with the distance, and the dominated vertices have to

accumulate a sufficient amount of this power emanating from the dominating vertices.
As a motivation of their model they mention information dissemination within social
networks, where the impact of information decreases every time it is passed on.

Before giving the precise definitions for exponential domination, we point out that it
shares features with several other well studied domination notions, such as, for example,
k-domination [7, 8, 11, 14, 15, 17, 18, 22], where several vertices contribute to the domi-
nation of an individual vertex, distance-k-domination [2, 3, 6, 16, 20, 23], where vertices
dominate others over some distance, and broadcast domination [9, 12, 13, 21], where dif-
ferent dominating vertices contribute differently to the domination of an individual vertex
depending on the relevant distances.

Let G be a graph. The vertex set and the edge set of G are denoted by V (G) and
E(G), respectively. The order n(G) of G is the number of vertices of G, and the size
m(G) of G is the number of edges of G. For two vertices u and v of G, let distG(u, v)
be the distance in G between u and v, which is the minimum number of edges of a path
in G between u and v. If no such path exists, then let distG(u, v) = ∞. An endvertex
is a vertex of degree at most 1. For a rooted tree T , and a vertex u of T , let Tu denote
the subtree of T rooted in u that contains u as well as all descendants of u. A leaf of
a rooted tree is a vertex with no children. For non-negative integers d0, d1, . . . , dk, let
T (d0, d1, . . . , dk) be the rooted tree of depth k + 1 in which all vertices at distance i from
the root have exactly di children for every i with 0 6 i 6 k. A rooted tree is binary if
every vertex has at most two children, and a binary tree is full if every vertex other than
the leaves has exactly two children. For a positive integer k, let [k] be the set of positive
integers at most k.

Let S be a set of vertices of G. For two vertices u and v of G with u ∈ S or v ∈ S, let
dist(G,S)(u, v) be the minimum number of edges of a path P in G between u and v such
that S contains exactly one endvertex of P and no internal vertex of P . If no such path
exists, then let dist(G,S)(u, v) = ∞. Note that, if u and v are distinct vertices in S, then
dist(G,S)(u, u) = 0 and dist(G,S)(u, v) =∞.

For a vertex u of G, let

w(G,S)(u) =
∑
v∈S

(
1

2

)dist(G,S)(u,v)−1

,

where
(

1
2

)∞
= 0. Note that w(G,S)(u) = 2 for u ∈ S.
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If w(G,S)(u) > 1 for every vertex u of G, then S is an exponential dominating set of
G. The exponential domination number γe(G) is the minimum order of an exponential
dominating set of G, and an exponential dominating set of G of order γe(G) is mini-
mum. By definition, every dominating set is also an exponential dominating set, which
implies γe(G) 6 γ(G) for every graph G. Dankelmann et al. [10] also consider a porous

version, where the term “
(

1
2

)dist(G,S)(u,v)−1
” in the definition of w(G,s)(u) is replaced by

“
(

1
2

)distG(u,v)−1
”. Note that in the porous version, the different vertices in S do not block

each others influence.

In the present paper we focus on exponential domination in subcubic graphs, which is
a special case that displays several interesting features. The intuitive reason for this is
that, by definition, the dominating power halves with every additional unit of distance,
while, at least in subcubic graphs, the number of vertices at a certain distance from a
given vertex at most doubles with every additional unit of distance, that is, the product
of these two quantities is bounded.

The following lemma makes this vague observation more precise.

Lemma 1. Let G be a graph of maximum degree at most 3, and let S be a set of vertices
of G.

If u is a vertex of degree at most 2 in G, then w(G,S)(u) 6 2 with equality if and only
if u is contained in a subgraph T of G that is a tree, such that rooting T in u yields a full
binary tree and S ∩ V (T ) is exactly the set of leaves of T .

For a general graph G, the value of w(G,S)(u) is not bounded from above, and may, in
particular, be arbitrarily large because of vertices in S at any distance from u. This turns
exponential domination into a non-local problem. In contrast to that, if G is a subcubic
graph, S is a set of vertices of G, and u is a vertex of G, then applying Lemma 1 to the
graph G−u and the neighbors of u implies w(G,S)(u) 6 3, that is, the accumulated effect of
arbitrarily many vertices at any distance from u can not be substantially larger than the
effect of a single neighbor of u in S, which already implies w(G,S)(u) > 1. This somewhat
localizes exponential domination in subcubic graphs, which makes it more tractable in
many aspects.

Let S be a set of vertices of a graph G, and let u and v be distinct vertices such
that u 6∈ S and w(G,S)(v) > 1. If G is subcubic, then, by considering the accumulated
contribution to w(G,S)(v) generated by those vertices u′ ∈ S for which every path between
u′ and v that intersects S only in u′ and has minimum length subject to this condition,
necessarily passes through u, Lemma 1 implies w(G,S∪{u})(v) > 1, which does not hold in
general. In particular, a superset of an exponential dominating set of a not necessarily
subcubic graph may not be an exponential dominating set. If w(G,S)(u) 6 2 though, then
w(G,S∪{u})(v) > 1 follows also for not necessarily subcubic graphs.

The main results of Dankelmann et al. [10] are as follows.

Theorem 2 (Dankelmann et al. [10]). If G is a connected graph of diameter diam(G),
then

1

4
(diam(G) + 2) 6 γe(G) 6

2

5
(n(G) + 2).
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While the lower bound is tight for paths of order 2 mod 4, a tight upper bound for
connected graphs in terms of their order is still unknown. In [4] we provide further bounds,
and, in particular, strengthen the upper bound to γe(G) 6 43

108
(n(G) + 2), which is still

surely not best possible. For subcubic graphs though, we obtain a tight upper bound.

Theorem 3. If G is a connected graph of maximum degree at most 3, then γe(G) 6
1
3
(n(G) + 2).

It seems even possible to characterize the extremal graphs for Theorem 3, and we
formulate an explicit conjecture at least for the extremal trees.

Since the diameter of a subcubic graph G is at least linear in log(n(G)), Theorem 2
implies γe(G) > Ω(log(n(G))). We improve this lower bound as follows.

Theorem 4. If T is a tree of maximum degree at most 3, then γe(T ) > 1
6
(n(T ) + 2).

Theorem 5. If G is a graph of maximum degree at most 3, then γe(G) > n(G)
6 log2(n(G)+2)+4

.

Our next result implies that Theorem 5 is not far from being best possible.

Theorem 6. For every ε > 0, there is some g such that γe(G) 6 εn(G) for every cubic
graph G of girth at least g. Furthermore, for every α with 0 < α < 2

3 ln(2)
, there are

infinitely many cubic graphs G with γe(G) 6 3n(G)
ln(n(G))α

.

Imposing a stronger condition actually allows to derive a linear lower bound.

Theorem 7. Let G be a graph of order at least 3 and maximum degree at most 3. If S is a
set of vertices of G such that w(G,S)(u) > 3 for every u ∈ V (G)\S, then |S| > 1

4
(n(G)+6).

While Dankelmann et al. [10] do not comment on the complexity of the exponential
domination number in general, they explicitly ask whether there is a polynomial time
algorithm that computes the exponential domination number of a given tree. Relying on
Lemma 1, we obtain such an algorithm for subcubic trees.

Theorem 8. For a given tree T of maximum degree at most 3, γe(T ) can be determined
in polynomial time.

Finally, we establish a hardness result.

Theorem 9. The problem to determine a minimum exponential dominating set of a given
subcubic graph is APX-hard.

All proofs and further discussion are in the next section. A third section summarizes
several open problems related to our results.
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2 Proofs of the results

Proof of Lemma 1: For a non-negative integer i, let

Vi = {v ∈ V (G) : dist(G,S∪{v})(u, v) = i},

and let ni = |Vi| and si = |S ∩Vi|. Note that for every vertex v in Vi, there is a path P in
G between u and v such that V (P ) \ {v} does not intersect S, and the minimum length
of such a path is exactly i. Trivially, V0 = {u} and thus n0 = 1. Since every vertex in
Vi+1 has a neighbor in Vi \ S, the degree conditions imply ni+1 6 2(ni − si).

Claim 1. For every non-negative integer k,

nk 6 2k

(
1−

k−1∑
i=0

si
2i

)
(1)

with equality if and only if ni = 2(ni−1 − si−1) for every i ∈ [k].

Proof of Claim 1: We prove the claim by induction on k. Since n0 = 1, the claim
holds for k = 0. For k > 0, we obtain, by induction,

nk 6 2(nk−1 − sk−1)

6 2

(
2k−1

(
1−

k−2∑
i=0

si
2i

)
− sk−1

)

= 2k

(
1−

k−1∑
i=0

si
2i

)
,

and (1) follows. Furthermore, we have equality in (1) if and only if nk = 2(nk−1 − sk−1)

and nk−1 = 2k−1

(
1−

k−2∑
i=0

si
2i

)
. By induction, this is equivalent to ni = 2(ni−1 − si−1) for

every i ∈ [k]. �

Since sk 6 nk for every non-negative integer k, Claim 1 implies
k∑
i=0

si
2i−1 6 2 and then

w(G,S)(u) =
∞∑
i=0

si
2i−1

6 2.

Furthermore, if w(G,S)(u) = 2, then, since G is finite, there is some non-negative integer

k such that
k∑
i=0

si
2i−1 = 2, that is

sk = 2k

(
1−

k−1∑
i=0

si
2i

)
6 nk
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which, by Claim 1, implies sk = nk and ni = 2(ni−1 − si−1) for every i ∈ [k]. Since u
has degree at most 2 and G has maximum degree at most 3, this implies the existence
of the desired subtree T . Conversely, if a tree T as in the statement exists, then, clearly,
w(G,S)(u) = 2. �

Before we proceed to the proof of Theorem 3, we establish a lemma concerning specific
reductions.

Lemma 10. Let G be a graph of maximum degree at most 3. Let u be a vertex of G, and
for a positive integer k ∈ [2], let v1, . . . , vk be neighbors of u in G such that, for every
i ∈ [k], the component Ti of G− u that contains vi is a tree.

(i) If k = 2, and v1 and v2 have degree 1 in G, then γe(G) = γe(G− v2).

(ii) If k = 2, v1 has degree 1 in G, and T2 has depth 1, then γe(G) = γe(G − ({v1} ∪
V (T2))) + 1.

(iii) If k = 1, v1 has degree 3 in G, T1 has depth 2, and the two children w1 and w2 of
v1 in T1 are both no leaves of T1, then γe(G) = γe(G− (V (T1) \ {v1, w1, w2})) + 1 =
γe(G− (V (T1) \ {v1, w1})) + 1.

(iv) If k = 1 and T1
∼= T (1, 1), then γe(G) 6 γe(G− V (T1)) + 1.

Proof: (i) Note that an exponential dominating set of G that contains no endvertices
is also an exponential dominating set of G − {v2}, and vice versa. Since both G as well
as G − {v2} have minimum exponential dominating sets that contain no endvertices, (i)
follows.

(ii) Let G′ = G − ({v1} ∪ V (T2)). Lemma 1 implies that G has a minimum exponential
dominating set S that contains v2 but no other vertex from {v1}∪V (T2). Let S ′ = S\{v2}.
If u ∈ S ′, then S ′ is an exponential dominating set of G′. Now, let u 6∈ S ′. Since
1 6 w(G,S)(v1) = 1

2
w(G′,S′)(u) + 1

2
, we obtain w(G′,S′)(u) > 1. This implies that u has a

neighbor x distinct from v1 and v2, and that w(G′,S′)(x) > 2. By Lemma 1, G−u contains
a subgraph T that is a tree, such that rooting T in x yields a full binary tree and S ′∩V (T )
is exactly the set of leaves of T . Since G is subcubic, this implies that, also in this case,
S ′ is an exponential dominating set of G′, and hence, γe(G) > γe(G

′) + 1. Conversely,
if S ′ is a minimum exponential dominating set of G′, then S ′ ∪ {v2} is an exponential
dominating set of G, which implies γe(G) 6 γe(G

′) + 1.

(iii) Let G′ = G − (V (T1) \ {v1, w1, w2}). Lemma 1 implies that G has a minimum
exponential dominating set S that contains w1 and w2 but no other vertex from V (T1).
Since (S\{w1, w2})∪{v1} is an exponential dominating set of G′, we have γe(G) > γe(G

′)+
1. Conversely, Lemma 1 implies thatG′ has a minimum exponential dominating set S ′ that
contains v1 but neither w1 nor w2. Since (S ′\{v1})∪{w1, w2} is an exponential dominating
set of G, we have γe(G) 6 γe(G

′) + 1. The equality γe(G − (V (T1) \ {v1, w1, w2})) =
γe(G− (V (T1) \ {v1, w1})) follows from (i).
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(iv) Since adding the child of v1 in T1 to an exponential dominating set of G − V (T1)
yields an exponential dominating set of T , (iv) follows. �

Proof of Theorem 3: If H is a spanning subgraph of G, then γe(G) 6 γe(H). Therefore,
it suffices to prove Theorem 3 if G is a tree T . The proof is by induction on the order of
T . If T has diameter at most 2, then γe(T ) = 1, and the bound follows. Hence, we may
assume that the diameter of T is at least 3, and hence, n(T ) > 4. Root T in a vertex of
maximum eccentricity. Note that T has depth at least 3.

If some vertex of T has two children that are leaves, then Lemma 10(i) implies the
existence of a tree T ′ with n(T ′) < n(T ) and γe(T ) = γe(T

′). By induction, γe(T ) 6
1
3
(n(T ′) + 2) < 1

3
(n(T ) + 2). Hence, we may assume that no vertex of T has two children

that are leaves.
Let u be a vertex of T such that Tu has depth 2. If u has a child that is a leaf,

then Lemma 10(ii) implies the existence of a tree T ′ with n(T ′) = n(T )− 3 and γe(T ) =
γe(T

′) + 1. By induction, γe(T ) 6 1
3
(n(T ′) + 2) + 1 = 1

3
(n(T ) + 2). Hence, we may

assume that no child of u is a leaf. If u has two children, then Lemma 10(iii) implies
the existence of a tree T ′ with n(T ′) = n(T ) − 3 and γe(T ) = γe(T

′) + 1. By induction,
γe(T ) 6 1

3
(n(T ′) + 2) + 1 = 1

3
(n(T ) + 2). Since T has maximum degree at most 3 and

depth at least 3, we may assume that u has exactly one child, which implies Tu ∼= T (1, 1).
Now, by induction, Lemma 10(iv) implies, γe(T ) 6 γe(T−V (Tu))+1 6 1

3
(n(T ′)+2)+1 =

1
3
(n(T ) + 2), which completes the proof. �

As stated in the introduction, it seems possible to characterize the extremal graphs for
Theorem 3. Most of this hope is based on the equalities in Lemma 10(i), (ii), and (iii),
which should allow to relate extremal graphs of different orders in a controlled way.
In order to phrase a precise conjecture at least for the extremal trees, we define three
operations.

Let T and T ′ be two trees.

• T arises by applying Operation 1 to T ′ at vertex u if T contains a path v1uv2w such
that v1 and w are endvertices of T , v2 has degree 2 in T , and T ′ = T − {v1, v2, w}.

• T arises by applying Operation 2 to T ′ at vertex u if T contains an edge xu such
that rooting T in x, we have Tu ∼= T (2, 1), and T ′ = T − (V (Tu) \ {u, v}), where v
is a child of u in Tu.

• T arises by applying Operation 3 to T ′ at vertex u if T contains an edge uv such
that rooting T in u, we have Tv ∼= T (1, 1), and T ′ = T − V (Tv).

Conjecture 11. A tree T of maximum degree at most 3 satisfies γe(T ) = 1
3
(n(T ) + 2) if

and only if it arises from K1 by iteratively applying Operation 1 at vertices of degree at
most 1, Operation 2 at vertices of degree 2, and Operation 3 at vertices of degree 2.

Using Lemma 10 it is not difficult to show that every extremal tree can be constructed
as stated in the conjecture; the hard part is to show the converse. It also follows easily
that all trees of maximum degree at most 3 in which every vertex of degree 2 is adjacent
to an endvertex are extremal.
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Proof of Theorem 4: The proof is by induction on the order of T . Since the bound is
trivial for trees of diameter at most 2, we may assume that the diameter of T is at least
3, and hence, n(T ) > 4. Root T in a vertex of maximum eccentricity.

Let v be a vertex of T such that Tv has depth 2. If one child of v is a leaf, then removing
the at most four descendants of v yields a tree T ′ such that, by Lemma 10(ii) and induction,
γe(T ) = γe(T

′)+1 > 1
6
(n(T ′)+2)+1 > 1

6
(n(T )−4+2)+1 > 1

6
(n(T )+2). Hence, we may

assume that no child of v is a leaf. If v has two children, say w1 and w2, then removing
the at most four descendants of w1 and w2 yields a tree T ′ such that, by Lemma 10(iii)
and induction, γe(T ) = γe(T

′)+1 > 1
6
(n(T ′)+2)+1 > 1

6
(n(T )−4+2)+1 > 1

6
(n(T )+2).

Hence, we may assume that v has degree 2 in T .
Let u be a vertex of T such that Tu has depth 3. Let v be a child of u such that Tv

has depth 2. By the previous observations, v has degree 2 in T . Let w be the child of
v in T . If u has a child that is a leaf, then, by Lemma 1, some minimum exponential
dominating set S of T contains u and w. Since S \ {w} is an exponential dominating set
of T ′ = T − V (Tv), we obtain, by induction, γe(T ) > γe(T

′) + 1 > 1
6
(n(T ′) + 2) + 1 >

1
6
(n(T ) − 4 + 2) + 1 > 1

6
(n(T ) + 2). If u has a child v′ such that Tv′ has depth 1,

then, by Lemma 1, some minimum exponential dominating set S of T contains v′ and
w. If T ′ arises from T by removing the at most five descendants of v and v′, then
(S \ {v′, w}) ∪ {u} is an exponential dominating set of T ′, and we obtain, by induction,
γe(T ) > γe(T

′)+1 > 1
6
(n(T ′)+2)+1 > 1

6
(n(T )−5+2)+1 > 1

6
(n(T )+2). If u has a child

v′ that is distinct from v such that Tv′ has depth 2, then, by symmetry, we may assume
that v′ has degree 2 in T . Let w′ be the child of v′ in T . By Lemma 1, some minimum
exponential dominating set S of T contains w and w′. If T ′ arises from T by removing v′

together with the at most five descendants of w and v′, and adding a new child at v, then
(S \ {w,w′}) ∪ {v} is an exponential dominating set of T ′, and we obtain, by induction,
γe(T ) > γe(T

′) + 1 > 1
6
(n(T ′) + 2) + 1 > 1

6
(n(T ) − 5 + 2) + 1 > 1

6
(n(T ) + 2). Hence, we

may assume that v is the only child of u.
If u has no parent, then n(T ) 6 5 and γe(T ) = 2 > 1

6
(n(T ) + 2). Hence, we may

assume that u has a parent x. Note that we may assume that u is chosen such that Tx has
depth 4. If u is the only child of x, then either x has no parent, which implies n(T ) 6 6
and γe(T ) = 2 > 1

6
(n(T ) + 2), or x has a parent y. In the latter case, Lemma 1 implies

that T has a minimum exponential dominating set S such that S ∩ V (Tx) = {w}. Since,
by Lemma 1, S \ {w} is an exponential dominating set of T ′ = T − V (Tu), we obtain, by
induction, γe(T ) > γe(T

′)+1 > 1
6
(n(T ′)+2)+1 > 1

6
(n(T )−5+2)+1 > 1

6
(n(T )+2). Hence,

we may assume that x has a child u′ that is distinct from u. If u′ is a leaf, then, by Lemma
1, some minimum exponential dominating set S of T contains x and w. Since S\{w} is an
exponential dominating set of T − V (Tu), we can argue as above. Hence, we may assume
that u′ is not a leaf. If Tu′ has depth 1, then, by Lemma 1, some minimum exponential
dominating set S of T contains u′ and w. If T ′ arises from T by removing the at most six
descendants of u and u′, then (S \ {u′, w}) ∪ {x} is an exponential dominating set of T ′,
and we obtain, by induction, γe(T ) > γe(T

′)+1 > 1
6
(n(T ′)+2)+1 > 1

6
(n(T )−6+2)+1 =

1
6
(n(T )+2). Hence, we may assume that Tu′ has depth at least 2. If Tu′ has depth 2, then,

by previous arguments, we may assume that u′ has degree 2 in T . Furthermore, by Lemma
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1, some minimum exponential dominating set S of T contains w and the child v′ of u′. If T ′

arises from T by removing the at most seven vertices in V (Tu′)∪V (Tw), and adding a new
child at u, then (S \ {v′, w})∪{u} is an exponential dominating set of T ′, and we obtain,
by induction, γe(T ) > γe(T

′) + 1 > 1
6
(n(T ′) + 2) + 1 > 1

6
(n(T )− 6 + 2) + 1 = 1

6
(n(T ) + 2).

Hence, we may assume that Tu′ has depth at least 3. Since Tx has depth 4, this implies
that Tu′ has depth 3. By symmetry between u and u′, we may assume that u′ has a
unique child v′, which has a unique child w′. By Lemma 1, some minimum exponential
dominating set S of T contains w and w′, but does not contain u′ or v′. If T ′ arises from
T by removing the at most eight vertices in V (Tu′)∪V (Tw), and adding two new children
at v, then (S \ {w,w′}) ∪ {v} is an exponential dominating set of T ′, and we obtain, by
induction, γe(T ) > γe(T

′) + 1 > 1
6
(n(T ′) + 2) + 1 > 1

6
(n(T ) − 6 + 2) + 1 = 1

6
(n(T ) + 2),

which completes the proof. �

We believe that the bound in Theorem 4 can be improved to γe(T ) > 1
5
(n(T ) + 1). In

view of trees as the one illustrated in Figure 1, this bound would be a tight.

sss ss s s s ss s s ss s s sHH
��

s s s ss s s s ��HH

Figure 1: A tree T with γe(T ) = 1
5
(n(T ) + 1).

There is no lower bound on γe(T ) that is linear in n(T ) for trees T whose maximum degree
is allowed to be 5 or bigger.

In fact, let d and h be positive integers such that

d >
4

3
· 22h−1 + h− 1. (2)

Let T be the rooted tree T (5, 4, . . . , 4) of maximum degree 5 and depth d, and let S be a
set of 5 · 4d−h−1 leaves of T that contains exactly one descendant of every vertex of T of
depth d− h.

If u is a vertex of T of depth at least d− h, then

w(T,S)(u) >

(
1

2

)2h−1

+ 3 · 40 ·
(

1

2

)2h+2−1

+ · · ·+ 3 · 4d−h−2 ·
(

1

2

)2h+2+2(d−h−2)−1

︸ ︷︷ ︸
d− h− 1 terms

+4 · 4d−h−1 ·
(

1

2

)2h+2+2(d−h−1)−1
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=

(
1

2

)2h−1

+
3

4
·
(

1

2

)2h−1

+
3

4
·
(

1

2

)2h−1

+ · · ·+ 3

4
·
(

1

2

)2h−1

︸ ︷︷ ︸
d− h− 1 terms

+

(
1

2

)2h−1

>
3

4
(d− h+ 1)

(
1

2

)2h−1

> 1.

Similarly, if u is a vertex of T of depth i for some integer i with 1 6 i 6 d− h, then

w(T,S)(u) = 4d−h−i ·
(

1

2

)d−i−1

+ 3 · 40 · 4d−h−i ·
(

1

2

)d−i+2−1

+ · · ·+ 3 · 4i−2 · 4d−h−i ·
(

1

2

)d−i+2+2(i−2)−1

︸ ︷︷ ︸
i− 1 terms

+4 · 4i−1 · 4d−h−i ·
(

1

2

)d−i+2+2(i−1)−1

>
3

4
· (i+ 1) · 4d−h−i ·

(
1

2

)d−i−1

>
3

4
· (d− h+ 1) · 4d−h−d+h ·

(
1

2

)d−d+h−1

=
3

4
· (d− h+ 1) ·

(
1

2

)h−1

> 1.

Finally, w(T,S)(r) > 1 for the root r of T . Now, selecting, for some large integer h, the

smallest integer d that satisfies (2) yields a tree T for which γe(T ) = O
(

n(T )
log(n(T ))

)
.

We do not know whether or not γe(T ) = Ω(n(T )) for trees T of maximum degree
at most 4. Furthermore, it may be true that for any fixed positive integer ∆, we have

γe(T ) = Ω
(

n(T )
log(n(T ))

)
for trees T of maximum degree at most ∆.

Proof of Theorem 5: Let S be a minimum exponential dominating set of G. Let k = |S|.
For a vertex u in V (G) \ S, let S(u) = {v ∈ S : distG(u, v) 6 log2(k) + 2}, and

w̃(G,S)(u) =
∑
v∈S(u)

(
1

2

)distG(u,v)−1

.

Note that

w̃(G,S)(u) =

(∑
v∈S

(
1

2

)distG(u,v)−1
)
−

 ∑
v∈S\S(u)

(
1

2

)distG(u,v)−1
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>

(∑
v∈S

(
1

2

)dist(G,S)(u,v)−1
)
− k

(
1

2

)(log2(k)+2)−1

= w(G,S)(u)− 1

2

>
1

2
,

and hence, ∑
u∈V (G)\S

w̃(G,S)(u) >
1

2
(n(G)− k).

Since G has maximum degree at most 3, for every vertex v of G, there are at most 3 · 2i−1

vertices u of G with distG(u, v) = i. Therefore,

∑
u∈V (G)\S

w̃(G,S)(u) =
∑

u∈V (G)\S

∑
v∈S(u)

(
1

2

)distG(u,v)−1

=
∑
v∈S

∑
u∈V (G)\S: v∈S(u)

(
1

2

)distG(u,v)−1

=
∑
v∈S

blog2(k)+2c∑
i=1

∑
u∈V (G)\S: distG(u,v)=i

(
1

2

)i−1

6
∑
v∈S

blog2(k)+2c∑
i=1

(
1

2

)i−1

· 3 · 2i−1

=
∑
v∈S

blog2(k)+2c∑
i=1

3

=
∑
v∈S

3 blog2(k) + 2c

6 3(log2(k) + 2)k.

This implies 1
2
(n(G) − k) 6 3(log2(k) + 2)k, and hence, n(G) 6 (6 log2(k) + 13) k. By

Theorem 3, we have 6 log2(k) + 13 6 6 log2(n(G) + 2) + 4, and hence, k > n(G)
6 log2(n(G)+2)+4

,

which completes the proof. �

Proof of Theorem 6: For a positive integer d, let T be the rooted tree in which every leaf
has depth d, and every vertex that is not a leaf, has degree 3. Let S be a random subset
of V (T ) that contains each vertex of T independently at random with probability p for
some p ∈ [0, 1].

Let r be the root of T . If r ∈ S, then w(T,S)(r) = 2.
Let v be a vertex at distance i from r for some i ∈ [d]. If v is the only vertex on the

path of order i + 1 in T between r and v that belongs to S, then v contributes
(

1
2

)i−1
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to w(T,S)(r); otherwise v contributes 0 to w(T,S)(r). Therefore, the vertex v contributes(
1
2

)i−1
to w(T,S)(r) exactly with probability p · (1 − p)i. Since there are exactly 3 · 2i−1

vertices at distance i from r for every i ∈ [d], we obtain, by linearity of expectation,

E
[
w(T,S)(r)

]
= 2p+

d∑
i=1

3 · 2i−1 ·
(

1

2

)i−1

· p · (1− p)i

= 2p+ 3(1− p)
(
1− (1− p)d

)
> 2p+ 3(1− p)

(
1− e−pd

)
> 3− p− 3e−pd.

By Lemma 1, we have w(T,S)(r) 6 3, and hence,

E
[
w(T,S)(r)

]
6 P

[
w(T,S)(r) < 1

]
+ 3P

[
w(T,S)(r) > 1

]
= 3− 2P

[
w(T,S)(r) < 1

]
,

which implies

P
[
w(T,S)(r) < 1

]
6
p

2
+

3

2
e−pd.

Now, let G be a cubic graph of girth at least 2d + 1. Let S0 be a random subset of
V (G) that contains each vertex of G independently at random with probability p. Let
S1 = {u ∈ V (G) : w(G,S0)(u) < 1}. By Lemma 1, S0 ∪S1 is an exponential dominating set
of G.

Let u be a vertex of G. By the girth condition, the subgraph of G induced by the
vertices at distance at most d from u is isomorphic to T . Let S be the restriction of S0

to these vertices. We have

P
[
w(G,S0)(u) < 1

]
6 P

[
w(T,S)(r) < 1

]
6
p

2
+

3

2
e−pd,

and, by linearity of expectation and the first moment method, we obtain

γe(G) 6 E [|S0|] + E [|S1|]

6 pn(G) +

(
p

2
+

3

2
e−pd

)
n(G)

=
3

2

(
p+ e−pd

)
n(G).

Now, let ε be such that 0 < ε < 1. For p(ε) = ε
3

and d(ε) =
⌈

3
ε

ln
(

3
ε

)⌉
, we obtain that

3
2

(
p(ε) + e−p(ε)d(ε)

)
6 ε. Therefore, every cubic graph G of girth at least 2d(ε)+1 satisfies

γe(G) 6 εn(G).
Finally, let α be such that 0 < α < 2

3 ln(2)
. It is known [5, 24] that there are arbitrarily

large cubic graphs G of girth g(G) > 4
3 ln(2)

ln(n(G)) − 2. Since α < 2
3 ln(2)

≈ 0.96, there

are infinitely many such graphs G with ln(ln(n(G))) 6 ln(n(G))1−α and dα ln(n(G))e 6
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2
3 ln(2)

ln(n(G)) − 3
2
. For p(α) = ln(ln(n(G)))

ln(n(G))
and d(α) = dα ln(n(G))e, we obtain p(α) 6

1
ln(n(G))α

and g(G)−1
2
> 2

3 ln(2)
ln(n(G)) − 3

2
> d(α). This implies 3

2

(
p(α) + e−p(α)d(α)

)
6

3
ln(n(G))α

, and hence γe(G) 6 3n(G)
ln(n(G))α

. �

Proof of Theorem 7: Clearly, we may assume that S does not contain all vertices of G.
Let H arise from G by removing all edges between vertices in S, and replacing each
vertex u in S that has d neighbors in V (G) \ S by d copies of degree 1, each copy being
adjacent to one of the neighbors of u in V (G) \ S. Let S̄ = V (H) \ (V (G) \ S). Clearly,
w(H,S̄)(u) = w(G,S)(u) > 3 for every vertex u ∈ V (H) \ S̄.

Considering the at most three neighbors of each vertex v in V (H)\S̄, Lemma 1 implies
that all components of H are trees whose internal vertices all have degree 3 and belong
to V (H) \ S̄, and whose endvertices belong to S̄. Furthermore, no two endvertices in one
component of H are copies of the same vertex in S. Note that every tree with vertices
of degree 3 and 1 only, has order 2` − 2, where ` is the number of its endvertices. Let
H have k components. Since H has |S̄| endvertices and n(G) − |S| internal vertices, we
obtain |S̄| = n(G)− |S|+ 2k.

If some vertex in S has 3 neighbors in V (G) \ S, then k > 3. Since |S̄| 6 3|S|, this
implies 3|S| > n(G) − |S| + 6, and hence, |S| > 1

4
(n(G) + 6). If no vertex in S has 3

neighbors in V (G) \S, then, either k > 2 and |S̄| 6 2|S|, or k > 1 and |S̄| 6 |S|. In both
cases, this implies |S| > 1

4
(n(G) + 6). �

It is not difficult to see that the extremal graphs G for Theorem 7 arise from three disjoint
trees T1, T2, and T3 with vertices of degree 3 and 1 only, and 1

4
(n(G) + 6) endvertices

each, by identifying each leaf of T1 with one leaf of T2 and one leaf of T3. For instance
K3,3 is one such graph.

We proceed to the proof of Theorem 8. For a given tree T of maximum degree at most 3,
and a given set S of vertices of T such that

• S is not an exponential dominating set of T , but

• S is a subset of some minimum exponential dominating set of T ,

we explain how to identify, in polynomial time, a vertex u in V (T ) \ S such that S ∪ {u}
is a subset of some minimum exponential dominating set of T . Iteratively applying this
extension starting with the empty set, clearly yields a proof of Theorem 8.

Since the different maximal subtrees T ′ of T for which S contains only endvertices of
T ′ can be handled completely independently, we may assume that S is a subset of the set
of endvertices of T . We root T in some vertex r in V (T ) \ S.

For every vertex u of T , let

∂w(u) = max
{

2distT (u,v)
(
1− w(Tu,S∩V (Tu))(v)

)
: v ∈ V (Tu)

}
.

Clearly, given T and S, the value of ∂w(u) can be calculated efficiently for every vertex
u.

Lemma 12. Let T , S, and ∂w be as above.
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(i) If u is a vertex of T that is distinct from the root r such that ∂w(u) > 1 and
∂w(v) 6 1 for every descendant v of u in T , then S ∪ {u} is a subset of some
minimum exponential dominating set of T .

(ii) If ∂w(u) 6 1 for every vertex u of T , then S ∪ {r} is a minimum exponential
dominating set of T .

Proof: Let S̄ be a minimum exponential dominating set of T such that S ⊆ S̄.

(i) Our first goal is to show that S̄ \ S intersects V (Tu). Therefore, suppose that S̄ ∩
V (Tu) = S∩V (Tu). Let v ∈ V (Tu) be such that ∂w(u) = 2distT (u,v)

(
1− w(Tu,S∩V (Tu))(v)

)
>

1, which implies w(Tu,S∩V (Tu))(v) < 1 −
(

1
2

)distT (u,v)
. Let u− be the parent of u in T . By

Lemma 1, w(T−uu−,S̄)(u
−) 6 2. Since S̄ ∩ V (Tu) = S ∩ V (Tu) and, consequently, S̄ does

not intersect the path in T between u− and v, we obtain

w(T,S̄)(v) = w(T−uu−,S̄)(v) +

(
1

2

)distT (u−,v)

w(T−uu−,S̄)(u
−)

= w(Tu,S∩V (Tu))(v) +

(
1

2

)distT (u,v)+1

w(T−uu−,S̄)(u
−)

<

(
1−

(
1

2

)distT (u,v)
)

+ 2 ·
(

1

2

)distT (u,v)+1

= 1,

which is a contradiction. Hence, S̄ intersects V (Tu) \ S.
Let S ′ = S ∪ {u} ∪ (S̄ \ V (Tu)). Clearly, |S ′| 6 |S̄|.
Our next goal is to show that S ′ is an exponential dominating set of T . By Lemma

1, w(T−uu−,S̄)(u) 6 2. Since w(T−uu−,S′)(u) = 2, this implies w(T,S′)(v) > w(T,S̄)(v) > 1 for
every vertex v in V (T ) \ V (Tu). Trivially, w(T,S′)(u) > 1. Now, let v ∈ V (Tu) \ {u}. Let
u+ be the child of u on the path in T between u and v. Since v ∈ V (Tu+), we have

1 > ∂w(u+) > 2distT (u+,v)
(
1− w(Tu+ ,S∩V (Tu+ ))(v)

)
,

which implies

w(T,S′)(v) = w(Tu+ ,S∩V (Tu+ ))(v) +

(
1

2

)distT (u,v)−1

> 1−
(

1

2

)distT (u+,v)

+

(
1

2

)distT (u,v)−1

= 1.

Hence S ′ is an exponential dominating set of T .
Since |S ′| 6 |S̄|, this completes the proof of (i).
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(ii) As in the proof of (i), it follows that S∪{r} is an exponential dominating set of T . By
hypothesis, S is not an exponential dominating set of T , which implies |S| < |S̄|. Hence
S ∪ {r} is a minimum exponential dominating set of T . �

Proof of Theorem 9: In order to prove APX-hardness, we use that Min Vertex Cover
is APX-complete for cubic graphs [1]. For a given cubic graph G, we construct a subcubic
graphH such that n(H) = 16n(G) and γe(H) = τ(G)+3n(G), where τ(G) is the minimum
order of a vertex cover of G. Furthermore, given an exponential dominating set S of H,
we explain how to construct efficiently a vertex cover C of G with |C| 6 |S|−3n(G). Note

that since G is cubic, we have m(G) = 3
2
n(G), which implies τ(G) > n(G)

2
, and hence,

γe(H) > 7
2
n(G) = 7

32
n(H).

Let G be a cubic graph. Let H arise from G by replacing every edge e = uv of G by a
copy Ge of the subgraph shown in Figure 2. Clearly, the order of H is n(G) + 10m(G) =
16n(G).

uj u u uj u uj u u
u u

��

@@

@@

�� u u@
@
@

�
�
�

u u′e

u′′e

vv′e

Xe Ye

Figure 2: The gadget Ge for the edge e = uv.

Let X be a vertex cover of G. For every edge e, arbitrarily select one vertex x(e) in X
that is incident with e. Starting with S = ∅, add to S all vertices of X. Furthermore, for
every edge e of G, if e = uv and x(e) = u, then add to S the two vertices from the set Xe

indicated in Figure 2. Since G is cubic, and X is a vertex cover of G, the resulting set S is
an exponential dominating set of G, and hence, γe(H) 6 τ(G) + 2m(G) = τ(G) + 3n(G).

Let S be an exponential dominating set of H. We may assume that there is no exponential
dominating set S ′ of H with |S ′| 6 |S| and |S \S ′|+ |S ′ \S| 6 24 such that |S ′∩V (G)| >
|S ∩ V (G)|. Otherwise, such a set S ′ can be found efficiently, and iteratively replacing
S with S ′ yields an exponential dominating set with the desired property after at most
n(G) steps.

Let e = uv be an edge of G. By Lemma 1, the set S contains at least two of the eight
vertices of the set Xe indicated in Figure 2.

If S does not contain u but contains the neighbor u′e of u in Ge, then replacing u′e and
the (at least two) vertices in S ∩Xe with the three vertices indicated in Figure 2 yields a
minimum exponential dominating set S ′ of H with |S ′ ∩ V (G)| > |S ∩ V (G)|, which is a
contradiction. If S does not contain u but contains the two neighbors of u′e in Xe, then
replacing the neighbor u′′e of u′e in Ge with u yields a similar contradiction. Hence, if S
does not contain u, then S does not contain u′e, and S does not contain both neighbors
of u′e in Xe.
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If S contains only two of the twelve vertices of the set Ye indicated in Figure 2, then
S ∩ (Ye \ Xe) is empty, and we may assume, by symmetry, that S contains neither u′e
nor any neighbor of u′e. Since w(H,S)(u

′′
e) > 1, this implies w(H−uu′e,S)(u) > 2. Applying

Lemma 1 to the vertex u of degree 2 in the subcubic graph H − uu′e implies that there
is a neighbor w of u distinct from v such that S either contains u′uw or contains both
neighbors of u′uw within Xuw, which is a contradiction. Hence, S contains at least three
of the twelve vertices of the set Ye.

If S contains exactly three vertices from Ye but neither u nor v, then we may assume,
by symmetry, that v′e is not contained in S. Replacing the three vertices in S ∩ Ye with
the three vertices indicated in Figure 2 yields a minimum exponential dominating set S ′

of H with |S ′ ∩ V (G)| > |S ∩ V (G)|, which is a contradiction. Similarly, if S contains at
least four vertices from Ye but neither u nor v, then replacing the vertices in S ∩ Ye with
the three vertices indicated in Figure 2 and additionally adding v yields a contradiction.
Hence, S contains either u or v. This implies that S ∩ V (G) is a vertex cover of G of
order at most |S| − 2m(G) = |S| − 3n(G). Hence, γe(H) > τ(G) + 3n(G), and the proof
is complete. �

3 Open problems

We collect the several open problems that are scattered throughout the paper.
Does Conjecture 11 hold? More generally, what are the extremal graphs for Theorem

3? Can Theorem 4 be improved as explained before Figure 1? What is the right order
of magnitude for the lower bound in Theorem 5? Is γe(T ) = Ω(n(T )) for trees T of

maximum degree at most 4? Is γe(T ) = Ω
(

n(T )
log(n(T ))

)
for trees T of bounded maximum

degree? Can Theorem 8, that is, the efficient algorithm, be extended to all trees or at
least to the porous version of exponential domination on subcubic trees?
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