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For a degree sequence d : d 1 ≥ • • • ≥ d n , we consider the smallest chromatic number χ min (d) and the largest chromatic number χ max (d) among all graphs with degree sequence

min {i, d i + 1}. For a given degree sequence d with bounded entries, we show that χ min (d), χ max (d), and also the smallest independence number α min (d) among all graphs with degree sequence d, can be determined in polynomial time.

Introduction

We consider finite, simple, and undirected graphs. The degree sequence of a graph G with vertex set {v 1 , . . . , v n } is the sequence d G (v 1 ), . . . , d G (v n ) of its vertex degrees. A sequence d 1 , . . . , d n of integers is a degree sequence if it is the degree sequence of some graph. Repetitions within the degree sequence can be indicated by suitable exponents; the degree sequence of the star K 1,r of order r + 1, for instance, is r, 1 r . For a given sequence d, let G(d) be the set of all graphs G whose degree sequence is d; called the realizations of d. For an integer n, let [n] be the set of the positive integers at most n.

In the present paper we consider

χ min (d) = min {χ(G) : G ∈ G(d)} and χ max (d) = max {χ(G) : G ∈ G(d)} .
Punnim [START_REF] Punnim | Degree Sequences and Chromatic Numbers of Graphs[END_REF] determined χ min (d) and χ max (d) for regular degree sequences d = r n in almost all cases. The parameter χ max (d) was also considered by Dvořák and Mohar [START_REF] Dvořák | Chromatic number and complete graph substructures for degree sequences[END_REF], who established degree sequence versions of the Hadwiger Conjecture and even the Hajós Conjecture, see also [START_REF] Robertson | Hadwiger number and chromatic number for near regular degree sequences[END_REF].

We contribute some bounds, exact values, and algorithmic results. Further discussion of related research will be given throughout the rest of the paper. Havel [START_REF] Havel | A remark on the existence of finite graphs[END_REF] and Hakimi [START_REF] Hakimi | On realizability of a set of integers as degrees of the vertices of a linear graph. I[END_REF] showed that d is a degree sequence if and only if H(d) is a degree sequence. In fact, they observed that if d is a degree sequence, then there is a realization G of d in which the neighbours of a vertex of degree d 1 have degrees d 2 , . . . , d d 1 +1 . Iteratively applying this observation to a given degree sequence yields a realization that tends to contain a large complete subgraph on the vertices of large degrees, that is, such a realization may be expected to have high chromatic number.

Some bounds and exact values

In order to obtain a realization with hopefully small chromatic number, one can apply Havel and Hakimi's observation to the complement. More precisely, for a degree sequence d as above, the sequence d defined as

n -1 -d n ≥ • • • ≥ n -1 -d 1
is also a degree sequence; in fact, the graphs in G d are exactly the complements Ḡ of the graphs G in G(d). Furthermore, by the above observation of 

is a degree sequence. Iteratively applying this observation to a given degree sequence yields a realization that tends to avoid dense subgraphs on the vertices of large degrees, that is, such a realization may be expected to have small chromatic number.

As an example consider the degree sequence d : r r+1 , 1 r(r+1) for some positive integer r. Havel and Hakimi's original observation yields the realization K r+1 ∪ r 2 K 2 , whose chromatic number is r + 1, which equals χ max (d), while the above complementary version yields the realization (r + 1)K 1,r , whose chromatic number is 2, which equals χ min (d). Greedily coloring the vertices of G in the order v 1 , . . . , v n yields a coloring that uses at most max min Hn-i (d) : i ∈ [n] + 1 colors. ✷ Note that for the degree sequence d : r r+1 , 1 r(r+1) of length n = (r + 1) 2 considered as an example above, we obtain max min Hn-i r r+1 , 1 r(r+1) : i ∈ [n] + 1 = 2, that is, for this degree sequence d, Theorem 1 reproduces the correct value of χ min (d).

Unfortunately, Theorem 1 is not very explicit. As a more explicit consequence, we quantify how small degrees may reduce the effect of large degrees on χ min (d). 

χ min (d) ≤ max    d 1 - 1 k   1 + n i=n-ℓ+1 d i   + 1, d k+1 , k    + 1.
Proof 

• (∆ i , n i ) = (∆ i-1 , n i-1 -d n-i+1 ) if d n-i+1 < n i-1
, and

• ∆ i = ∆ i-1 -1 and n i ≤ k -(d n-i+1 -n i-1 ) = n i-1 -d n-i+1 + k if d n-i+1 ≥ n i-1 .
Note that (k∆ i-1 Proof: Our first goal is to show that we may assume that d has a realization with a very large independent set. Therefore, among all realizations G of the degree sequence d and all (not necessarily optimal) colorings f of G, we choose G and f with color classes V 1 , . . . , V k , where

+ n i-1 ) -(k∆ i + n i ) ≥ d n-i+1 in both cases. Summation over i ∈ [ℓ] yields (k∆ 0 +n 0 )-(k∆ ℓ +n ℓ ) ≥ D. Since ∆ 0 = d 1 , n 0 ≤ k, and n ℓ ≥ 1, this implies ∆ ℓ ≤ d 1 -D+1 k +1, which is a contradiction. Hence, ∆ ℓ ≤ max d 1 -D+1 k + 1, d k+1 ,
V i contains n i vertices for i ∈ [k]
, in such a way that

• (n 1 , . . . , n k ) is lexicographically maximal, and
• subject to this first condition, the number of edges between V k-1 and V k is minimum.

Note that k may actually be larger than χ(G), and that n 1 is necessarily equal to the indepen-

dence number α(G) of G. Let ∆ = max(d). If k ≤ ∆-nδ 4∆ + δ + 3, then χ min (d) ≤ χ(G)
≤ k implies the desired bound. Hence, we may assume that k > ∆ -nδ 4∆ + δ + 3. Since ∆ ≥ nδ 4 and δ ≥ 1, we have k ≥ 5. By the choice of the coloring f , there is an edge, say uv, between the smallest two color classes

V k-1 and V k . If G \ (V k-1 ∪ V k ∪ N G (u) ∪ N G (v)
) contains an edge xy, then removing from G the two edges uv and xy, and adding the two edges ux and vy, yields another realization G ′ of d. Note that f is still a coloring of G ′ . This implies that there is a coloring f ′ of G ′ such that either the non-increasing vector of the sizes of the color classes is lexicographically larger than the one of f , or there are fewer edges between the two smallest color classes. Since both cases imply a contradiction to the choice of G and f , we obtain that

V (G) \ (V k-1 ∪ V k ∪ N G (u) ∪ N G (v)) is an independent set, which implies α(G) ≥ n-(n k-1 + n k ) -2∆. Since V k-1 and V k are the smallest two color classes, and n 2 +• • •+n k = n-α(G), we obtain n k-1 +n k ≤ 2 k-1 (n-α(G)). This implies α(G) ≥ n -2 k-1 (n -α(G)) -2∆, and, using k ≥ 5, we obtain α(G) ≥ n -k-1 k-3 • 2∆ ≥ n -4∆.
Altogether, we may assume that d has a realization G with an independent set I = {u 1 , . . . , u α } of order at least n -4∆. By the above-mentioned observations of Havel [START_REF] Havel | A remark on the existence of finite graphs[END_REF], Hakimi [START_REF] Hakimi | On realizability of a set of integers as degrees of the vertices of a linear graph. I[END_REF], Rao [START_REF] Rao | The clique number of a graph with a given degree sequence[END_REF], and Kleitman and Wang [START_REF] Kleitman | Algorithms for constructing graphs and digraphs with given valences and factors[END_REF], we may further assume that, for every

i ∈ [α], the vertex u i is adjacent to d G (u i ) vertices in V (G) \ I of the largest degrees in the induced subgraph G -{u 1 , . . . , u i-1 } of G. Arguing as in the proof of Corollary 2, we ob- tain (n -α)∆ + (n -α) -(n -α)∆(G -I) + 1 ≥ d G (u 1 ) + • • • + d G (u α ) ≥ αδ, where ∆(G -I) denotes the maximum degree of G -I. This implies ∆(G -I) ≤ ∆ -αδ+1 n-α + 1 ≤ ∆ -(n-4∆)δ+1 4∆ + 1 = ∆ -nδ+1 4∆ + δ + 1.
Therefore, we can color G using at most ∆ -nδ+1 4∆ + δ + 2 colors on the vertices in V (G) \ I, and one additional color on the vertices in I, which implies

χ min (d) ≤ χ(G) ≤ ∆ -nδ+1
4∆ + δ + 3. ✷ For positive integers r, s, and δ such that r + 1 is a multiple of δ, let d be the degree sequence (r +s) r+1 , δ s(r+1)/δ . Since the sum of the largest r +1 degrees equals exactly 2 r+1 2 +δs(r +1)/δ, every realization G of d contains a clique on the r + 1 vertices of largest degrees, and an independent set on the remaining vertices. Note that χ(G) ∈ {r+1, r+2}, which, for r ≫ s ≫ δ, is roughly max(d)-n min(d) max(d) , that is, up to the constants, the bound in Theorem 3 is best possible. In fact, by imposing a stronger lower bound on max(d) or by increasing the additive constant, the factor 4 within the term nδ+1 4∆ can easily be reduced to slightly more than 2. Our next result gives a best possible bound on χ min (d) for degree sequences of small degrees. 

a i = i∈[y] b i , max{a 1 , b 1 } ≤ n-1
2 , and b y ≥ 1.

Let k ∈ [x]. If k ≤ n-1 2 , then a 1 ≤ n-1 2 and b n ≥ 1 imply i∈[k] a i ≤ ka 1 ≤ n -1 2 ≤ y ≤ i∈[y] min{k, b i }. If k > n-1 2 , then b 1 ≤ n-1 2 implies i∈[k] a i ≤ i∈[x] a i = i∈[y] b i = i∈[y]
min{k, b i }.

By the Gale-Ryser Theorem [START_REF] Gale | A theorem on flows in networks[END_REF][START_REF] Ryser | Combinatorial properties of matrices of zeros and ones[END_REF], there is a bipartite graph H with partite sets X and Y with |X| = x and |Y | = y such that the vertices in X have degrees a 1 , . . . , a x and the vertices in Y have degrees b 1 , . . . , b y . Since s has the same parity as

i∈X d i + i∈Y d i = d 1 + • • • + d n ,
it is an even integer, and adding to H a matching of size s/2 incident to those vertices in X corresponding to the entries of (d i ) i∈X that were previously reduced by 1, results in a graph G with degree sequence d 1 , . . . , d n . Clearly, χ(G) ≤ 3, and the upper bound on χ min (d) follows.

✷

The conclusion of Theorem 4 is best possible, because there might not be a subset X of [n] with

i∈X d i = i∈[n]\X
d i , which is a necessary condition for the existence of a bipartite realization.

The complexity of deciding the existence of a bipartite realization for a given degree sequence is unknown.

Note that together, Theorem 3 and Theorem 4 imply

χ min (d) ≤ max 3, max(d) - n + 1 4 max(d) + 4
for every degree sequence d with min(d) ≥ 1.

Theorem 4 has the following variant where the essential assumption is that max(d) -min(d) is small. Note that this next result also covers regular degree sequences of sufficient length.

Theorem 5 If n, d 1 , . . . , d n are integers and ǫ > 0 is such that n-1

2 ǫ ≥ d 1 ≥ • • • ≥ d n ≥ 1, d 1 -d n ≤ n-1 2 (1 -ǫ), and d 1 + • • • + d n is even, then χ min (d) ≤ 3.
Proof: We may assume that d 1 > n-1 2 ; otherwise Theorem 4 implies the result. Furthermore, we have ǫ ≤ 1. Exactly as in the proof of Theorem 4, we obtain the existence of a partition of 

a i = i∈[y] b i , max{a 1 , b 1 } ≤ d 1 , and b y ≥ d n .
Notice that as d 1 > n-1 2 , we have

d n d 1 ≥ d 1 -n-1 2 (1 -ǫ) d 1 ≥ 1 -(1 -ǫ) = ǫ. Let k ∈ [x]. If k ≤ d n , then i∈[k] a i ≤ kd 1 ≤ k n -1 2 ≤ ky ≤ i∈[y] min{k, b i }. If d n < k < d 1 , then i∈[k] a i ≤ kd 1 ≤ d 2 1 ≤ n -1 2 ǫd 1 ≤ n -1 2 d n ≤ yd n ≤ i∈[y] min{k, b i }. And, if k ≥ d 1 , then i∈[k] a i ≤ i∈[x] a i = i∈[y] b i = i∈[y]
min{k, b i }.

At this point, the proof can be completed exactly as the proof of Theorem 4. ✷

For a graph G with degree sequence d 1 ≥ • • • ≥ d n , Welsh and Powell [START_REF] Welsh | An upper bound for the chromatic number of a graph and its application to timetabling problems[END_REF] observed

χ(G) ≤ max i∈[n]
min {i,

d i + 1} , (2) 
which is an immediate consequence of applying the natural greedy coloring algorithm to the vertices of G in an order of non-increasing degrees. If

d 1 ≥ • • • ≥ d n is a degree sequence such that d p -d p+1 ≥ p-2 for p = max i∈[n]
min {i, d i + 1}, then Havel and Hakimi's observation explained above implies the existence of a realization G of d for which the vertices of degrees d 1 , . . . , d p form a clique. This implies

p ≤ χ(G) ≤ χ max (d) ≤ p, that is, χ max (d) = max i∈[n]
min {i, d i + 1} for such degree sequences.

Our next result shows that the Welsh-Powell bound (2) also gives the correct value of χ max (d) for degree sequences d of small degrees.

Theorem 6 If n, d 1 , . . . , d n are integers such that n + 1 4 -1 2 > d 1 ≥ • • • ≥ d n ≥ 1 and d 1 + • • • + d n is even, then χ max (d) = max i∈[n] min {i, d i + 1}. Proof: Let p = max i∈[n] min {i, d i + 1}. Note that p ≤ d p + 1 ≤ d 1 + 1.
By the Welsh-Powell bound (2), every graph G with degree sequence d 1 , . . . , d n satisfies χ(G) ≤ p, which implies χ max (d) ≤ p. In order to establish equality, we show the existence of a realization that contains a clique of size p.

Let k ∈ [n]. We obtain i∈[k] d i ≤ kd 1 and k(k -1) + i∈[n]\[k] min{k, d i } ≥ k(k -1) + n -k. Therefore, i∈[k] d i is at most k(k -1) + i∈[n]\[k] min{k, d i } if kd 1 ≤ k(k -1) + n -k, which is equivalent to k(d 1 + 2 -k) ≤ n. Since n + 1 4 -1 2 > d 1 ≥ 1 implies n ≥ 3 and k(d 1 + 2 -k) ≤ d 1 +2 2 
2 ≤ n, the Erdős-Gallai Theorem [START_REF] Erdős | Graphs with prescribed degrees of vertices (Hungarian)[END_REF] implies the existence of a graph with degree sequence d 1 , . . . , d n . Among all such graphs with vertex set {v 1 , . . . , v n }, where v i has degree

d i for i ∈ [n],
we choose G such that the number m(G[{v 1 , . . . , v p }]) of edges of the subgraph of G induced by {v 1 , . . . , v p } is as large as possible. Suppose, for a contradiction, that G[{v 1 , . . . , v p }] is not a clique, that is, v i and v j are not adjacent in G for distinct i and j in [p]. By the choice of p, we have d i , d j ≥ p -1, which implies that v i and v j both have at least one neighbor in R = {v p+1 , . . . , v n }.

First, we assume that v i and v j both have the same unique neighbor v r in R, that is,

{v r } = N G (v i ) ∩ R = N G (v j ) ∩ R.
Since there are at most 1 + d 2 1 vertices at distance at most 2 from v r , including, in particular, v i and v j , and n

-(p -2) -(1 + d 2 1 ) ≥ n -d 2 1 -d 1 > 0,
there is a vertex v s in R with a neighbor v t such that v s and v t are both not adjacent to v r . Now, removing from G the edges v i v r , v j v r , and v s v t , and adding the edges v i v j , v r v s , and v r v t yields a realization

G ′ of d 1 , . . . , d n with m(G ′ [{v 1 , . . . , v p }]) > m(G[{v 1 , . . . , v p }]), which contradicts the choice of G.
Now, we may assume that v i is adjacent to some vertex v r in R, and that v j is adjacent to a different vertex v s in R. If v r is not adjacent to v s , then removing from G the edges v i v r and v j v s , and adding the edges v i v j and v r v s yields a realization

G ′ of d 1 , . . . , d n with m(G ′ [{v 1 , . . . , v p }]) > m(G[{v 1 , . . . , v p }]
), which contradicts the choice of G. Hence, we may assume that v r and v s are adjacent. Since there are at most 1 + d 2 1 vertices at distance at most 2 from v r , including, in particular, v i , v s , and v j , and n-(p -2) -(1

+ d 2 1 ) ≥ n-d 2 1 -d 1 > 0,
there is a vertex v p in R with a neighbor v q such that v p is not adjacent to v s , and v q is not adjacent to v r . Note that v q may be v j , in which case, v j has distance 2 from v r . Now, removing from G the edges v i v r , v j v s , and v p v q , and adding the edges v i v j , v s v p , and v r v q yields a realization G ′ of d 1 , . . . , d n with m(G ′ [{v 1 , . . . , v p }]) > m(G[{v 1 , . . . , v p }]), which contradicts the choice of G.

Altogether, we obtain that G contains a clique of order p, which completes the proof. ✷

Algorithmic aspects

One way to establish that χ max (d) is large is to show the existence of a realization of d that contains a large clique. Dvořák and Mohar [START_REF] Dvořák | Chromatic number and complete graph substructures for degree sequences[END_REF] proved the best possible statement that for every degree sequence d, some realization of d has a clique of size at least 5/6(χ max (d) -3/5). Since Rao [START_REF] Rao | The clique number of a graph with a given degree sequence[END_REF][START_REF] Rao | An Erdős-Gallai type result on the clique number of a realization of a degree sequence[END_REF] for which the complete k-partite graph whose jth partite set V j has order p i=1 n j i for j ∈ [k], has a factor G such that V j contains exactly n j i vertices of degree d i in G for every i ∈ [p] and j ∈ [k]. Since the existence of such a factor can be decided in polynomial time using matching methods, and, for fixed k and p, there are only polynomially many different suitable matrices, the desired statement follows. ✷ It seems plausible to wonder whether χ max (d) is linked to α min (d), the minimum independence number of a realization of d. While α max (d) = ω max d can be determined efficiently using the results of Rao [START_REF] Rao | The clique number of a graph with a given degree sequence[END_REF][START_REF] Rao | An Erdős-Gallai type result on the clique number of a realization of a degree sequence[END_REF], Bauer, Hakimi, Kahl, and Schmeichel [START_REF] Bauer | Best Monotone Degree Bounds for Various Graph Parameters[END_REF] conjectured that it is computationally hard to determine α min (d) for a given degree sequence d.

Our next goal is to show that also α min (d) can be determined in polynomial time for given degree sequences d with bounded entries. For a degree sequence d

1 , . . . , d n , let α CW (d) = n i=1 1 
d i +1
. Caro [START_REF] Caro | New results on the independence number[END_REF] and Wei [START_REF] Wei | A lower bound on the stability number of a simple graph[END_REF] proved that α(G) ≥ α CW (d) for every graph G with degree sequence d. For a connected graph G with degree sequence d, Harant and Rautenbach [START_REF] Harant | Independence in connected graphs[END_REF] 

showed α(G) ≥ k ≥ u∈V (G) 1 d G (u)-f (u)+1
, where k is an integer, and, for every vertex u of G, f (u) is a non-negative integer at most d G (u) such that u∈V (G) f (u) ≥ 2(k -1). This improved an earlier result of Harant and Schiermeyer [START_REF] Harant | On the independence number of a graph in terms of order and size[END_REF].

If α CW (d) ≥ 2, then k ≥ α CW (d) implies 2(k -1) ≥ k ≥ α CW (d), and, hence, α(G) ≥ u∈V (G) 1 d G (u) -f (u) + 1 = α CW (d) + u∈V (G) 1 d G (u) -f (u) + 1 - 1 d G (u) + 1 ≥ α CW (d) + 1 (max(d) + 1) 2 u∈V (G) f (u) ≥ 1 + 1 (max(d) + 1) 2 α CW (d).
Theorem 9 Let ∆ be a fixed positive integer. . Hence, the lower bound on n(K) implies 1 + 1 (∆+1) 2 α CW (d ′′ ) = 1 (∆+1) 2 α CW (d ′′ ) + α CW (d ′′ ) > |R ∪ S| + α CW (d ′′ ). As observed in the proof of Theorem 6, the Erdős-Gallai Theorem implies that the sequence d ′ , which is a sequence of positive integers at most ∆ that is of length at least ∆+2 Since, as ∆ is fixed, there are only finitely many graphs of maximum degree at most ∆ and order at most ((∆ + 1) 3 + 1) ∆+2 2 2 + ∆+1 2 . Listing, for each of these graphs, the degree sequence and the independence number, it is a routine matter to determine α min (d) for a given degree sequence d with max(d) ≤ ∆ by dynamic programming in polynomial time. ✷

For a sequence d

  of non-negative integers d 1 ≥ • • • ≥ d n , let H(d) be the sequence d 2 -1, . . . , d d 1 +1 -1, d d 1 +2 , . . . , d n .

For a sequence d of integers d 1 Theorem 1

 11 , . . . , d n , let n be the length of d, let min(d) = min{d 1 , . . . , d n }, and let max(d) = max{d 1 , . . . , d n }. Furthermore, let H0 (d) = d, H1 (d) = H(d), and Hi (d) = H Hi-1 (d) for an integer i at least 2. Note that iteratively applying the reductions d → H(d) or d → H(d) always requires reordering the constructed sequences in a non-increasing way. If d is a degree sequence of length n, then χ min (d) ≤ max min Hn-i (d) : i ∈ [n] + 1. Proof: Iteratively applying the complementary version of Havel and Hakimi's observation to the degree sequence d yields a realization G of d with vertex set {v 1 , . . . , v n } such that, for i from n down to 1, the vertex v i has degree min Hn-i (d) in the graph G[{v 1 , . . . , v i }].

Corollary 2

 2 If d is a degree sequence d 1 ≥ . . . ≥ d n , and k and ℓ are positive integers such that d k ≥ k + ℓ and d n-ℓ+1 ≤ k, then

Theorem 3

 3 and any realization H of the degree sequence Hℓ (d) can be colored using at most max d 1 -D+1 k + 1, d k+1 + 1 many colors. Adding ℓ further vertices of degrees d n-ℓ+1 , . . . , d n one by one to H, and connecting them to suitable vertices according to the previous reductions, yields a realization G of d. Since the added vertices all have degree at most k, the coloring of H can be extended greedily to a coloring of G using at most max d 1 -D+1 k + 1, d k+1 , k + 1 different colors in total. ✷ For a given degree sequence d not satisfying any further restriction, one can only bound χ min (d) from above by max(d)+1. In fact, d might be max(d) max(d)+1 , 0 n-max(d)-1 , whose only realization contains a clique of size max(d) + 1. Our next two results improve this trivial estimate for graphs without isolated vertices. If d is a degree sequence of length n with max(d) ≥ nδ 4 and min(d) ≥ δ for some positive integer δ, then χ min (d) ≤ max(d) -nδ 4 max(d) + δ + 3.

Theorem 4

 4 If n, d 1 , . . . , d n are integers such that n-1 2 ≥ d 1 ≥ • • • ≥ d n ≥ 1 and d 1 + • • • + d n is even, then χ min (d) ≤ 3. (In particular, d 1 , . . . , d n is a degree sequence.) Proof: There is a partition of [n] into two sets X and Y with |X| -|Y | ≤ 1 and 0 ≤ s ≤ d 1 ≤ n-1 2 , where s = i∈X d i -i∈Y d i ; in fact, as long as there are two equal entries d i and d j in the sequence d 1 , . . . , d n , we assign i to X and j to Y , and remove d i and d j from the sequence, and once all remaining entries are distinct, say d i 1 > • • • > d i k , we assign i 1 , i 3 , . . . to X and i 2 , i 4 , . . . to Y . Let x = |X| and y = |Y |. Note that x, y ≥ n-1 2 ; in particular, s ≤ x. Reducing s distinct entries of the sequence (d i ) i∈X by 1, and reordering yields a sequence a 1 ≥ • • • ≥ a x . Reordering the sequence (d i ) i∈Y yields b 1 ≥ • • • ≥ b y . By construction, i∈[x]

  [n] into two sets X and Y with |X| -|Y | ≤ 1 and 0 ≤ s ≤ d 1 ≤ n-1 2 ǫ, where s = i∈X d i -i∈Y d i . Setting x = |X| and y = |Y |, we obtain, as above, that x, y ≥ n-1 2 , s ≤ x, and s is even. Let a 1 ≥ • • • ≥ a x and b 1 ≥ • • • ≥ b y be as in the proof of Theorem 4. By construction, i∈[x]

For a given 2 . 2 2i=1 i = ∆+1 2 , 2 2 and at most ∆+2 2 2 + ∆+1 2 many

 222222 degree sequence d with max(d) ≤ ∆, every component of every realization G of d with α(G) = α min (d) has order at most ((∆ + 1) 3 + 1) In particular, one can determine α min (d) in polynomial time.Proof: Let d be a degree sequence with max(d) ≤ ∆. Let G be a realization of d with α(G) = α min (d). Suppose, for a contradiction, that some component K of G has order n(K) more than the stated value. Let R be a set of ∆+2 vertices of K. For i ∈ [∆], let V i be the set of vertices of degree i in V (K)\R, and let n i = |V i |. Let p i = n i i+1 , and let S i arise by removingp i (i+1) vertices from V i for each i ∈ [∆]. Note that |S| ≤ ∆ where S = S 1 ∪• • •∪S ∆ , that is, R ∪ S is a set of at least ∆+2 vertices of K. Let d ′be the sequence of the degrees of the vertices in R ∪ S, and let d ′′ be the sequence of the degrees of the vertices in V (K) \ (R ∪ S). Note that α CW (d ′′ ) ≥ (n(K)-|R∪S|) ∆+1

2 2 ,

 2 is a degree sequence. Let K ′ 0 be a realization of d ′ . By construction, the graphK ′ = K ′ 0 ∪ ∆ i=1 p i K i+1 hasexactly the same degree sequence as K. By the result of Harant and Rautenbach mentioned above,α(K ′ ) = α(K ′ 0 ) + ∆ i=1 p i α(K i+1 ) = α(K ′ 0 ) + α CW (d ′′ ) ≤ |R ∪ S| + α CW (d ′′ ) < 1 + 1 (∆ + 1) 2 α CW (d ′′ ) < 1 + 1 (∆ + 1) 2 α CW (d) ≤ α(K).

  Therefore, replacing K by K ′ within G yields a realization G ′ of d with α(G ′ ) < α(G), contradicting the choice of G. This completes the proof of the first part of the statement.

:

  We consider the first ℓ applications of the reduction d → H(d). Since d k ≥ k + ℓ and d n-ℓ+1 ≤ k, we obtain that, for i ∈ [ℓ], the degree sequence Hi (d) arises from Hi-1 (d) by removing the degree d n-i+1 , and reducing the d n-i+1 largest degrees by 1. For i ∈ {0, . . . , ℓ}, let ∆ i = max Hi (d) , and let n i be the number of entries of Hi (d) that are equal to ∆ i . Suppose, for a contradiction, that ∆ ℓ > max d 1 -D+1 k + 1, d k+1 , where D =

	n i=n-ℓ+1 of the ℓ + 1 degree sequences d, H(d), . . . , Hℓ (d) contains at most k entries that are strictly d i . Note that each
	larger than d k+1 . So, for i ∈ [ℓ], we have

  efficiently characterized the largest clique size ω max (d) of any realization of a given degree sequence d, and, trivially, χ max (d) ≥ ω max (d), we immediately obtain that χ max (d) can be approximated in polynomial time for a given d within an asymptotic factor of 6/5.Our next two results show that χ max (d) and χ min (d) can both be determined in polynomial time for given degree sequences with bounded entries. Let k and p be fixed positive integers. For a given degree sequence d with at most p distinct entries, one can decide in polynomial time whether χ min (d) ≤ k. Proof: Let d : d n 1 1 , . . . , d np p and n = n 1 + • • • + n p . There are = n i for i ∈ [p]. It is easy to see that χ min (d) ≤ k if and only if there is such a matrix (n j i ) (i,j)∈[p]×[k]

	Corollary 7 Let ∆ be a fixed positive integer. For a given degree sequence d with max(d) ≤ ∆, one can determine χ max (d) in polynomial time. Proof: Let d have length n. Clearly, we may assume min(d) ≥ 1. If √ n -2 ≥ ∆, then Theorem 6 implies that χ max (d) coincides with the Welsh-Powell bound (2). If √ n -2 < ∆, then, as ∆ is fixed, there are only constantly many realizations of d, which can all be generated and optimally colored by brute force in constant time. ✷ Theorem 8 p i=1 n i +k-1 k-1 p + k kp distinct ≤ n matrices (n j i ) (i,j)∈[p]×[k] with non-negative integral entries n j i such that k j=1 n j i