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Abstract

For a degree sequence d : d1 ≥ · · · ≥ dn, we consider the smallest chromatic number

χmin(d) and the largest chromatic number χmax(d) among all graphs with degree sequence

d. We show that if dn ≥ 1, then χmin(d) ≤ max
{

3, d1 − n+1
4d1

+ 4
}

, and, if
√

n+ 1
4 − 1

2 >

d1 ≥ dn ≥ 1, then χmax(d) = max
i∈[n]

min {i, di + 1}. For a given degree sequence d with

bounded entries, we show that χmin(d), χmax(d), and also the smallest independence

number αmin(d) among all graphs with degree sequence d, can be determined in polynomial

time.
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1 Introduction

We consider finite, simple, and undirected graphs. The degree sequence of a graph G with vertex

set {v1, . . . , vn} is the sequence dG(v1), . . . , dG(vn) of its vertex degrees. A sequence d1, . . . , dn

of integers is a degree sequence if it is the degree sequence of some graph. Repetitions within

the degree sequence can be indicated by suitable exponents; the degree sequence of the star

K1,r of order r+1, for instance, is r, 1r. For a given sequence d, let G(d) be the set of all graphs
G whose degree sequence is d; called the realizations of d. For an integer n, let [n] be the set

of the positive integers at most n.

In the present paper we consider

χmin(d) = min {χ(G) : G ∈ G(d)} and χmax(d) = max {χ(G) : G ∈ G(d)} .

Punnim [11] determined χmin(d) and χmax(d) for regular degree sequences d = rn in almost all

cases. The parameter χmax(d) was also considered by Dvořák and Mohar [3], who established

degree sequence versions of the Hadwiger Conjecture and even the Hajós Conjecture, see also

[14].

We contribute some bounds, exact values, and algorithmic results. Further discussion of

related research will be given throughout the rest of the paper.

2 Some bounds and exact values

For a sequence d of non-negative integers d1 ≥ · · · ≥ dn, let H(d) be the sequence

d2 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn.

Havel [9] and Hakimi [6] showed that d is a degree sequence if and only if H(d) is a degree

sequence. In fact, they observed that if d is a degree sequence, then there is a realization G

of d in which the neighbours of a vertex of degree d1 have degrees d2, . . . , dd1+1. Iteratively

applying this observation to a given degree sequence yields a realization that tends to contain

a large complete subgraph on the vertices of large degrees, that is, such a realization may be

expected to have high chromatic number.

In order to obtain a realization with hopefully small chromatic number, one can apply Havel

and Hakimi’s observation to the complement. More precisely, for a degree sequence d as above,

the sequence d̄ defined as

n− 1− dn ≥ · · · ≥ n− 1− d1

is also a degree sequence; in fact, the graphs in G
(

d̄
)

are exactly the complements Ḡ of the

graphs G in G(d). Furthermore, by the above observation of Havel and Hakimi, d̄ has a

realization in which the neighbors of a vertex of the largest degree n − 1 − dn have degrees

n− 1− dn−1, . . . , n− 1− ddn+1. Equivalently, as already observed by Kleitman and Wang [10]

in a more general form, d has a realization in which the neighbors of a vertex of the smallest
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degree dn have degrees d1, . . . , ddn. In summary, we obtain that d is a degree sequence if and

only if the sequence H̄(d) defined as

d1 − 1, . . . , ddn − 1, ddn+1, . . . , dn−1 (1)

is a degree sequence. Iteratively applying this observation to a given degree sequence yields a

realization that tends to avoid dense subgraphs on the vertices of large degrees, that is, such a

realization may be expected to have small chromatic number.

As an example consider the degree sequence d : rr+1, 1r(r+1) for some positive integer r.

Havel and Hakimi’s original observation yields the realization Kr+1 ∪
(

r
2

)

K2, whose chromatic

number is r + 1, which equals χmax(d), while the above complementary version yields the

realization (r + 1)K1,r, whose chromatic number is 2, which equals χmin(d).

For a sequence d of integers d1, . . . , dn, let n be the length of d, let min(d) = min{d1, . . . , dn},
and let max(d) = max{d1, . . . , dn}. Furthermore, let H̄0(d) = d, H̄1(d) = H̄(d), and H̄ i(d) =

H̄
(

H̄ i−1(d)
)

for an integer i at least 2. Note that iteratively applying the reductions d 7→ H(d)

or d 7→ H̄(d) always requires reordering the constructed sequences in a non-increasing way.

Theorem 1 If d is a degree sequence of length n, then

χmin(d) ≤ max
{

min
(

H̄n−i(d)
)

: i ∈ [n]
}

+ 1.

Proof: Iteratively applying the complementary version of Havel and Hakimi’s observation to

the degree sequence d yields a realization G of d with vertex set {v1, . . . , vn} such that, for

i from n down to 1, the vertex vi has degree min
(

H̄n−i(d)
)

in the graph G[{v1, . . . , vi}].
Greedily coloring the vertices of G in the order v1, . . . , vn yields a coloring that uses at most

max
{

min
(

H̄n−i(d)
)

: i ∈ [n]
}

+ 1 colors. ✷

Note that for the degree sequence d : rr+1, 1r(r+1) of length n = (r + 1)2 considered as an

example above, we obtain max
{

min
(

H̄n−i
(

rr+1, 1r(r+1)
))

: i ∈ [n]
}

+ 1 = 2, that is, for this

degree sequence d, Theorem 1 reproduces the correct value of χmin(d).

Unfortunately, Theorem 1 is not very explicit. As a more explicit consequence, we quantify

how small degrees may reduce the effect of large degrees on χmin(d).

Corollary 2 If d is a degree sequence d1 ≥ . . . ≥ dn, and k and ℓ are positive integers such

that dk ≥ k + ℓ and dn−ℓ+1 ≤ k, then

χmin(d) ≤ max







d1 −
1

k



1 +
n
∑

i=n−ℓ+1

di



+ 1, dk+1, k







+ 1.

Proof: We consider the first ℓ applications of the reduction d 7→ H̄(d). Since dk ≥ k + ℓ

and dn−ℓ+1 ≤ k, we obtain that, for i ∈ [ℓ], the degree sequence H̄ i(d) arises from H̄ i−1(d) by

removing the degree dn−i+1, and reducing the dn−i+1 largest degrees by 1. For i ∈ {0, . . . , ℓ}, let
∆i = max

(

H̄ i(d)
)

, and let ni be the number of entries of H̄ i(d) that are equal to ∆i. Suppose,
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for a contradiction, that ∆ℓ > max
{

d1 − D+1
k

+ 1, dk+1

}

, where D =
n
∑

i=n−ℓ+1
di. Note that each

of the ℓ + 1 degree sequences d, H̄(d), . . . , H̄ℓ(d) contains at most k entries that are strictly

larger than dk+1. So, for i ∈ [ℓ], we have

• (∆i, ni) = (∆i−1, ni−1 − dn−i+1) if dn−i+1 < ni−1, and

• ∆i = ∆i−1 − 1 and ni ≤ k − (dn−i+1 − ni−1) = ni−1 − dn−i+1 + k if dn−i+1 ≥ ni−1.

Note that (k∆i−1 + ni−1) − (k∆i + ni) ≥ dn−i+1 in both cases. Summation over i ∈ [ℓ] yields

(k∆0+n0)−(k∆ℓ+nℓ) ≥ D. Since ∆0 = d1, n0 ≤ k, and nℓ ≥ 1, this implies ∆ℓ ≤ d1− D+1
k

+1,

which is a contradiction. Hence, ∆ℓ ≤ max
{

d1 − D+1
k

+ 1, dk+1

}

, and any realization H of the

degree sequence H̄ℓ(d) can be colored using at most max
{

d1 − D+1
k

+ 1, dk+1

}

+1 many colors.

Adding ℓ further vertices of degrees dn−ℓ+1, . . . , dn one by one to H , and connecting them to

suitable vertices according to the previous reductions, yields a realization G of d. Since the

added vertices all have degree at most k, the coloring of H can be extended greedily to a

coloring of G using at most max
{

d1 − D+1
k

+ 1, dk+1, k
}

+ 1 different colors in total. ✷

For a given degree sequence d not satisfying any further restriction, one can only bound χmin(d)

from above by max(d)+1. In fact, dmight be max(d)max(d)+1, 0n−max(d)−1, whose only realization

contains a clique of size max(d) + 1.

Our next two results improve this trivial estimate for graphs without isolated vertices.

Theorem 3 If d is a degree sequence of length n with max(d) ≥
√

nδ
4
and min(d) ≥ δ for some

positive integer δ, then χmin(d) ≤ max(d)− nδ
4max(d)

+ δ + 3.

Proof: Our first goal is to show that we may assume that d has a realization with a very large

independent set. Therefore, among all realizations G of the degree sequence d and all (not

necessarily optimal) colorings f of G, we choose G and f with color classes V1, . . . , Vk, where

Vi contains ni vertices for i ∈ [k], in such a way that

• (n1, . . . , nk) is lexicographically maximal, and

• subject to this first condition, the number of edges between Vk−1 and Vk is minimum.

Note that k may actually be larger than χ(G), and that n1 is necessarily equal to the indepen-

dence number α(G) of G.

Let ∆ = max(d). If k ≤ ∆− nδ
4∆

+δ+3, then χmin(d) ≤ χ(G) ≤ k implies the desired bound.

Hence, we may assume that k > ∆− nδ
4∆

+ δ+3. Since ∆ ≥
√

nδ
4
and δ ≥ 1, we have k ≥ 5. By

the choice of the coloring f , there is an edge, say uv, between the smallest two color classes Vk−1

and Vk. If G \ (Vk−1∪Vk ∪NG(u)∪NG(v)) contains an edge xy, then removing from G the two

edges uv and xy, and adding the two edges ux and vy, yields another realization G′ of d. Note

that f is still a coloring of G′. This implies that there is a coloring f ′ of G′ such that either the

non-increasing vector of the sizes of the color classes is lexicographically larger than the one of

f , or there are fewer edges between the two smallest color classes. Since both cases imply a
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contradiction to the choice of G and f , we obtain that V (G)\ (Vk−1∪Vk∪NG(u)∪NG(v)) is an

independent set, which implies α(G) ≥ n−(nk−1+nk)−2∆. Since Vk−1 and Vk are the smallest

two color classes, and n2+· · ·+nk = n−α(G), we obtain nk−1+nk ≤ 2
k−1

(n−α(G)). This implies

α(G) ≥ n− 2
k−1

(n− α(G))− 2∆, and, using k ≥ 5, we obtain α(G) ≥ n− k−1
k−3

· 2∆ ≥ n− 4∆.

Altogether, we may assume that d has a realization G with an independent set I =

{u1, . . . , uα} of order at least n − 4∆. By the above-mentioned observations of Havel [9],

Hakimi [6], Rao [12], and Kleitman and Wang [10], we may further assume that, for every

i ∈ [α], the vertex ui is adjacent to dG(ui) vertices in V (G) \ I of the largest degrees in the

induced subgraph G − {u1, . . . , ui−1} of G. Arguing as in the proof of Corollary 2, we ob-

tain
(

(n − α)∆ + (n − α)
)

−
(

(n − α)∆(G − I) + 1
)

≥ dG(u1) + · · · + dG(uα) ≥ αδ, where

∆(G − I) denotes the maximum degree of G − I. This implies ∆(G − I) ≤ ∆ − αδ+1
n−α

+ 1 ≤
∆− (n−4∆)δ+1

4∆
+1 = ∆− nδ+1

4∆
+ δ+1. Therefore, we can color G using at most ∆− nδ+1

4∆
+ δ+2

colors on the vertices in V (G) \ I, and one additional color on the vertices in I, which implies

χmin(d) ≤ χ(G) ≤ ∆− nδ+1
4∆

+ δ + 3. ✷

For positive integers r, s, and δ such that r + 1 is a multiple of δ, let d be the degree sequence

(r+s)r+1, δs(r+1)/δ. Since the sum of the largest r+1 degrees equals exactly 2
(

r+1
2

)

+δs(r+1)/δ,

every realization G of d contains a clique on the r + 1 vertices of largest degrees, and an

independent set on the remaining vertices. Note that χ(G) ∈ {r+1, r+2}, which, for r ≫ s ≫ δ,

is roughly max(d)−nmin(d)
max(d)

, that is, up to the constants, the bound in Theorem 3 is best possible.

In fact, by imposing a stronger lower bound on max(d) or by increasing the additive constant,

the factor 4 within the term nδ+1
4∆

can easily be reduced to slightly more than 2.

Our next result gives a best possible bound on χmin(d) for degree sequences of small degrees.

Theorem 4 If n, d1, . . . , dn are integers such that
√

n−1
2

≥ d1 ≥ · · · ≥ dn ≥ 1 and d1+ · · ·+ dn

is even, then χmin(d) ≤ 3. (In particular, d1, . . . , dn is a degree sequence.)

Proof: There is a partition of [n] into two sets X and Y with
∣

∣

∣|X| − |Y |
∣

∣

∣ ≤ 1 and 0 ≤ s ≤
d1 ≤

√

n−1
2
, where s =

∑

i∈X
di −

∑

i∈Y
di; in fact, as long as there are two equal entries di and dj in

the sequence d1, . . . , dn, we assign i to X and j to Y , and remove di and dj from the sequence,

and once all remaining entries are distinct, say di1 > · · · > dik , we assign i1, i3, . . . to X and

i2, i4, . . . to Y . Let x = |X| and y = |Y |. Note that x, y ≥ n−1
2
; in particular, s ≤ x. Reducing

s distinct entries of the sequence (di)i∈X by 1, and reordering yields a sequence a1 ≥ · · · ≥ ax.

Reordering the sequence (di)i∈Y yields b1 ≥ · · · ≥ by.

By construction,
∑

i∈[x]
ai =

∑

i∈[y]
bi, max{a1, b1} ≤

√

n−1
2
, and by ≥ 1.

Let k ∈ [x]. If k ≤
√

n−1
2
, then a1 ≤

√

n−1
2

and bn ≥ 1 imply

∑

i∈[k]

ai ≤ ka1 ≤
n− 1

2
≤ y ≤

∑

i∈[y]

min{k, bi}.
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If k >
√

n−1
2
, then b1 ≤

√

n−1
2

implies

∑

i∈[k]

ai ≤
∑

i∈[x]

ai =
∑

i∈[y]

bi =
∑

i∈[y]

min{k, bi}.

By the Gale-Ryser Theorem [5, 15], there is a bipartite graph H with partite sets X and Y

with |X| = x and |Y | = y such that the vertices in X have degrees a1, . . . , ax and the vertices

in Y have degrees b1, . . . , by. Since s has the same parity as
∑

i∈X
di +

∑

i∈Y
di = d1 + · · · + dn,

it is an even integer, and adding to H a matching of size s/2 incident to those vertices in X

corresponding to the entries of (di)i∈X that were previously reduced by 1, results in a graph G

with degree sequence d1, . . . , dn. Clearly, χ(G) ≤ 3, and the upper bound on χmin(d) follows.

✷

The conclusion of Theorem 4 is best possible, because there might not be a subset X of [n]

with
∑

i∈X
di =

∑

i∈[n]\X
di, which is a necessary condition for the existence of a bipartite realization.

The complexity of deciding the existence of a bipartite realization for a given degree sequence

is unknown.

Note that together, Theorem 3 and Theorem 4 imply

χmin(d) ≤ max

{

3,max(d)− n+ 1

4max(d)
+ 4

}

for every degree sequence d with min(d) ≥ 1.

Theorem 4 has the following variant where the essential assumption is that max(d)−min(d)

is small. Note that this next result also covers regular degree sequences of sufficient length.

Theorem 5 If n, d1, . . . , dn are integers and ǫ > 0 is such that n−1
2
ǫ ≥ d1 ≥ · · · ≥ dn ≥ 1,

d1 − dn ≤
√

n−1
2
(1− ǫ), and d1 + · · ·+ dn is even, then χmin(d) ≤ 3.

Proof: We may assume that d1 >
√

n−1
2
; otherwise Theorem 4 implies the result. Furthermore,

we have ǫ ≤ 1. Exactly as in the proof of Theorem 4, we obtain the existence of a partition of

[n] into two sets X and Y with
∣

∣

∣|X|−|Y |
∣

∣

∣ ≤ 1 and 0 ≤ s ≤ d1 ≤ n−1
2
ǫ, where s =

∑

i∈X
di−

∑

i∈Y
di.

Setting x = |X| and y = |Y |, we obtain, as above, that x, y ≥ n−1
2
, s ≤ x, and s is even.

Let a1 ≥ · · · ≥ ax and b1 ≥ · · · ≥ by be as in the proof of Theorem 4. By construction,
∑

i∈[x]
ai =

∑

i∈[y]
bi, max{a1, b1} ≤ d1, and by ≥ dn.

Notice that as d1 >
√

n−1
2
, we have

dn
d1

≥
d1 −

√

n−1
2
(1− ǫ)

d1
≥ 1− (1− ǫ) = ǫ.

Let k ∈ [x]. If k ≤ dn, then

∑

i∈[k]

ai ≤ kd1 ≤ k
n− 1

2
≤ ky ≤

∑

i∈[y]

min{k, bi}.
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If dn < k < d1, then

∑

i∈[k]

ai ≤ kd1 ≤ d21 ≤
n− 1

2
ǫd1 ≤

n− 1

2
dn ≤ ydn ≤

∑

i∈[y]

min{k, bi}.

And, if k ≥ d1, then
∑

i∈[k]

ai ≤
∑

i∈[x]

ai =
∑

i∈[y]

bi =
∑

i∈[y]

min{k, bi}.

At this point, the proof can be completed exactly as the proof of Theorem 4. ✷

For a graph G with degree sequence d1 ≥ · · · ≥ dn, Welsh and Powell [16] observed

χ(G) ≤ max
i∈[n]

min {i, di + 1} , (2)

which is an immediate consequence of applying the natural greedy coloring algorithm to the

vertices of G in an order of non-increasing degrees. If d1 ≥ · · · ≥ dn is a degree sequence such

that dp−dp+1 ≥ p−2 for p = max
i∈[n]

min {i, di + 1}, then Havel and Hakimi’s observation explained

above implies the existence of a realization G of d for which the vertices of degrees d1, . . . , dp

form a clique. This implies p ≤ χ(G) ≤ χmax(d) ≤ p, that is, χmax(d) = max
i∈[n]

min {i, di + 1} for

such degree sequences.

Our next result shows that the Welsh-Powell bound (2) also gives the correct value of

χmax(d) for degree sequences d of small degrees.

Theorem 6 If n, d1, . . . , dn are integers such that
√

n+ 1
4
− 1

2
> d1 ≥ · · · ≥ dn ≥ 1 and

d1 + · · ·+ dn is even, then χmax(d) = max
i∈[n]

min {i, di + 1}.

Proof: Let p = max
i∈[n]

min {i, di + 1}. Note that p ≤ dp + 1 ≤ d1 + 1.

By the Welsh-Powell bound (2), every graph G with degree sequence d1, . . . , dn satisfies

χ(G) ≤ p, which implies χmax(d) ≤ p. In order to establish equality, we show the existence of

a realization that contains a clique of size p.

Let k ∈ [n]. We obtain
∑

i∈[k]
di ≤ kd1 and k(k − 1) +

∑

i∈[n]\[k]
min{k, di} ≥ k(k − 1) + n − k.

Therefore,
∑

i∈[k]
di is at most k(k − 1) +

∑

i∈[n]\[k]
min{k, di} if kd1 ≤ k(k − 1) + n − k, which is

equivalent to k(d1 + 2− k) ≤ n. Since
√

n + 1
4
− 1

2
> d1 ≥ 1 implies n ≥ 3 and k(d1 + 2− k) ≤

(

d1+2
2

)2 ≤ n, the Erdős-Gallai Theorem [4] implies the existence of a graph with degree sequence

d1, . . . , dn. Among all such graphs with vertex set {v1, . . . , vn}, where vi has degree di for i ∈ [n],

we choose G such that the number m(G[{v1, . . . , vp}]) of edges of the subgraph of G induced

by {v1, . . . , vp} is as large as possible.

Suppose, for a contradiction, that G[{v1, . . . , vp}] is not a clique, that is, vi and vj are not

adjacent in G for distinct i and j in [p]. By the choice of p, we have di, dj ≥ p−1, which implies

that vi and vj both have at least one neighbor in R = {vp+1, . . . , vn}.
First, we assume that vi and vj both have the same unique neighbor vr in R, that is,

{vr} = NG(vi)∩R = NG(vj)∩R. Since there are at most 1 + d21 vertices at distance at most 2
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from vr, including, in particular, vi and vj , and n− (p− 2)− (1 + d21) ≥ n− d21 − d1 > 0, there

is a vertex vs in R with a neighbor vt such that vs and vt are both not adjacent to vr. Now,

removing from G the edges vivr, vjvr, and vsvt, and adding the edges vivj, vrvs, and vrvt yields

a realization G′ of d1, . . . , dn with m(G′[{v1, . . . , vp}]) > m(G[{v1, . . . , vp}]), which contradicts

the choice of G.

Now, we may assume that vi is adjacent to some vertex vr in R, and that vj is adjacent

to a different vertex vs in R. If vr is not adjacent to vs, then removing from G the edges

vivr and vjvs, and adding the edges vivj and vrvs yields a realization G′ of d1, . . . , dn with

m(G′[{v1, . . . , vp}]) > m(G[{v1, . . . , vp}]), which contradicts the choice of G. Hence, we may

assume that vr and vs are adjacent. Since there are at most 1+d21 vertices at distance at most 2

from vr, including, in particular, vi, vs, and vj , and n−(p−2)−(1+d21) ≥ n−d21−d1 > 0, there

is a vertex vp in R with a neighbor vq such that vp is not adjacent to vs, and vq is not adjacent

to vr. Note that vq may be vj , in which case, vj has distance 2 from vr. Now, removing from G

the edges vivr, vjvs, and vpvq, and adding the edges vivj, vsvp, and vrvq yields a realization G′

of d1, . . . , dn with m(G′[{v1, . . . , vp}]) > m(G[{v1, . . . , vp}]), which contradicts the choice of G.

Altogether, we obtain that G contains a clique of order p, which completes the proof. ✷

3 Algorithmic aspects

One way to establish that χmax(d) is large is to show the existence of a realization of d that

contains a large clique. Dvořák and Mohar [3] proved the best possible statement that for every

degree sequence d, some realization of d has a clique of size at least 5/6(χmax(d)− 3/5). Since

Rao [12,13] efficiently characterized the largest clique size ωmax(d) of any realization of a given

degree sequence d, and, trivially, χmax(d) ≥ ωmax(d), we immediately obtain that χmax(d) can

be approximated in polynomial time for a given d within an asymptotic factor of 6/5.

Our next two results show that χmax(d) and χmin(d) can both be determined in polynomial

time for given degree sequences with bounded entries.

Corollary 7 Let ∆ be a fixed positive integer.

For a given degree sequence d with max(d) ≤ ∆, one can determine χmax(d) in polynomial

time.

Proof: Let d have length n. Clearly, we may assume min(d) ≥ 1. If
√
n− 2 ≥ ∆, then Theorem

6 implies that χmax(d) coincides with the Welsh-Powell bound (2). If
√
n− 2 < ∆, then, as

∆ is fixed, there are only constantly many realizations of d, which can all be generated and

optimally colored by brute force in constant time. ✷

Theorem 8 Let k and p be fixed positive integers.

For a given degree sequence d with at most p distinct entries, one can decide in polynomial

time whether χmin(d) ≤ k.

8



Proof: Let d : dn1

1 , . . . , dnp
p and n = n1 + · · · + np. There are

p
∏

i=1

(

ni+k−1
k−1

)

≤
(

n
p
+ k

)kp
distinct

matrices (nj
i )(i,j)∈[p]×[k] with non-negative integral entries nj

i such that
k
∑

j=1
nj
i = ni for i ∈ [p]. It

is easy to see that χmin(d) ≤ k if and only if there is such a matrix (nj
i )(i,j)∈[p]×[k] for which the

complete k-partite graph whose jth partite set Vj has order
p
∑

i=1
nj
i for j ∈ [k], has a factor G

such that Vj contains exactly nj
i vertices of degree di in G for every i ∈ [p] and j ∈ [k]. Since

the existence of such a factor can be decided in polynomial time using matching methods, and,

for fixed k and p, there are only polynomially many different suitable matrices, the desired

statement follows. ✷

It seems plausible to wonder whether χmax(d) is linked to αmin(d), the minimum independence

number of a realization of d. While αmax(d) = ωmax

(

d̄
)

can be determined efficiently using

the results of Rao [12, 13], Bauer, Hakimi, Kahl, and Schmeichel [1] conjectured that it is

computationally hard to determine αmin(d) for a given degree sequence d.

Our next goal is to show that also αmin(d) can be determined in polynomial time for given

degree sequences d with bounded entries.

For a degree sequence d1, . . . , dn, let αCW (d) =
n
∑

i=1

1
di+1

. Caro [2] and Wei [17] proved that

α(G) ≥ αCW (d) for every graph G with degree sequence d. For a connected graph G with

degree sequence d, Harant and Rautenbach [7] showed α(G) ≥ k ≥ ∑

u∈V (G)

1
dG(u)−f(u)+1

, where k

is an integer, and, for every vertex u of G, f(u) is a non-negative integer at most dG(u) such

that
∑

u∈V (G)
f(u) ≥ 2(k − 1). This improved an earlier result of Harant and Schiermeyer [8].

If αCW (d) ≥ 2, then k ≥ αCW (d) implies 2(k − 1) ≥ k ≥ αCW (d), and, hence,

α(G) ≥
∑

u∈V (G)

1

dG(u)− f(u) + 1

= αCW (d) +
∑

u∈V (G)

(

1

dG(u)− f(u) + 1
− 1

dG(u) + 1

)

≥ αCW (d) +
1

(max(d) + 1)2
∑

u∈V (G)

f(u)

≥
(

1 +
1

(max(d) + 1)2

)

αCW (d).

Theorem 9 Let ∆ be a fixed positive integer.

For a given degree sequence d with max(d) ≤ ∆, every component of every realization G of

d with α(G) = αmin(d) has order at most ((∆ + 1)3 + 1)
(

(

∆+2
2

)2
+
(

∆+1
2

)

)

. In particular, one

can determine αmin(d) in polynomial time.

Proof: Let d be a degree sequence with max(d) ≤ ∆. Let G be a realization of d with

α(G) = αmin(d). Suppose, for a contradiction, that some component K of G has order n(K)

more than the stated value. Let R be a set of
(

∆+2
2

)2
vertices of K. For i ∈ [∆], let Vi be the set

of vertices of degree i in V (K)\R, and let ni = |Vi|. Let pi =
⌊

ni

i+1

⌋

, and let Si arise by removing

9



pi(i+1) vertices from Vi for each i ∈ [∆]. Note that |S| ≤
∆
∑

i=1
i =

(

∆+1
2

)

, where S = S1∪· · ·∪S∆,

that is, R∪S is a set of at least
(

∆+2
2

)2
and at most

(

∆+2
2

)2
+
(

∆+1
2

)

many vertices of K. Let d′

be the sequence of the degrees of the vertices in R∪S, and let d′′ be the sequence of the degrees

of the vertices in V (K) \ (R ∪ S). Note that αCW (d′′) ≥ (n(K)−|R∪S|)
∆+1

. Hence, the lower bound

on n(K) implies
(

1 + 1
(∆+1)2

)

αCW (d′′) = 1
(∆+1)2

αCW (d′′) + αCW (d′′) > |R ∪ S| + αCW (d′′). As

observed in the proof of Theorem 6, the Erdős-Gallai Theorem implies that the sequence d′,

which is a sequence of positive integers at most ∆ that is of length at least
(

∆+2
2

)2
, is a degree

sequence. Let K ′
0 be a realization of d′. By construction, the graph K ′ = K ′

0 ∪
∆
⋃

i=1
piKi+1 has

exactly the same degree sequence as K. By the result of Harant and Rautenbach mentioned

above,

α(K ′) = α(K ′
0) +

∆
∑

i=1

piα(Ki+1)

= α(K ′
0) + αCW (d′′)

≤ |R ∪ S|+ αCW (d′′)

<

(

1 +
1

(∆ + 1)2

)

αCW (d′′)

<

(

1 +
1

(∆ + 1)2

)

αCW (d)

≤ α(K).

Therefore, replacing K by K ′ within G yields a realization G′ of d with α(G′) < α(G), contra-

dicting the choice of G. This completes the proof of the first part of the statement.

Since, as ∆ is fixed, there are only finitely many graphs of maximum degree at most ∆ and

order at most ((∆ + 1)3 + 1)
(

(

∆+2
2

)2
+
(

∆+1
2

)

)

. Listing, for each of these graphs, the degree

sequence and the independence number, it is a routine matter to determine αmin(d) for a given

degree sequence d with max(d) ≤ ∆ by dynamic programming in polynomial time. ✷
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