N

N
N

HAL

open science

Generic reductions for in-place polynomial
multiplication

Pascal Giorgi, Bruno Grenet, Daniel S. Roche

» To cite this version:

Pascal Giorgi, Bruno Grenet, Daniel S. Roche. Generic reductions for in-place polynomial multiplica-

tion. 2019. lirmm-02003089v1

HAL Id: lirmm-02003089
https://hal-lirmm.ccsd.cnrs.fr /lirmm-02003089v1

Preprint submitted on 6 Feb 2019 (v1), last revised 13 May 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02003089v1
https://hal.archives-ouvertes.fr

Generic reductions for in-place polynomial
multiplication

Pascal Giorgi* Bruno Grenet*and Daniel S. Rochef
February 6, 2019

Abstract

The polynomial multiplication problem has attracted considerable at-
tention since the early days of computer algebra, and several algorithms
have been designed to achieve the best possible time complexity. More
recently, efforts have been made to improve the space complexity, devel-
oping modified versions of a few specific algorithms to use no extra space
while keeping the same asymptotic running time.

In this work, we broaden the scope in two regards. First, we ask
whether an arbitrary multiplication algorithm can be performed in-place
generically. Second, we consider two important variants which produce
only part of the result (and hence have less space to work with), the so-
called middle and short products, and ask whether these operations can
also be performed in-place.

To answer both questions in (mostly) the affirmative, we provide a se-
ries of reductions starting with any linear-space multiplication algorithm.
For full and short product algorithms these reductions yield in-place ver-
sions with the same asymptotic time complexity as the out-of-place ver-
sion. For the middle product, the reduction incurs an extra logarithmic
factor in the time complexity only when the algorithm is quasi-linear.

Keywords— arithmetic, polynomial multiplication, in-place algorithm, self
reduction

1 Introduction

1.1 Polynomial multiplication

Polynomial multiplication is a fundamental problem in mathematical algorithms.
It forms the basis (and key bottleneck) for other fundamental problems such

*LIRMM, Université de Montpellier, CNRS,Montpellier, France. |(firstname.lastname®
lirmm.fr)
TUnited States Naval Academy, Annapolis, Maryland, USA. roche@usna.edu

(firstname.lastname@lirmm.fr)
(firstname.lastname@lirmm.fr)
roche@usna.edu

as division with remainder, GCD computation, evaluation/interpolation, resul-
tants, factorization, and structured linear algebra (see, e.g., [9, §8-15] and [3]
§2-7,10,12]).

As such, significant effort has gone to improving the time to multiply two
size-n polynomials, most notably Karatsuba’s algorithm [16], Toom-Cook mul-
tiplication [§], and Schonhage-Strassen [21]; more recent results have improved
the complexity further but have not yet seen wide adoption in practice [6l [13].

1.2 Space complexity

After minimizing the runtime, an important question both in theory and in
practice is how much extra space these algorithms require. While the classical
algorithm can be made to use only a constant number of temporary values,
all the faster algorithms mentioned above require O(n) space to multiply two
size-n polynomials. In fact, proven time-space trade-offs in the algebraic circuit
and branching program models indicate that space at least polynomial in n is
required for any sub-quadratic multiplication algorithm [20], [I].

But in a model where the output space admits both random writes and
reads, these time-space lower bounds can be broken. [19] developed a variant of
Karatsuba’s algorithm using only O(logn) space. Later, an FFT-based multipli-
cation algorithm using O(nlogn) time and constant space was developed for the
case that the coefficient ring contains a suitable root of unity [I4]. Space-saving
versions of Karatsuba’s algorithm can also be found in [23] Bl 22, [7].

1.3 Short and middle products

Besides the usual full product computation, two other variants have also been
extensively studied: the short product which truncates the output to the first n
terms, and the middle product which truncates the result on both ends. These
variants are important especially for power series, and specific variants of Karat-
suba’s algorithm and others have been developed, usually gaining a constant
factor compared to a full product followed by a truncation [I0} [I8], [IT], 12].

[4] shows that the middle product can be viewed essentially as the reverse
of a full product and in the same space. However, in our model which uses the
space of the output as temporary working space, this reversal implies that the
inputs must also be destroyed for an in-place middle product. In some sense it
would not be surprising if middle and short products were more difficult in our
setting, as the truncated size of the output essentially limits the working space
of the algorithm.

1.4 Our work

In this paper, we develop reductions which can transform any multiplication
algorithm which uses O(n) extra space into full, short, and middle product
algorithms which use only O(1) extra space. The time complexity for full and

short product is the same as that of the original, while that for middle product
incurs an additional logn factor.

This improves the O(logn) space of the most space-constrained Karatsuba
algorithm [19], and implies for the first time: in-place versions of Toom-Cook
multiplication; in-place FFT-based multiplication even when the ring does not
contain a root of unity; in-place subquadratic short product algorithms; and
in-place middle product algorithms which do not overwrite their inputs.

We begin by carefully stating our space complexity model and then defining
the multiplications problems in and [3] A few easier but important
reductions and equivalences are presented next in followed by the
critical reductions in which prove our main results.

2 Complexity model

We use the model of an algebraic-RAM that is equipped with two kinds of
registers: the standard registers store integers as in the classical Word-RAM
model, whereas the algebraic registers store elements from the base field K of
coefficients. As in Word-RAM, we assume that the standard registers can store
integers of size O(logn) where n is the number of coefficients in the inputs.

Word-RAM machines are a classical model in computational complexity, in
particular for fine-grained complezity that classifies the difficulty of polynomial-
time problems [24]. We use it in order to distinguish between the space needed
to store indices (that is thus hidden in the standard registers) from the space
needed to store elements from the base field.

Time complexity As mentioned, we use the number of arithmetic operations
as the time complexity measure since the cost of the operations on indices is
negligible with respect to arithmetic operations. Formally, we assume that any
ring operation on the algebraic registers has cost 1.

Space complexity We divide the registers into three categories: the input
space is made of the (algebraic) registers that store the inputs, the output space
is made of the (algebraic) registers where the output must be written, and the
work space is made of (algebraic and non-algebraic) registers that are used as
extra space during the computation. The space complexity is then the maximum
number of work registers used simultaneously during the computation. An
algorithm is said to be “in-place” if its space complexity is O(1), and “out-of-
place” otherwise.

One can then distinguish different models depending on the read/write per-
missions on the input and output registers:

1. Input space is read-only, output space write-only;
2. Input space is read-only, output space is read/write;

3. Input and output spaces are both read/write.

The first model is the classical one from complexity theory [2]. Despite its
theoretical interest, it does not reflect low-level computation where output is
typically in some DRAM or Flash memory on which reading is no more costly
than writing. Furthermore, polynomial multiplication here has a quadratic lower
bound for time times space [1], limiting the possibility for meaningful improve-
ments.

The second model has been used in the context of in-place polynomial multi-
plication [I9,[14]. This is a very reasonable model since it matches the paradigm
of parallel computing with shared memory. This is the model in which we de-
velop our algorithms.

The third model has been used to provide a generic approach for preserving
memory designing algorithms via the transposition principle [4]: Given an algo-
rithm for a linear map with time complexity ¢(n) and space complexity s(n), the
transposition principle yields an algorithm for the transposed linear map which
has the same space complexity and time complexity O(t(n)) [4, Propositions
1 and 2]. However, the inputs are destroyed during the computation, which is
problematic particularly for recursive algorithms that re-use their operands; we
will not use this too-permissive model.

Notation The output space in our algorithms is denoted by R and registers
are indexed from 0 to n — 1. We write Ry, ¢ to denote the registers of indices k
to £ — 1.

3 Polynomial multiplications

Define the size of a univariate polynomial as the number of coefficients in its
(dense) representation; a polynomial of size n has degree at most n — 1. Impor-
tantly, we allow zero padding: a size-n polynomial could have degree strictly
less than n — 1; the size indicates only how it is represented.

Let f = Z?:_Ol fiX? and g = Z?:_OI ;X" be two size-n polynomials. Their
product h = fg is a polynomial of size 2n — 1, what we call a balanced full
product. More generally, if f has size m and g has size n, their product has size
m +n — 1. We call this case the unbalanced full product of f and g.

We now define precisely the short product, middle product, and half-additive
full product.

Definition 3.1. Let f and g be two size-n polynomials. Their low short product
1s the size-n polynomial defined as

SP(f,9) = (f - g) mod X"

and their high short product is the size-(n — 1) polynomial defined as

SPwi(f,9) = (f - g) quo X™.

The low short product is actually the meaningful notion of product for
truncated power series. Note also that the definition of the high short prod-
uct that we use implies that the result does not depend on all the coeffi-
cients of f and g. The rationale for this choice is to have the identity fg =
SPIo(fv g) + XnSPhi(fa g)

Definition 3.2. Let f and g be two polynomials sizes n+m — 1 and n, respec-
tively. Their middle product is the size-m made of the central coefficients of
the product fg, that is

MP(f,g) = ((f - 9) quo X" ") mod X"
If f= Zi<n+m—1 fiX?and g = Zj<n g; X7, then

MP(f, g) = > figi XTI

n—1<i+j<n4+m-—1

The middle product, most commonly in the special case n = m, arises naturally
in several algorithms manipulating polynomials or power series which are based
on Newton’s iteration, such as division or square root [I1].

Further, the middle product is obtained by Tellegen’s transposition principle
from the full product algorithm [4, TT]. This implies that any full product
algorithm yields an algorithm for the middle product of same time complexity.
On the other hand, whether the transposition can be performed while also
preserving the space complexity remains an open problem [15] [4] if one considers
the inputs to be read-only.

Definition 3.3. Let f and g be two polynomials of degree less than n, and h
be a polynomial of degree less than (n — 1). The (low-order) half-additive full
product of f and g given h is FPfg(ﬁg, h) = h+ fg. Similarly, their high-order
half-additive full product is FP(f,g,h) = X"h+ fg. An in-place half-additive
full product algorithm is an algorithm computing a half-additive full product
where h is initially stored in the output space.

This variant of the full product which has a partially-initialized output space
will be useful to derive other in-place algorithms.

3.1 Multiplications as linear maps

For ease of explanation, we will use the linear property of polynomial multipli-
cations when an operand is fixed.

Let f = Z?:_Ol fiX?and g = E?:_Ol ;X" be two size-n polynomials. If f is
fixed, the product h = fg can be described as a linear map from K" to K271,
The matrix, denoted Mep(y), for this map is to a Toeplitz matrix built from the
coefficients of f, and the product fg corresponds to the following matrix-vector

product:

ho
fo
. go hy
g1
fnfl fO X . - (1)
gn—1
fnfl N—_——
g hQn—l
Mep(s) —
h

where Mep sy € KE~D*" e K" and h € K>~ 1.

The low and high short products being defined as part of the result of the full
product, their corresponding linear maps are endomorphisms of K” and K"~!
respectively, given by submatrices of Mep(y) as follows:

fo fnor oo f2 f1
oo R)
fot i BT e

Msp, (1) Mspy. (1)

Finally, the middle product corresponds also to a linear map from K" to K™
when the larger operand is fixed, given by the m x n Toeplitz matrix

fn—l fn—Q fl fO
fn fn,—l f2 fl
fn+;n—2 fn+;n—3 fm.—Q f’m.—l
Mup(r)

4 Time and space preserving reductions

In this section, we compare the relative difficulties of the full product, the half-
additive full product, the low and high short products, and the middle product,
in the framework of time and space efficient algorithms. To this end, we define
a notion of time and space preserving reduction between problems.

We say that a problem A is TISP-reducible to a problem B if, given an
algorithm for B that has time complexity ¢(n) and space complexity s(n), one
can deduce an algorithm for A that has time complexity O(¢(n)) and space
complexity s(n) + O(1). We write A <tisp B is A is TISP-reducible to B and
A =1i5p B if both A <t1sp B and B <tisp A. Note that the TISP-reduction is
transitive.

The reduction we use can be defined using oracles and is an adaptation of
the notion of fine-grained reduction [24, Definition 2.1] adapted to time-space
fine-grained complexity classes [17].

Theorem 4.1. Half-additive full products and short products are equivalent
under TISP-reductions, that is

FPy. =misp FPS =7isp SPhi =Tisp SPio.
Furthermore, if SP denotes either SP\, or SPy;,

FP <tisp SP <tisp MP.

Proof. The equivalences SPy; =1isp SP, and FPﬁ =Ti5P FP[’; are proved below
in Lemmas and The equivalence SP = FPT (where SP denotes any of
SPi, and SPy;, and FP™ any of sz and FP;) is proved in

The reduction FP <tisp SP simply amounts to the identity FP(f,g) =
SP(f,9) + X"SPhi(f,g). The reductions SP <yisp MP and FP <tisp MP
follow from the following equalities where 0 denotes the zero polynomial stored
in size n:

SPi(f,9) = MP(0 + X" f, g),
SPhi(fa g) = MP(f +X”Oag)7 and
FP(f.9) = MP(0+ X" f + X*"0,9).

Hence, one can compute the full product, the low and high short products of f
and ¢ simply by calling a middle product algorithm on f padded with zeroes
and g. In our model of read-only inputs, an actual padding is not required. It
is sufficient to use some kind of fake padding where the data structure storing
f is responsible for returning 0 when needed. O

The relative order of difficulty FP <tisp SP <1isp MP makes intuitive sense
based on the size of the output compared to the size of the inputs since the
output can be used as work space: The full product maps 2n coeflicients to
2n — 1 coefficients, the short products map 2n coeflicients to n coefficients and
the middle product maps 3n coefficients to n coefficients. In Section |5, we shall
give a partial converse to SP <tisp MP: There exists a reduction from SP to
MP which preserves space and either maintains the asymptotic complexity or
increases it by a logarithmic factor.

4.1 Equivalences based on reverse polynomials
Definition 4.2. The size-n reversal of a polynomial f istev,(f) = X" 1f(1/X).

We note that any algorithm whose input is a size-n polymial f can be turned
into a new algorithm that computes the same function with input rev,(f),
simply by replacing a query to any coefficient with index ¢ with one of index
n — i, not affecting the number of ring operations.

Let us now prove that SPn =t1isp SPo.

Lemma 4.3. Let f and g be two size-n polynomials. Then

SPhi(f,9) =revy—1 (SPi(rev,—1(f quo X),rev,—1(gquo X))) .

Proof. Let f =rev,_1(fquoX) and § = rev,_1(gquo X). Then

SPi(f,9) = E fr—1—ign—1-; X",
0<i,j<n—1
iti<n—1

whence

revy_1 (SPIo(f7§)) = Z foc1—ign_1_; X270+,
0<i,j<n—1
i+j<n—1
One can change the indices of summation using k=n—1—diand { =n—1—3j.
Then n—2—(i+j) = k+¢—mn and the indices i and j such that 0 <i+j <n—1
are mapped to indices k and ¢ such that 2n — 1 > k 4+ £ > n. In other words,

revy, 1 (SPIO(]Ev f])) =) frgeXT =SPy(f.g). 0

0<k,f<n—1
n<k+{<2n—1

Similarly, we can prove that FP$ =TIsP FPfg.

Lemma 4.4. Let f and g be two size-n polynomials and h be a size-(n — 1)
polynomial. Then

FP;(fﬂ 9, h) = TIeVan_-1 (FP[‘;(TEVn(f), reVn(g), reanl(h))) .

Proof. Let f* = rev,(f), g* = rev,(g) and h* = rev,_1(h). First note that
reva,—1(h*) = X™h by definition. Since reva,—1(f*g*) = rev, (f*) rev,(g*) we
get that revy,_1(f*g* + h*) = rev,, (f*) rev,, (9*) + reve,—1(h*) = fg+ X"h =
FP:(f,g,h). O

4.2 Equivalence between short products and half-additive
full products

Reduction from SP to FP™ Let f and g be two size-n polynomials and &
be a size-(n — 1) polynomial. The half-additive full product FP}! (f,g,h) equals
fg+ h. Note that fg = SPio(f, g9) + X"SPwni(f,g). This already proves that the
non-additive full product can be computed using algorithms for low and high
short products. For the half-additive full products, it is sufficient to store an
intermediate result in the free registers of the output space.
Assuming Rjg..,—1[holds the value of h, the following instructions reduces

the computation of FPI(f, g, h) to two short products plus (n — 1) additions.

1: R[n—l..Qn—l[— SPlo(fv g)

2: Rjo.n—1] <= Rjo.n—1] + Rn—1..2n—2]

3: Rp—1 < Rop—1

4: R[n..anl[«— SPhi(f7 g)

Reduction from FP' to SP Let f and g be polynomials of degree less than
n. Splitting f and g by half such that f = fo+ X"/21 f; and g = go+ X ["/?1 gy,
we have

SPi(f,9) = fogo + X" (fog1 + figo) mod X™.

What is needed is the full product of fy and gg, and the low short products of fj
and g1, and f1 and go. Actually, since fj is larger than g; when n is odd (and g
larger than f1), one only needs the short products SPi,(fy,91) and SP(f1, 95)
where f; = f mod X\"/2] and g; = g mod X 1"/2).

To avoid any recursive call that would imply storing a call stack, we can
actually use full products instead of short products: We first compute f; g1 +
figy using a full product and a half-additive full product. Then we can forget
about the higher order terms, and add fpgy to this sum using a second half-
additive full product. The following instructions summarize this approach:

1: Ro.2|n/2)—1[< FP(fy , 91) > half-additivity not needed
2: Rjo..2[n/2)—1] < FP (f1,90) > erase higher part of fi g1
3: Rifn/2]..n[< Rjo..[n/2]] > keep lower part of fi g1 + fi19y
4: Ryg.2[n/21-1] < FPy; (fo. 90)

The correctness is clear. The complexity of the algorithm is the cost of three
full products in degree approximately n/2: One non-additive full product in size
|n/2] and two half-additive full products in size |n/2] and [n/2], respectively.

As direct consequence of Lemmas and one obtains the same reduc-
tions to SPy; and from FP$ or FP$.

4.3 From half-additive full product to unbalanced full prod-
uct

The unbalanced full product can be computed using any algorithm for the (bal-
anced) full product. Nevertheless, the space complexity increases since inter-
mediate results must be stored. Given an algorithm for the balanced full prod-
uct of space complexity s(n), one obtains an algorithm with space complexity
s(n) + (n — 1) for the unbalanced full product. In this section, we prove that if
the original full product algorithm is half-additive, the resulting unbalanced full
product algorithm has the same space complexity.

Let f be a size-m polynomial and g be a size-n polynomial with m > n. Write
f= ZLZLé"]_l XFn f.. where each sub-polynomial fo, ..., frm/n]—1 has size at
most n. The computation of f-g reduces to the computations of each fj-g. The
following instructions prove that using half-additivity, the intermediate results
fx - g can be computed directly in the output space.

L+ Rfm/n]n..min] < Fp(f[m/n] s g) > using fake padding
2: for k from [m/n] — 1 down to 0 do
3 Rien..(k+2)n—1[< FPR (fx, 9)

Note that at step 1, the polynomial computed may have a larger size that
what is needed, due to padding. Yet one can use without difficulty the lower

part of the output space to store these additional useless coefficients, that are
then erased at step 3.

The time complexity remains [m/n]M(n) where M(n) is the complexity of
the half-additive full product.

5 In-place algorithms from out-of-place algorithms

In this section, we show how to obtain in-place algorithms from out-of-place
algorithms. The theorem below summarizes the main results described in this
section.

Theorem 5.1. 1. Given a full product algorithm with time complexity M(n)
and space complezity < cn, one can build an in-place algorithm for the
half-additive full product with time complexity < (2¢+ 7)M(n) + o(M(n)).

2. Given a (low or high) short product algorithm with time complexity M(n)
and space complezity < cn, one can build an in-place algorithm for the
same problem with time complexity < (2¢ 4+ 5)M(n) + o(M(n)).

3. Given a middle product algorithm with time complexity M(n) and space
complezity < cn, one can build an in-place algorithm for the same problem
with time complexity < M(n) log%(n) +O(M(n)) if M(n) is quasi-linear,
and O(M(n)) otherwise.

Actually, our reductions work for any space bound s(n) < O(n). Smaller
space bounds yield better time bounds though we do not have a general expres-
sion in terms of s(n). Yet sublinear space bounds still imply an increase of the
time complexity by a multiplicative constant for full and short products.

Formally, we give self-reductions for the three problems. That is, we use an
out-of-place algorithm for the problem as building block of our in-place version.
The general idea is similar in the three cases. In a first step, we use the out-of-
place algorithm to compute some part of the output, using the unused output
space as temporary work space. Then a recursive call finishes the work. The
(constant) amount of space needed in our in-place algorithms correspond the
space needed to process the base cases.

Using the language of linear algebra, we aim to apply some specific matrix
to a vector. The general construction we use consists in first applying the top
or bottom rows of the matrix to the vector using the out-of-place algorithm,
and applying the remaining rows using a recursive call (¢f. Fig. . In the
cases of full and short products, the diamond and triangular shapes of the
corresponding matrices imply that the recursive call is made on two smaller
inputs: For instance, to apply the first rows of a triangular matrix to a vector,
one only needs to apply it to the first entries of the vector. For the middle
product, the square shape imply that one input remains of the same size in the
recursive call. This difference explains the difference in the time complexities in
Theorem [5.11

10

k
[n/k]
Mn/k] —1

[n/k] n

Figure 1: Tilings of the matrices Mep(s) (left), Msp, () (center) and Myp(y)
(right).

5.1 In-place full product algorithm

Our aim is to build an in-place (low-order) half-additive full product algorithm
iFP;; based on an out-of-place full product algorithm oFP that has space com-
plexity cn. That is, we are given two polynomials f and g of degree < n in the
input space and a polynomial h of degree < n — 1 in the (n — 1) low-order reg-
isters of the output space R and we aim to compute fg+ h in R. The algorithm
is based on the tiling of the matrix Mep sy given in Fig. [1] (left).

For some k < n to be fixed later, let f = fX* + fy and g = §X* + go where
deg fy,deg go < k. Then we have

h+ fg=h+ fog+ foo X" + fgX?*. (3)

Recall that the output R has size 2n —1 with its n — 1 lowest registers containing
h. Then equation can be evaluated with the following three steps:
L: Rjo.ntk—1[< P+ fog)
2 Rip k1] < Rieonsk—1[+ f90
3: Rpgk.2n] ¢ Rpzk.2n[+ [0
The first two steps corresponds exactly to two additive unbalanced full products,
that is unbalanced full products that must be added to some already filled output
space. One can describe an algorithm oFP[for this task, based on a (standard)
full product algorithm oFP: If f has degree < k and g has degree < n, n > k, we
write g = Zirz(/)k]_l g; X" with deg(g;) < k. Then fg =3, fg;: The algorithm
computes the [n/k] products fg; in 2k — 1 extra registers and adds them to
the output. If oFP has time complexity M(n) and space complexity cn, the time
complexity of oF P is [n/k] (M(k)+2k—1) and its space complexity (c+2)k—1.
The last step computes h+ fg and corresponds to a half-additive full product
on inputs of degree < n — k, since only the n — k — 1 first registers of Rjg. op
are filled: Indeed, deg(h + fog + ngXk) < n+ k — 1. This last step is thus a
recursive call.
In order to make this algorithm run in place, k¥ must be chosen so that the
extra memory needed in the two calls to oFP{ fits exactly in the unused part

11

of R. This is the case when
(c+2)k—1<2n—1—(n+k—-1)

n+1
c+3°

which gives k < The resulting algorithm is formally depicted below.

Algorithm 1 iFP; from oFP
Input: f and g of degree < n in the input space, h of degree < n — 1 in the
output space R
Output: R contains fg+ h
Required alg.: A full product algorithm oFP with space complexity < cn
1: if n < ¢+ 2 then

2 R+ R+ fg > using a naive algorithm
3: else

4; k<« |[(n+1)/(c+3)]

5: Rjo..n+k—1[< OFPF(h, fo,9) > work space: Ry ik—1..2n]
6 Rik..ntk—1] < OFPT (R + fog, f,90) > same work space
7 Riok..2n] < iFP;, from oFP(f quo X*, g quo X*)

Complexity analysis The algorithm uses two calls to oFP{ with inputs
of sizes (k,n) and (n — k, k) respectively. The total complexity amounts to
[n/k]M(k) + ([n/k]] — 1)M(k) + 2([n/k] — 1)(2k — 1) plus a recursive call in
size n — k. Let T((n) be the complexity of iFP;;, we thus have

T(n)=T(n—k)+ (2[n/k] — 1) [M(k) + (2k — 1)]..

Note that k depends upon n, this implies that the analysis must be done without
k. Since k = [(n+1)/(c+3)], [n/k] < c+4 for n > (¢ + 2)(c + 4). Therefore,

T(n)§T<Zi§(n+1)>+(2c+7) [M <”+1>+2 n__c+l

c+3 c+3 c+3]°
Using Corollary we conclude that T'(n) < (2¢ + 7)M(n) + o(M(n)).

5.2 In-place short product algorithm

Our goal is to describe an in-place (low) short product algorithm based on an
out-of-place one, based on the tiling of Msp, () depicted on Fig. [1| (center). Let

f=S0r0 fiXtand g = Y1) g: X%, and let h = 37" hiX? = SP(f, g). The
idea is to fix some k < n and to have two phases. The first phase corresponds
to the bottom k rows of Msp, (r) and computes h,_ to h,_1 using the out-
of-place algorithm on smaller polynomials. The second phase corresponds to
the top (n — k) rows and is a recursive call to compute hg to h,—r—1: Indeed,
h mod X" % = SP,(f mod X" % g mod X"F).

For the second phase, we remark that the bottom k rows can be tiled by
[n/k] lower triangular matrices (denoted Lo, ..., L, k-1 from the right to the

12

left), and [n/k] — 1 upper triangular matrices (denoted Uy, ..., Upy,/k1—2). One
can identify the matrices L; and U; as matrices of some low and high short prod-
ucts. More precisely, the coefficients that appear in the lower triangular matrix
L; are the coefficients of degree ki to k(i+1)—1 of f. Thus, L; = ISPy (frinc

i+1))
where fii i) = Srir) fXF. Similarly, U; = Mspy(sy, 4 iary)- The ma-
trices Ly /x1—1 and Upy, /-2 must be padded if k does not divide n. Altogether,
this proves that this part of the computation reduces to [n/k] low short prod-
ucts and [n/k] — 1 high short products, in size k.
In order for this algorithm to actually be in place, k must be small enough. If
the out-of-place short product algorithm uses ck extra space, since we also need
k free registers to store the intermediate results, k must satisfy n —k > (c+ 1)k,

that is k < n/(c+ 2).

Algorithm 2 iSP;, from oSP

Input: f and g of degree < n

Output: R contains SP,,(f,g)

Required alg.: Two short product algorithms oSP;, and oSPy; with space com-
plexity < cn

1: if n < c+ 2 then

2 R < SPi(f,9) > using a naive algorithm
3: else

4 k<« [n/(c+2)]

5: for i =0to [n/k] —1 do > work space: Rpp..n—k|
6 Rin—..n[T= OSP1o(fhi,k(i4+1)» In—k(i+1),n—ki))

7 for i =0to [n/k] —2 do > same work space
8 Rin—k..n[T= 0SPni (fri k(i4+1)» In—k(i+2),n—k(i+1))

9 Rj0..n—k[¢ 18Py, from oSP(f mod X"k gmod X"F)

Complexity analysis The algorithm performs [n/k] low short products and
[n/k] — 1 high short products plus one recursive call in size n — k. Let M(k) be
the complexity of a low short product algorithm. Then the high short product
can be computed in time M(k — 1). Let T(n) be the complexity of the recursive
algorithm. Then T'(n) = [n/k] M(k)+([n/k]-1)M(k—1)+2([n/k]—1)k+T (n—
k) (the linear time is for the additions). Since k = [n/(c+ 2)], [n/k] < c+3
forn>(c+3)(c+2)and n—k < Zién + 1. Thus,

T(n) < (c+ 3)M <c+n2> +(c+2)M (012 —1) +2n+T<zi;n—|—l>.

Using Corollary this equation yields T'(n) < (2¢ + 5)M(n) 4+ o(M(n)).

5.3 In-place middle product algorithm

To build an in-place middle product algorithm, we assume that we have an
algorithm for the middle product that uses cn extra space to compute the middle

13

product in size (n,m) (that is with inputs of degree < n 4+ m — 1 and < n,
respectively).

The in-place algorithm is again based on the tiling given in Fig. [1| (right):
The top k rows correspond to the matrix Myp(f moa x*) and the bottom m —
k rows to the matrix Myp(fquo x*)- The algorithm consists in computing
IMMp(f mod x*+)g using the out-of-place algorithm and then Myp s quo x+)J using
a recursive call.

To make this algorithm work in place, the value of k has to be adjusted so
that the work space is large enough. The result of a middle product in size
k has degree < k and needs ck extra work space by hypothesis. Therefore, if
m —k > (c+ 1)k, that is k < m/(c + 2), the computation can be performed in
place.

Algorithm 3 iMP_from_oMP

Input: f and g of degree < n+m — 1 and < n respectively

Output: R contains MP(f, g)

Required alg.: An out-of-place middle product algorithm oMP with space com-
plexity < cn

1: if m < ¢+ 2 then

2 R < oMP(f,9) > using a naive algorithm
3: else

4: k<« |m/(c+2)]

5 Rjo..x[< OMP(f mod Xtk g) > work space: Rij. .m|
6 Rik..m[< iMP_from_oMP(f quo X% 9) > recursive call

Complexity analysis Let M(k) be the cost of an out-of-place balanced mid-
dle product algorithm. The cost of an unbalanced middle product is thus
[n/k]M(k) for k < n. The in-place algorithm computes first a middle product
using an out-of-place algorithm and then makes a recursive call on the remain-
ing part. Note that n does not change during the algorithm and can be viewed
as a large constant, while m is the parameter that varies. Then the cost of
the algorithm verifies T'(m) < [n/k] M(k) + T(m — k). Since k = |m/(c+ 2)],
[n/k] <n(c+2)/(m—c—2)+1and m—k < (c+1)m/(c+2)+1. Furthermore,
M(k) < m/n(c+2)M(n), thus [n/k] M(k) < (m/(m—c—2)+m/n(c+2))M(n).
That is,

m c+2 c+1
T < 1M T(—— 1].
(m)_<n(c+2)+m—c—2+) (n) + <c+2m+)

Corollary [5.7| implies T'(n) < M(n) log%(n) + O(M(n)) for m = n.

Improvement for non quasi-linear algorithms The extra logarithmic fac-
tor only occurs when M(n) = n'*t°(1), Suppose to the contrary that M(n) < An”

v
for some v > 1. The recurrence now reads T'(m) < (% + 1) A (cTQ) +

14

T(giém + 1). We claim that there exist constants p and v such that T'(m) <
pm?~In+vm?Y +o(m?~tn+m?) and prove it by induction. Using the recurrence

relation and the induction hypothesis,

AnmY 1 m”Y c+1 7=l
T < =1
(m)—(c+2)v1+(c+2)7+”(c+2> m ' in

1 Y

+v (C +) mY 4 o(m? " n +m?).
c+2

The result follows as soon as (A + u(c+1)Y"1/(c+2)7"1 < pand (A +v(c+

1)7)/(c+2)Y <wv. We can thus fix

A and A
fd 1 V= .
P et T — (et iyt (c+2y —(c+1)

Finally, taking m = n, we conclude that T'(n) < (u + v)AnY + O(n7~1).

Reduction from short products to middle product The middle product
of f and g can be computed as the sum of the low short product of f quo X™
with g and the high short product of f mod X" with g. Yet this reduction does
not preserve the space complexity since one needs to store the results of the
two short products in two zones of size n before summing them. Actually, the
reduction given above from oMP to iMP can easily be adapted to a reduction
from SP to MP that is space-preserving. Yet, the complexity also worsens with
a logarithmic factor. Thus, we cannot conclude that MP <ysp SP.

5.4 Resolution of recurrences

Lemma 5.2. Let T(n) be a function satisfying T(n) < f(n) +T(lan + B]) for

some o < 1. Then
K—1

T(n) < T(|nk])+ > f(ni)

=0

where n; = a'n + ﬂﬁf:l and K < logy /o (n).

Proof. Let T'(z) = T(|x]) for non integral z. By definition of n;, n = ng and
T(n;) < f(ni)+T(nit1). Then by recurrence, T'(n) < T(nip1)+>"5_o f(ni). O

Lemma 5.3. Let n; = o'n + 61716_“7:1 . Then

K-1

T 1l-«
i=0

Proof. Since Zf;l al=(1-af)/1-a)and 1—a >0, >, a'n <n/(1-a).
Then, (1~ at)/(1 - a) = K/(1 — a) + (X — a)/(i = a)? < K/(1 -)
since X1 < a. O

15

Lemma 5.4. Let n; = o'n + ﬂl_lfzrl . Then
K—1

1 o -1
; ni—pB/(1—a) (I1—a)n—af

Proof. Since n; = o'(n — Ba/(1 —a)) + B/(1 — a), n; — B/(1 —) is a multiple
of a*. Thus,

K-1

1 K—1
;nifﬂ/(lfa):nfﬂa/lfa Za

i=

Then, >, a™" = (1 —a®)/1-1/a)=a(a™® —-1)/(1 —a), and >, 1/(n; —
p/(1—a))=ale™™ =1)/((1 —a)n—ap). -
Lemma 5.5. If M(n)/n is non-decreasing, and n; = o'n+ (1 —a't1)/(1 -)
for some o < 1, then

K-1

Z M(An; +p) =

=0

2 M) + o(M(n))

for K <logy,(n) and any A and p such that An; + p < n for all n;.

Proof. Since M(n)/n is non-decreasing, M(An; + p) < 2% At M(n). There-
fore, 37, M(An; 4+ p) < M(n)/n Y, An; + p. By Lemma [5.3} Y-, M(An; + p) <

MM(n)/(1 — a) + ABKM(n)/n(l —) + pKM(n)/n. Since K — O(logn),
KM(n)/n = o(M(n)). O

Corollary 5.6. Let T'(n) < >, axM(Agn+ i) +bn+c+T(an+3) with o < 1
and A\gn + pr < n for all k. Then

apA bn
<21’ig + 1 +o(M(n).

The linear term is negligible but if M(n) = O(n).

Proof. By Lemma T(n) < T(ng) + Y., f(n;) with n; defined as in the
lemma and f(n) = >, axM(Agn + pg) + bn + c. Then

K-1 K-1 K-1
Z f(ni) = Zak Z M(/\kni+ﬂk)+bz n; + Kc
i=0 k 1=0 1=0

< Ek:ak <1)_kaM(n) +0(M(n))) + bn—’_BK + Kc

l1-«a
Cl,k)\k bn
= M
Z 1o M@) + 17— +0(M(n))
since K = o(M(n)) and the sum over k is of fixed size. O

16

Corollary 5.7. Let T(m) < (Am/n+ p/(m— =)+ 1)M(n) + T(am + 1) with
a<1and m <n. Then for m =n,

A+ pa
-«

T(n) < M(n)log, /4(n) + M(n) + o(M(n)).

Proof. By Lemma [5.2

i
where m; = a'm+(1—a'*1)/(1—a). By Lemmal[5.3 }°, m; < (m+K)/(1-q)
and by Lemma >i1/(mi—) < oK /(1— a)m — «). Altogether,

A(m + K) pa (1/a)”
T(m) <T(mg)+ KM(n) + mM(n) + T o af(1= Q)M(n).

If we plug K = log; ,(m) and fix m = n, we get

A+ pa
l1-«a

T(n) < T(nic) +M(n) logy o +

6 Perspectives

We have presented algorithms for polynomial multiplication problems which are
efficient in terms of both time and space. Our results show that any algorithm
for the full and short products of polynomials can be turned into another algo-
rithm with the same asymptotic time complexity while using only O(1) extra
space. We obtain similar results for the middle product but only proved it for
algorithms that do not have a quasi-linear time complexity. In the latter case,
an increase of the time complexity by a logarithmic factor occurs. We provided
analysis of our reductions that make their constants explicit. In particular, their
values ensure that our reductions are practicable.

In a future work, we plan to address some remaining issues. By examining
the constants in the already known algorithms, we can choose the algorithms to
use as starting points of our reductions to optimize the complexity. For instance
three variants of Karatsuba’s algorithm with different time and space complex-
ities are known [19, 23] [16]. Furthermore, it seems possible to improve on the
complexity of low-space versions of Karatsuba’s and Toom-Cook’s algorithm,
yielding faster in-place algorithms through our reductions. Another promising
approach is to slightly relax the model of computation and work in model in
which one can write on the input space as long as the original inputs are restored
by the end of the computation. Preliminary results for Karatsuba’s algorithm
suggest that this could also yield a lower constant in the time complexity.

Finally, we have stated to explore the design of in-place algorithms for a
broader range of problems of polynomials, such as division or evaluation/interpolation.
The use of in-place middle and short products becomes crucial since one needs
to avoid any increase in the size of the intermediate results.

17

Acknowledgements

This work was begun while the last author was graciously hosted by the LIRMM
at the Université Montpellier.

This work was supported in part by the National Science Foundation un-

der grants 1319994 (https://www.nsf .gov/awardsearch/showAward?AWD_ID=
1319994) and 1618269 (https://www.nsf.gov/awardsearch/showAward?AWD_
ID=1618269).

References

[1]

[7]

K. Abrahamson. Time-space tradeoffs for branching programs contrasted
with those for straight-line programs. In 27th Annual Symposium on Foun-
dations of Computer Science (sfes 1986), pages 402-409, 1986.

S. Arora and B. Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, 1st edition, 2009.

A. Bostan, F. Chyzak, M. Giusti, R. Lebreton, G. Lecerf, B. Salvy, and
E. Schost. Algorithmes Efficaces en Calcul Formel. 1.0 edition, Aug. 2017.

A. Bostan, G. Lecerf, and E. Schost. Tellegen’s principle into practice. In
Proceedings of the 2003 International Symposium on Symbolic and Alge-
braic Computation, ISSAC ’03, pages 37-44, New York, NY, USA, 2003.
ACM.

R. Brent and P. Zimmermann. Modern Computer Arithmetic. Cambridge
University Press, New York, NY, USA, 2010.

D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over
arbitrary algebras. Acta Informatica, 28:693-701, 1991.

Y. Cheng. Space-efficient karatsuba multiplication for multi-precision inte-
gers. CoRR, abs/1605.06760, 2016.

S. A. Cook. On the minimum computation time of functions. PhD thesis,
Harvard University, May 1966.

J. v. z. Gathen and J. Gerhard. Modern Computer Algebra (third edition).
Cambridge University Press, 2013.

G. Hanrot, M. Quercia, and P. Zimmermann. Speeding up the Division and
Square Root of Power Series. Technical Report RR-3973, INRIA, 2000.

G. Hanrot, M. Quercia, and P. Zimmermann. The middle product algo-
rithm i. Applicable Algebra in Engineering, Communication and Comput-
ing, 14(6):415-438, Mar 2004.

G. Hanrot and P. Zimmermann. A long note on Mulders’ short product.
Journal of Symbolic Computation, 37(3):391-401, 2004.

18

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1319994
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1319994
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1618269
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1618269

[13]

[14]

[16]

[17]

[18]

[19]

[20]

D. Harvey, J. van der Hoeven, and G. Lecerf. Faster polynomial multipli-
cation over finite fields. J. ACM, 63(6):52:1-52:23, Jan. 2017.

D. Harvey and D. S. Roche. An in-place truncated Fourier transform and
applications to polynomial multiplication. In ISSAC ’10: Proceedings of
the 2010 International Symposium on Symbolic and Algebraic Computation,
pages 325-329, New York, NY, USA, 2010. ACM.

E. Kaltofen. Challenges of symbolic computation: my favorite open prob-
lems. Journal of Symbolic Computation, 29(6):891-919, 2000.

A. Karatsuba and Y. Ofman. Multiplication of Multidigit Numbers on
Automata. Soviet Physics-Doklady, 7:595-596, 1963.

A. Lincoln, V. Vassilevska Williams, J. R. Wang, and R. R. Williams.
Deterministic Time-Space Trade-Offs for k-SUM. In I. Chatzigiannakis,
M. Mitzenmacher, Y. Rabani, and D. Sangiorgi, editors, 43rd International
Colloguium on Automata, Languages, and Programming (ICALP 2016),
volume 55 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 58:1-58:14, Dagstuhl, Germany, 2016. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik.

T. Mulders. On Short Multiplications and Divisions. Applicable Algebra in
Engineering, Communication and Computing, 11(1):69-88, 2000.

D. S. Roche. Space- and time-efficient polynomial multiplication. In Pro-
ceedings of the 2009 International Symposium on Symbolic and Algebraic
Computation, ISSAC ’09, pages 295-302. ACM, 2009.

J. Savage and S. Swamy. Space-time tradeoffs for oblivious integer multi-
plication. In H. Maurer, editor, Automata, Languages and Programming,
volume 71 of Lecture Notes in Computer Science, pages 498-504. Springer
Berlin / Heidelberg, 1979.

A. Schénhage and V. Strassen. Schnelle Multiplikation grofier Zahlen. Com-
puting, 7:281-292, 1971.

C. Su and H. Fan. Impact of Intel’s new instruction sets on software im-
plementation of GF(2)[x] multiplication. Information Processing Letters,
112(12):497-502, 2012.

E. Thomé. Karatsuba multiplication with temporary space of size < n.
online, 2002.

V. Vassilevska Williams. On some fine-grained questions in algorithms and
complexity. In Proceedings ICM, 2018.

19

	Introduction
	Polynomial multiplication
	Space complexity
	Short and middle products
	Our work

	Complexity model
	Polynomial multiplications
	Multiplications as linear maps

	Time and space preserving reductions
	Equivalences based on reverse polynomials
	Equivalence between short products and half-additive full products
	From half-additive full product to unbalanced full product

	In-place algorithms from out-of-place algorithms
	In-place full product algorithm
	In-place short product algorithm
	In-place middle product algorithm
	Resolution of recurrences

	Perspectives

