
HAL Id: lirmm-02004418
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02004418v1

Submitted on 1 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Can we Approximate the Test of Integrated Circuits?
Imran Wali, Marcello Traiola, Arnaud Virazel, Patrick Girard, Mario

Barbareschi, Alberto Bosio

To cite this version:
Imran Wali, Marcello Traiola, Arnaud Virazel, Patrick Girard, Mario Barbareschi, et al.. Can we
Approximate the Test of Integrated Circuits?. WAPCO: Workshop On Approximate Computing, Jan
2017, Stockholm, Sweden. �lirmm-02004418�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02004418v1
https://hal.archives-ouvertes.fr

Can we Approximate the Test of Integrated Circuits?
Imran Wali1, Marcello Traiola1, Arnaud Virazel1, Patrick Girard1, Mario Barbareschi2, Alberto Bosio1

1LIRMM – University of Montpellier / CNRS – France
<name.lastname>@lirmm.fr

2Università Federico II – Naples
<name.lastname>@unina.it

Abstract—In the recent years Approximate Computing (AC)

has emerged as new paradigm for energy efficient IC design. It
addresses the problem of maintaining reliability and thus coping
with run-time errors exploiting an acceptable amount of
overheads in terms of area, performances and energy
consumption. This work starts from the consideration that AC-
based systems can intrinsically accept the presence of faulty
hardware (i.e., hardware that can produce errors). This
paradigm is also called “computing on unreliable hardware”. The
hardware-induced errors have to be analyzed to determine their
propagation through the system layers and eventually
determining their impact on the final application. In other words,
an AC-based system does not need to be built using defect-free
ICs. Under this assumption, we can relax test and reliability
constraints of the manufactured ICs. One of the ways to achieve
this goal is to test only for a subset of faults instead of targeting
all possible faults. In this way, we can reduce the manufacturing
cost since we eventually reduce the number test patterns and thus
the test time. We call this approach Approximate Test. The main
advantage is the fact that we do not need a prior knowledge of
the workload (i.e., we are application independent). Therefore,
the proposed approach can be applied to any kind of ICs,
reducing the test time and increasing the yield. We present
preliminary results on some simple case studies. The main goal is
to show that by letting some faults undetected we can save test
time without having a huge impact on the application quality.

Keywords—fault coverage; test pattern; approximate test; test
generation; test complexity

I. INTRODUCTION
Today’s Integrated Circuits (ICs) are starting to reach the

physical limits of CMOS technology. Among the multiple
challenges arising from technology nodes lower the 20 nm, we
can highlight the high leakage current (i.e., high static power
consumption), reduced performance gain, reduced reliability,
complex manufacturing process leading to low yield and
complex testing process, and extremely costly masks [1]. In
other words, ICs manufactured with the latest technology
nodes are the less and less efficient (w.r.t. both performances
and energy consumption) than forecasted by the Moore’s law.
Moreover, the manufactured devices are becoming less and
less reliable, meaning that errors can appear during the normal
lifetime of a device with a higher probability than in previous
technology nodes [2]. Fault tolerant mechanisms are therefore
required to ensure the correct behavior of such device at the
cost of extra area, power and timing overheads. Finally,
process variations force the engineers to add extra guard bands
(e.g., higher supply voltage or lower clock frequency than
required under normal circumstances) to guarantee the correct
functioning of manufactured devices.

In the recent years, the Approximate Computing (AC)
paradigm has been emerged [2][3][4]. It addresses the problem
of maintaining reliability and thus coping with run-time errors,
exploiting an acceptable amount of overheads in terms of area,
performances and energy consumption. AC is based on the
intuitive observation that, while performing exact computation
requires a high amount of resources, allowing selective
approximation or occasional violation of the specification can
provide gains in efficiency (i.e., less power consumption, less
area, higher manufacturing yield) without significantly
affecting the output quality [2][3][4].

This work starts from the consideration that AC-based
systems can intrinsically accept the presence of faulty hardware
(i.e., hardware that can produce errors) [5]. The hardware-
induced errors have to be analyzed to determine their
propagation through the system layers and eventually
determining their impact on the final application. In other
words, an AC-based system does not need to be built using
defect-free ICs. In deed, AC-based systems can manage at
higher-level the errors due to defectives ICs, or those errors
simply do not significantly impact on the final applications.
Under this assumption, we can relax test and reliability
constraints of the manufactured ICs. One of the ways to
achieve this goal is to test only for a subset of faults instead of
targeting all possible faults. In this way, we can reduce the
manufacturing cost since we eventually reduce the number of
test pattern and thus the test time. In the literature, some
interesting works have already been published so far, targeting
the test generation for a subset of faults [6]-[7]. The main idea
behind these works is the classification of faults as benign and
malignant to be further exploited during the test generation.
More in detail, the authors propose to generate all possible
faults and then classifying them into two classes: 1) benign
faults - those that cause no error or an acceptable amount of
error, and 2) malignant faults - those faults that cause a
significant deviation from acceptable behavior. The metric
used for classifying faults into these two classes is the error
magnitude [2], which is the difference between actual value
(affected by the fault) and the golden value (fault-free).

The contribution of this work is to investigate an approach
opposite w.r.t. the state-of-the-art. Instead to classify the faults
according to the applied workload, we exploit a functional and
a structural analysis to determine the most vulnerable circuit
elements and thus generate the test patterns for these elements.
We call this approach Approximate Test (AT). The main
advantage is the fact that we do not need a prior knowledge of
the workload (i.e., we are application independent). Therefore,
the proposed approach can be applied to any kind of ICs
reducing the test time and increasing the yield. In this paper,

we present preliminary results on some simple case studies.
The results aim at looking at the impact of the AT on the test
length and the fault coverage. Moreover, we also show the
impact on the final application by using the well-known error
probability (Pε) and the error magnitude (ε) metrics [9]. The
main goal is to show that by letting some faults undetected we
can save test time without having a huge impact on the
application quality.

The paper is organized as follows. Section II presents the
flow of the proposed approach and gives details of each step.
Experimental results are discussed in Section III. Finally,
conclusions are given in Section IV.

II. THE PROPOSED APPROACH
The main idea of the proposed AT approach is to let some

faults untested in order to speed up the test and to increase the
overall yield. As already discussed, the risk of exploiting
defective ICs to build AC-based systems is mitigated by the
fact the AC can intrinsically accepts the presence of errors.
However, the important point is that the impact of the untested
faults on the final applications has to be in the acceptable
regions (i.e., the final output quality is still acceptable by the
user). The real challenge is therefore determining what are the
faults that must be tested and what are those that can be
ignored during the test application.

The straightforward approach for determining the targeted
faults is act accordingly to the functionality of the circuit. The
classical example is an arithmetic circuit where it is better to
guarantee that the most significant outputs are correct to
narrow down the ε [2]. Unfortunately this approach cannot be
adopted for all the kind of integrated circuits since it is not
always easy to determine the most significant outputs. In deed
the latter are clearly strictly related to the workload. To
overcome the above issue, we propose to determine the
targeted faults by using a structural analysis. In this way we
want to be independent w.r.t. the circuit function. To validate
our proposal, we developed a flow for applying both the
approaches (i.e., functional and structural analysis).

Fig. 1. Approximate Test flow

The Fig. 1 describes the main steps of the proposed AT
approach. The starting point is the circuit netlist (original
design). The first step is the analysis of the netlist. Actually two
types of analysis are performed: the Functional and the
Structural. The goal of each analysis is to rank the circuit
outputs based on their significance and susceptibility
respectively. Then, in the second step, a fault list is generated
depending on the output raking previously computed. The fault
list contains the fault that must be detected. The third step
consists in running an ATPG with the circuit netlist and the
generated fault list as inputs. The ATPG provides (in addition
to the test patterns) the Fault Coverage (FC) and the Test
Length (TL). The last step of the proposed flow computes the
AC metrics (i.e. Pε and ε). Those metrics are computed with the
help of an exhaustive fault injection. Next sub-sections provide
details on each step of the proposed flow.

A. Functional Analysis – Significance
The functional analysis aims at determining the targeted

faults accordingly to the functionality of the circuit. As already
discussed, this approach works very well for particular types of
circuits. For example, when considering arithmetic ICs, outputs
can be easily ranked depending on their weight. The Most
Significant Bit (MSiB) of the output data word is the one
having the most significance while the Low Significant Bit
(LSiB) has the low significance on the computed result.
Consequently, detecting faults affecting the fan-in cone of the
MSiB guarantees the functionality with a minimum ε.
Nevertheless, the significance analysis can only be computed
on arithmetic ICs and not on random logic ICs. To be more
general, the significance of the circuit outputs has to be

25	

Fault	Coverage	(FC)	

Test	Lenght	(TL)	

Error	Magnitude	(ε)	

Error	Probability	(Pε)	

 	Pa;ern	List	

 	Fault	List	

		 ATPG	

		
Exhaus?ve	

Fault	Injec?on	

		
Constrained	

Fault	List	Genera?on	

 	
Original	
Design	

Netlist	(.v)		

		
Func?onal	Analysis	

(Significance)	

		
Structural	Analysis	
(Suscep5bility)	 	 Output	

Ranking	

 	 Output	
Ranking	

computed accordingly with the applied workload. The output
of this step is the raking of the circuit outputs.

B. Structural Analysis – Susceptibility
Conversely to the functional analysis, we propose to

determine the targeted faults by looking only at the circuit
structure. In this case, the main idea is to analyze each primary
output of the circuit to determine its susceptibility as described
in [8]. The output susceptibility analysis is based on the fact
that not all outputs of a circuit have the same susceptibility,
which is a function of the number of nodes in its fan-in logic
cone. It exploits the structural properties of the output fan-in
cone to get their relative susceptibility estimates. In other
words, we aim to identify the outputs more affected by the
presence of faults. Compared to the significance analysis, the
susceptibility analysis is only related to the circuit structure. No
functional information is required to compute it and thus it can
be applied to any digital circuits.

Algorithm 1 shows the pseudo-code of the susceptibility
analysis methodology. The algorithm starts by reading the pre-
place-and-route netlist of the design. Then, it forms groups Fj
of all fan-in cells for each circuit output Oj. Once groups are
formed the weight Wj of each fan-in cone is calculated by
adding together the weights of all cells in the corresponding
fan-in cone group. According to the hypothesis that forms the
basis of this methodology, cell weight is the number of inputs
and outputs of that cell. Ranks are assigned to each output on
the basis of their fan-in cone weight using a sort function
shown in line 15 of Algorithm 1.

Algorithm 1. Output susceptibility analysis

The algorithm is further explained by its application to a
simple example circuit shown in Fig. 2. The shaded regions
mark the boundaries of the two output fan-in cones. The weight
parameter (Wi) is given on the top of each gate. The fan-in
cones weight (Sj) given on the right of corresponding output is
found to be 14 and 10 for O1 and O2 respectively.

Fig. 2. Application of the susceptibility analysis

According to these figures we can infer that detecting the
faults affecting the fan-in cone of O1 significantly impacts the
fault coverage while detecting the remaining faults slightly
improves the fault coverage. As for the significance analysis,
the output of this step is the raking of the circuit outputs from
the Most Susceptible Bit (MSuB) to the Least Susceptible Bit
(LSuB). As in the example of Fig. 2 they are O1 and O2
respectively.

C. Constrained Fault List Generation
This step takes in input the results of one of the two

previous analyses (Functional or Structural). Please note that, if
the circuit under consideration is a random logic circuit for
which the workload is not known, only the structural analysis
is possible. Having the circuit outputs ranked, we choose a
subset of them that we want to cover during the AT. For each
selected output, we add stuck-at-faults affecting its fan-in cone.
The resulting fault list is thus composed of all the stuck-at
faults observable at the selected outputs. Once again, the
generated fault list only contains a sub-set of the total fault list.

Let us come back to the example shown in Fig. 2. For each
output we determine the collapsed stuck-at-fault list.

Fig. 3. Fault List generation from O1

Fig. 3 graphically shows the collapsed fault list obtained by
considering the fan-in cone of O1. It is composed of 9 stuck-at
faults.

1 read(netlist);
2 // Group all fan-in cone cells together for each

output node
3 foreach Oj do
4 Fj ← Oj.get fanin();
5 end
6 // Get weight of fanin cone of each output
7 foreach Oj do
8 foreach Ci do
9 if Ci ∈ Fj then

10 Wj ← Wj + Ci.get pins();
11 end
12 end
13 end
14 // Sort outputs on the basis of their fanin cone

weight
15 sort(Oj,Fj,Wj);

C1	

W1	=	3	

C2	

W2	=	3	

C5	

W5	=	2	

W6	=	4	

	C7	

	C3	

W3	=	3	

C6	

W6	=3	

C4	

W4	=	3	

	C8	

W3	=	3	

S1	=	14		

1st	Fan-in	cone	(F1)		 2nd	Fan-in	cone	(F2)		 Fan-in	cone	overlap	(F1		∩	F2)		

O1	

O2	
S2	=	12		-		2			=	10	

C1	

W1	=	3	

C2	

W2	=	3	

C5	

W5	=	2	

W6	=	4	

	C7	

	C3	

W3	=	3	

C6	

W6	=3	

C4	

W4	=	3	

	C8	

W3	=	3	

S1	=	14		

1st	Fan-in	cone	(F1)		 2nd	Fan-in	cone	(F2)		 Fan-in	cone	overlap	(F1		∩	F2)		

O1	

O2	
S2	=	12		-		2			=	10	

P1	
P2	

P3	
P4	

P5	

P6	

P7	
P8	

P9	

S@0	
S@1	

Fig. 4. Fault List generation from O2

Fig. 4 graphically shows the collapsed fault list obtained by
considering the fan-in cone of O2. It is composed of 7 stuck-at
faults. We detailed this step since it is important to note the
fan-out branch at the output of the invert C5. In the fault list
from O1 the faults affecting the inverter have been considered.
However, In O2 we must add the faults affecting the branch
impacting on the O2 fan-in cone itself. Otherwise those faults
will never be targeted during the Automatic Test Pattern
Generation (ATPG).

D. ATPG
For this step of the AT flow, a commercial ATPG tool, with

default options (i.e., fault dropping, dynamic compaction and
random fill), is used to generate the test patterns. The Fault
Coverage (FC) and the Test Length (TL) are two important
outputs since they represent the effectiveness of the proposed
AT compared to a deterministic one. We also save the patterns
list to further compute the AC metrics.

Fig. 5. Test generation example

Fig. 5 gives an example of the test generation. First of all,
the target fault is the S@1 affecting the primary input P1
(circled red cross in the figure). The ATPG determines the
logical values to be applied to the first 5 primary inputs (from
P1 to P5) for sensitizing and propagating the fault effect
through the circuit gates to reach O1. The primary inputs
impacting only on the O2 fan-in cone are simply randomly
filled (from P6 to P9). The logical values are shown in the Fig.
5. It is clear that more than one fault is tested for “free” thanks
to the input assignments. In this particular example, we test
also S@0 affecting P3 and P4, S@1 affecting P6 and S@0

affecting P7. Thus, we can also detect faults affecting O2 cone
thanks to the random filling.

TABLE I. EXAMPLE

Outputs #. Faults Detected Faults FC(%) TL O1 O2
O1 9 9 5 87.5 6
O2 7 3 7 100 2

Table I summarizes the test generation for the given
example. Let us consider the first row. It reports the ATPG
data executed by using the O1 fault list. The achieved fault
coverage is 87.5% and 6 test patterns are generated. The
column “detected faults” gives the detail per each fault list. It
can be seen that targeting the O1 fault list will result in
detecting for “free” 5 faults of the O2 fault list thanks to the
random fill.

E. Exhaustive Fault Injection
Error Probability (Pε) and the Error Magnitude (ε) are

metrics allowing the evaluation in the AC context. Pε
represents the ratio of erroneous responses among the total
responses that the circuit can produce. ε gives the hamming
distance between the erroneous response and the golden one. Pε
can be computed for any digital circuits while ε computation is
only possible for arithmetic circuits or when the workload is
known. Since we do not consider a particular workload, we
compute both metrics by running an exhaustive fault injection
campaign. All possible stuck-at-faults are injected (one after
the other) and the exhaustive pattern list is simulated. It is
worth to mention that this exhaustive fault injection can only
be applied for small circuits (i.e., with a limited number of
outputs). In this work is used only for validation, in the general
case the workload has to be known in order to compute the
metrics. Responses are then compared to the golden ones to
compute Pε metric. ε metric is obtained in the same way but the
hamming distance between the simulated fault injection and the
golden response is obtained with the help of the output ranking
computed during the functional analysis. Once again this is
done only for arithmetic circuits since they do not require a
workload to determine the weight of the outputs.

III. EXPERIMENTAL RESULTS
The AT flow has been validated on three case studies. All

the circuits have been synthesized with a 45nm technology
library 0. Table II reports the main characteristics of each
circuit in terms of number of primary inputs (#. PIs), primary
outputs (#. POs) and logic gates (#. Gates). All the case studies
are purely combinational circuits. The first two are arithmetic
circuits able to compute 4-bit sum, subtraction and logic
operation. Moreover, the ALU2 can also compute comparisons
between the two inputs (i.e., equals-to, greater-than and less-
than). The last circuit is the c432 from the ISCAS’85
benchmarks suite [11]. We selected these benchmarks in order
to have two cases for which both the functional and structural
analyses can be applied, while for the last one, only the
structural analysis is applied.

C1	

W1	=	3	

C2	

W2	=	3	

C5	

W5	=	2	

W6	=	4	

	C7	

	C3	

W3	=	3	

C6	

W6	=3	

C4	

W4	=	3	

	C8	

W3	=	3	

S1	=	14		

1st	Fan-in	cone	(F1)		 2nd	Fan-in	cone	(F2)		 Fan-in	cone	overlap	(F1		∩	F2)		

O1	

O2	
S2	=	12		-		2			=	10	

P1	
P2	

P3	
P4	

P5	

P6	

P7	
P8	

P9	

S@0	
S@1	

C1	

W1	=	3	

C2	

W2	=	3	

C5	

W5	=	2	

W6	=	4	

	C7	

	C3	

W3	=	3	

C6	

W6	=3	

C4	

W4	=	3	

	C8	

W3	=	3	

S1	=	14		

1st	Fan-in	cone	(F1)		 2nd	Fan-in	cone	(F2)		 Fan-in	cone	overlap	(F1		∩	F2)		

O1	

O2	
S2	=	12		-		2			=	10	

P1	
P2	

P3	
P4	

P5	

P6	

P7	
P8	

P9	

S@0	
S@1	0	

1	

1	
1	

0	

1	

0	

0	
0	

0	

0	
0	

1	

1	

1	 0	

0	 0	

TABLE II. CASE STUDIES

Circuit #. PIs #. POs #. Gates
ALU 11 4 51

ALU2 12 7 127
c432 36 7 160

The goal of the validation is to show that the structural
analysis can be used instead of the functional one. Moreover,
we want to show that the error obtained by the structural
analysis is comparable with the one obtained through the
functional one. Thus, the proposed structural approach can be
adapted to any kind of circuits without the knowledge of the
workload. In the next sub-sections we present the results for
each case study.

A. ALU
The Fig. 6 shows the block diagram of the ALU. This

circuit can compute the standard arithmetic and boolean
operation over the two 4-bit inputs.

Fig. 6. ALU block diagram

TABLE III. ALU RESULTS

Outputs FC (%) TL Pε
εavg εmax

1 96.58 19 0.199 0.580 7
2 98.16 21 0.140 0.243 3
3 98.95 23 0.060 0.060 1
4 99.47 24 0 0 0

Table III reports the results obtained by applying the AT
flow described in the Section II. Since this case study is an
arithmetic circuit, we applied both the functional and structural
analyses. In this particular case, the order provided by the two
analyses is the same: z3, z2, z1 and z0. This is because the MSiB
(z3) is the one having the most important fan-in cone and thus it
also corresponds to the MSuB. The first column of Table III
gives the number of primary outputs considered in the second
step for generating the fault list and, consequently the test
patterns. Please remember that we selected the primary output
for the fault list and the test pattern generation accordingly with
their ranking (i.e., from the MSiB/MSuB down to the
LSiB/LSuB). Looking at first row, we can see that if we
consider only one output (i.e., the fault list contains only the
faults affecting the fan-in cone of that primary output), we can
achieve a high stuck-at fault coverage (96.58%) with a
probability of 0.199 to have a failure at the output (i.e., due to
the untested faults). For this case, the average error magnitude
(εavg) is 0.580 (i.e., the average deviation form the expected
output in the presence of faults) and maximum error magnitude
(εmax) is 7 (i.e., the highest difference observed between the
fault-free circuit and the faulty one). Please consider that a
maximum deviation of 7 in the result correspond to a
maximum error of 46.67% (i.e., 7 over 15).

Then, by adding the remaining outputs we slightly increase
the fault coverage, to reach at the end 99.47%. Considering the
test length, we can notice that the number of test patterns varies
from 19 up to 24. Thus, only considering one output we can
reduce the test length of 12.5%. Depending on the final system
quality, the test engineer can therefore select the appropriate set
of primary output leading to the desired trade-off between fault
coverage, test length, Pε and εmax.

Note that the last line in Table III represents the case of a
standard deterministic test where all stuck-at-faults are
considered during the test generation (i.e., the upper bound of
the FC and TL).

B. ALU2
The Fig. 7 shows the block diagram of the ALU2. This

circuit can compute the standard arithmetic and boolean
operation over the two 4-bit inputs and, in addition,
comparison between the inputs.

Fig. 7. ALU2 block diagram

Even if this circuit is quite simple in terms of netlist and
number of inputs and outputs (as reported in Table II), it is
interesting since the functional analysis is not so obvious.
Clearly, z3 is still the MSiB of the data outputs, but what is the
weight of the logical outputs (l, g, and e)? Once again, this
question can only be answered by the knowledge of the
workload. In the following we consider two possible scenarios:

• S1: the logical outputs are more significant than the data
outputs. Thus the Functional analysis will provide the
rank l, g, e, z3, z2, z1 and z0.

• S2: the logical outputs are less significant than the data
outputs. Thus the Functional analysis will provide the
rank z3, z2, z1, z0, l, g and e.

Let us consider S1 as the target scenario for our
experiment, so that we can observe what happen when the
output ranking is different for functional and structural
analysis.

TABLE IV. FUNCTIONAL ANALYS: SCENARIO S1

Outputs FC(%) TL Pε εavg
εmax

1 76.19 27 0.287 1.551 15
2 76.62 29 0.257 1.328 15
3 77.16 31 0.250 1.271 15
4 94.83 55 0.192 0.536 7
5 97.52 62 0.145 0.245 3
6 98.28 66 0.082 0.082 1
7 100.00 75 0 0 0

ALU	
AND			a	&	b	
OR			a	|	b	
XOR			a	^	b	

NAND			~(a	&	b)	
NOR			~(a	|	b)	
ADD			a	+	b	
SUB			a	–	b	

a0	
a1	
a2	
a3	

b0	
b1	
b2	
b3	

z0	
z1	
z2	
z3	

sel0	
sel1	
sel2	

ALU	
AND			a	&	b	
OR			a	|	b	
XOR			a	^	b	

NAND			~(a	&	b)	
NOR			~(a	|	b)	
ADD			a	+	b	
SUB			a	–	b	

SHIFT	LEFT			a	<<	1	
SHIFT	RIGHT		a	>>	1	

a0	
a1	
a2	
a3	

b0	
b1	
b2	
b3	

z0	
z1	
z2	
z3	

l	
g	
e

sel0	
sel1	
sel2	
sel3	

TABLE V. STRUCTURAL ANALYSIS: SCENARIO S2

Outputs FC(%) TL Pε εavg
εmax

1 85.56 38 0.256 0.592 7
2 88.36 45 0.209 0.302 3
3 89.76 50 0.147 0.141 1
4 93.10 57 0.067 0.063 1
5 99.35 70 0.039 0.038 1
6 99.89 71 0.007 0.007 1
7 100.00 72 0 0 0

Tables IV and 0 report the results obtained by using only
the functional and the structural analysis respectively. We can
immediately compare the tables. Let us consider the first row
of both the cases. For the functional analysis, when considering
only one output and its related fan-in cone set of stuck-at faults,
we achieve 76% of FC. Conversely, when the output is
provided by the structural analysis we can reach 85% of FC.
There is a quite huge difference of 9% of FC. The Pε and εavg,
εmax metrics also show a significant difference between the two
cases. The ones associated to the structural analysis (see Table
0) are lower than those obtained by using the functional
analysis. Especially the εavg and εmax are reduced from 1.55 to
0.59 and from 15 down to 7 respectively. Which correspond to
2.6 times reduction in εavg and a 2.1 times reduction in εmax
when comparing our structural analysis with the functional
one. Finally, both the analysis lead us a maximum reduction of
about 45% of test length compared to the upper bound case
(i.e. the last line of the tables where all stuck-at faults are
considered during the test generation).

Similar to the first case study (see Section III.A), we can
comment that depending on the final system quality, the test
engineer can therefore select the appropriate analysis leading to
the desired trade-off between fault coverage, test length, Pε and
ε metrics value.

However, a more interesting comment is about the
differences between the structural and functional analysis. In
this case, the structural analysis is even better than the
functional one. Due to lack of results, we cannot claim that it is
always true, but it is a non-intuitive result: only considering the
structural information we can improve the coverage of the
functionalities of the target circuit since both Pε and ε are
reduced.

C. c432
The last case study is the public available benchmark c432

[11]. As reported in Table II it has 36 primary inputs. Even if
this number is not so high, it becomes to be not interesting to
determine the Pε by using the exhaustive fault injection (the
complexity will rapidly increases). Indeed, this case study has
been selected in order to put the study in a context close to real
cases where the Pε and ε can only be computed with a given
workload. Thus, the Table VI does not provide any value for Pε
and ε.

Reported results are indeed interesting: by considering only
one output (i.e., the MSuB), we can achieve the 97.32% of FC.

On the other hand, if the complete fault list is generated the FC
is 97.88%. So we simply loose 0.5% of fault coverage.
Looking at the test complexity, we can reduce it by 4% if we
consider only the MSuB output for the fault list generation.

TABLE VI. C432 RESULTS

Outputs FC(%) TL
1 97.32% 65
2 97.77% 67
3 97.88% 68
4 97.88% 68
5 97.88% 68
6 97.88% 68
7 97.88% 68

IV. CONCLUSION
The contribution of this work was to investigate an

approach opposite w.r.t. the state-of-the-art. Instead to classify
the faults according to the applied workload, we exploit a
structural analysis to determine the most vulnerable circuit
elements and thus generate test patterns for these elements.
Preliminary results indicate that the resulting method, called
Approximate Test can really lead to provide benefits in terms of
test time reduction. Test engineer can select the desired trade-
off between quality and test complexity. The proposed
structural analysis methodology seems interesting and
promising step toward making the AT applicable for any kind
of circuits.

REFERENCES

[1] G. Gielen, et al., “Emerging yield and reliability challenges in
nanometer CMOS technologies”, in Proceedings of the Conference on
Design, Automation and Test in Europe, pp. 1322-1327, 2008

[2] Sparsh Mittal, “A Survey of Techniques for Approximate Computing”,
ACM Computing Surveys (CSUR), Volume 48, Issue 4, May 2016.

[3] Q. Xu, T. Mytkowicz and N. S. Kim, “Approximate Computing: A
Survey,” in IEEE Design & Test, vol. 33, no. 1, pp. 8-22, Feb. 2016.

[4] J. Han and M. Orshansky, "Approximate computing: An emerging
paradigm for energy-efficient design," 2013 18th IEEE European Test
Symposium (ETS), Avignon, 2013, pp. 1-6.

[5] V. Chippa et al., “Analysis and characterization of inherent application
resilience for approximate computing”, in Proc. 50th ACM/EDAC/IEEE
Design Automation Conference (DAC’13), May 2013, pp. 1–9.

[6] K.-J. Lee, T.-Y. Hsieh, and M. A. Breuer, “Efficient Overdetection
Elimination of Acceptable Faults for Yield Improvement,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 31, no. 5, pp. 754–764, May 2012.

[7] Suraj Sindia, Vishwani D. Agrawal, “Tailoring Tests for Functional
Binning of Integrated Circuits”, IEEE 21st Asian Test Symposium, pp.
95-100, 2012

[8] I. Wali, B. Deveautour, A. Virazel, A. Bosio, P. Girard, M. Sonza
Reorda, “A Low-cost Susceptibility Analysis Methodology to
Selectively Harden Logic Circuits”, IEEE 21st European Test
Symposium, 2016

[9] A. Momeni, J. Han, P. Montuschi and F. Lombardi, “Design and
Analysis of Approximate Compressors for Multiplication,” in IEEE
Transactions on Computers, vol. 64, no. 4, pp. 984-994, April 2015.

[10] Nangate Inc., “45nm open cell library”, http://www.nangate.com.
[11] https://filebox.ece.vt.edu/~mhsiao/iscas85.html

