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Abstract—In the recent years Approximate Computing (AC) 

has emerged as new paradigm for energy efficient IC design. It 
addresses the problem of maintaining reliability and thus coping 
with run-time errors exploiting an acceptable amount of 
overheads in terms of area, performances and energy 
consumption. This work starts from the consideration that AC-
based systems can intrinsically accept the presence of faulty 
hardware (i.e., hardware that can produce errors). This 
paradigm is also called “computing on unreliable hardware”. The 
hardware-induced errors have to be analyzed to determine their 
propagation through the system layers and eventually 
determining their impact on the final application. In other words, 
an AC-based system does not need to be built using defect-free 
ICs. Under this assumption, we can relax test and reliability 
constraints of the manufactured ICs. One of the ways to achieve 
this goal is to test only for a subset of faults instead of targeting 
all possible faults. In this way, we can reduce the manufacturing 
cost since we eventually reduce the number test patterns and thus 
the test time. We call this approach Approximate Test. The main 
advantage is the fact that we do not need a prior knowledge of 
the workload (i.e., we are application independent). Therefore, 
the proposed approach can be applied to any kind of ICs, 
reducing the test time and increasing the yield. We present 
preliminary results on some simple case studies. The main goal is 
to show that by letting some faults undetected we can save test 
time without having a huge impact on the application quality. 

Keywords—fault coverage; test pattern; approximate test; test 
generation; test complexity 

I.  INTRODUCTION 
Today’s Integrated Circuits (ICs) are starting to reach the 

physical limits of CMOS technology. Among the multiple 
challenges arising from technology nodes lower the 20 nm, we 
can highlight the high leakage current (i.e., high static power 
consumption), reduced performance gain, reduced reliability, 
complex manufacturing process leading to low yield and 
complex testing process, and extremely costly masks [1]. In 
other words, ICs manufactured with the latest technology 
nodes are the less and less efficient (w.r.t. both performances 
and energy consumption) than forecasted by the Moore’s law. 
Moreover, the manufactured devices are becoming less and 
less reliable, meaning that errors can appear during the normal 
lifetime of a device with a higher probability than in previous 
technology nodes [2]. Fault tolerant mechanisms are therefore 
required to ensure the correct behavior of such device at the 
cost of extra area, power and timing overheads. Finally, 
process variations force the engineers to add extra guard bands 
(e.g., higher supply voltage or lower clock frequency than 
required under normal circumstances) to guarantee the correct 
functioning of manufactured devices. 

In the recent years, the Approximate Computing (AC) 
paradigm has been emerged [2][3][4]. It addresses the problem 
of maintaining reliability and thus coping with run-time errors, 
exploiting an acceptable amount of overheads in terms of area, 
performances and energy consumption. AC is based on the 
intuitive observation that, while performing exact computation 
requires a high amount of resources, allowing selective 
approximation or occasional violation of the specification can 
provide gains in efficiency (i.e., less power consumption, less 
area, higher manufacturing yield) without significantly 
affecting the output quality [2][3][4].   

This work starts from the consideration that AC-based 
systems can intrinsically accept the presence of faulty hardware 
(i.e., hardware that can produce errors) [5]. The hardware-
induced errors have to be analyzed to determine their 
propagation through the system layers and eventually 
determining their impact on the final application. In other 
words, an AC-based system does not need to be built using 
defect-free ICs. In deed, AC-based systems can manage at 
higher-level the errors due to defectives ICs, or those errors 
simply do not significantly impact on the final applications. 
Under this assumption, we can relax test and reliability 
constraints of the manufactured ICs. One of the ways to 
achieve this goal is to test only for a subset of faults instead of 
targeting all possible faults. In this way, we can reduce the 
manufacturing cost since we eventually reduce the number of 
test pattern and thus the test time. In the literature, some 
interesting works have already been published so far, targeting 
the test generation for a subset of faults [6]-[7]. The main idea 
behind these works is the classification of faults as benign and 
malignant to be further exploited during the test generation. 
More in detail, the authors propose to generate all possible 
faults and then classifying them into two classes: 1) benign 
faults - those that cause no error or an acceptable amount of 
error, and 2) malignant faults - those faults that cause a 
significant deviation from acceptable behavior. The metric 
used for classifying faults into these two classes is the error 
magnitude [2], which is the difference between actual value 
(affected by the fault) and the golden value (fault-free).  

The contribution of this work is to investigate an approach 
opposite w.r.t. the state-of-the-art. Instead to classify the faults 
according to the applied workload, we exploit a functional and 
a structural analysis to determine the most vulnerable circuit 
elements and thus generate the test patterns for these elements. 
We call this approach Approximate Test (AT). The main 
advantage is the fact that we do not need a prior knowledge of 
the workload (i.e., we are application independent). Therefore, 
the proposed approach can be applied to any kind of ICs 
reducing the test time and increasing the yield. In this paper, 



we present preliminary results on some simple case studies. 
The results aim at looking at the impact of the AT on the test 
length and the fault coverage. Moreover, we also show the 
impact on the final application by using the well-known error 
probability (Pε) and the error magnitude (ε) metrics [9]. The 
main goal is to show that by letting some faults undetected we 
can save test time without having a huge impact on the 
application quality. 

The paper is organized as follows. Section II presents the 
flow of the proposed approach and gives details of each step.  
Experimental results are discussed in Section III. Finally, 
conclusions are given in Section IV. 

II. THE PROPOSED APPROACH 
The main idea of the proposed AT approach is to let some 

faults untested in order to speed up the test and to increase the 
overall yield. As already discussed, the risk of exploiting 
defective ICs to build AC-based systems is mitigated by the 
fact the AC can intrinsically accepts the presence of errors. 
However, the important point is that the impact of the untested 
faults on the final applications has to be in the acceptable 
regions (i.e., the final output quality is still acceptable by the 
user). The real challenge is therefore determining what are the 
faults that must be tested and what are those that can be 
ignored during the test application. 

The straightforward approach for determining the targeted 
faults is act accordingly to the functionality of the circuit. The 
classical example is an arithmetic circuit where it is better to 
guarantee that the most significant outputs are correct to 
narrow down the ε [2]. Unfortunately this approach cannot be 
adopted for all the kind of integrated circuits since it is not 
always easy to determine the most significant outputs. In deed 
the latter are clearly strictly related to the workload. To 
overcome the above issue, we propose to determine the 
targeted faults by using a structural analysis. In this way we 
want to be independent w.r.t. the circuit function. To validate 
our proposal, we developed a flow for applying both the 
approaches (i.e., functional and structural analysis). 

 
Fig. 1. Approximate Test flow 

The Fig. 1 describes the main steps of the proposed AT 
approach. The starting point is the circuit netlist (original 
design). The first step is the analysis of the netlist. Actually two 
types of analysis are performed: the Functional and the 
Structural. The goal of each analysis is to rank the circuit 
outputs based on their significance and susceptibility 
respectively. Then, in the second step, a fault list is generated 
depending on the output raking previously computed. The fault 
list contains the fault that must be detected. The third step 
consists in running an ATPG with the circuit netlist and the 
generated fault list as inputs. The ATPG provides (in addition 
to the test patterns) the Fault Coverage (FC) and the Test 
Length (TL). The last step of the proposed flow computes the 
AC metrics (i.e. Pε and ε). Those metrics are computed with the 
help of an exhaustive fault injection. Next sub-sections provide 
details on each step of the proposed flow. 

A. Functional Analysis – Significance 
The functional analysis aims at determining the targeted 

faults accordingly to the functionality of the circuit. As already 
discussed, this approach works very well for particular types of 
circuits. For example, when considering arithmetic ICs, outputs 
can be easily ranked depending on their weight. The Most 
Significant Bit (MSiB) of the output data word is the one 
having the most significance while the Low Significant Bit 
(LSiB) has the low significance on the computed result. 
Consequently, detecting faults affecting the fan-in cone of the 
MSiB guarantees the functionality with a minimum ε. 
Nevertheless, the significance analysis can only be computed 
on arithmetic ICs and not on random logic ICs. To be more 
general, the significance of the circuit outputs has to be 
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computed accordingly with the applied workload. The output 
of this step is the raking of the circuit outputs. 

 

B. Structural Analysis – Susceptibility 
Conversely to the functional analysis, we propose to 

determine the targeted faults by looking only at the circuit 
structure. In this case, the main idea is to analyze each primary 
output of the circuit to determine its susceptibility as described 
in [8]. The output susceptibility analysis is based on the fact 
that not all outputs of a circuit have the same susceptibility, 
which is a function of the number of nodes in its fan-in logic 
cone. It exploits the structural properties of the output fan-in 
cone to get their relative susceptibility estimates. In other 
words, we aim to identify the outputs more affected by the 
presence of faults. Compared to the significance analysis, the 
susceptibility analysis is only related to the circuit structure. No 
functional information is required to compute it and thus it can 
be applied to any digital circuits. 

Algorithm 1 shows the pseudo-code of the susceptibility 
analysis methodology. The algorithm starts by reading the pre-
place-and-route netlist of the design. Then, it forms groups Fj 
of all fan-in cells for each circuit output Oj. Once groups are 
formed the weight Wj of each fan-in cone is calculated by 
adding together the weights of all cells in the corresponding 
fan-in cone group. According to the hypothesis that forms the 
basis of this methodology, cell weight is the number of inputs 
and outputs of that cell. Ranks are assigned to each output on 
the basis of their fan-in cone weight using a sort function 
shown in line 15 of Algorithm 1. 

 
Algorithm 1. Output susceptibility analysis 

The algorithm is further explained by its application to a 
simple example circuit shown in Fig. 2. The shaded regions 
mark the boundaries of the two output fan-in cones. The weight 
parameter (Wi) is given on the top of each gate. The fan-in 
cones weight (Sj) given on the right of corresponding output is 
found to be 14 and 10 for O1 and O2 respectively. 

 
Fig. 2. Application of the susceptibility analysis 

According to these figures we can infer that detecting the 
faults affecting the fan-in cone of O1 significantly impacts the 
fault coverage while detecting the remaining faults slightly 
improves the fault coverage. As for the significance analysis, 
the output of this step is the raking of the circuit outputs from 
the Most Susceptible Bit (MSuB) to the Least Susceptible Bit 
(LSuB). As in the example of Fig. 2 they are O1 and O2 
respectively. 

 

C. Constrained Fault List Generation 
This step takes in input the results of one of the two 

previous analyses (Functional or Structural). Please note that, if 
the circuit under consideration is a random logic circuit for 
which the workload is not known, only the structural analysis 
is possible. Having the circuit outputs ranked, we choose a 
subset of them that we want to cover during the AT. For each 
selected output, we add stuck-at-faults affecting its fan-in cone. 
The resulting fault list is thus composed of all the stuck-at 
faults observable at the selected outputs. Once again, the 
generated fault list only contains a sub-set of the total fault list.  

Let us come back to the example shown in Fig. 2. For each 
output we determine the collapsed stuck-at-fault list. 

 
Fig. 3. Fault List generation from O1 

Fig. 3 graphically shows the collapsed fault list obtained by 
considering the fan-in cone of O1. It is composed of 9 stuck-at 
faults. 

1 read(netlist);
2 // Group all fan-in cone cells together for each

output node
3 foreach Oj do
4 Fj ← Oj.get fanin();
5 end
6 // Get weight of fanin cone of each output
7 foreach Oj do
8 foreach Ci do
9 if Ci ∈ Fj then

10 Wj ← Wj + Ci.get pins();
11 end
12 end
13 end
14 // Sort outputs on the basis of their fanin cone

weight
15 sort(Oj,Fj,Wj);
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Fig. 4. Fault List generation from O2 

Fig. 4 graphically shows the collapsed fault list obtained by 
considering the fan-in cone of O2. It is composed of 7 stuck-at 
faults. We detailed this step since it is important to note the 
fan-out branch at the output of the invert C5. In the fault list 
from O1 the faults affecting the inverter have been considered. 
However, In O2 we must add the faults affecting the branch 
impacting on the O2 fan-in cone itself. Otherwise those faults 
will never be targeted during the Automatic Test Pattern 
Generation (ATPG). 

D. ATPG 
For this step of the AT flow, a commercial ATPG tool, with 

default options (i.e., fault dropping, dynamic compaction and 
random fill), is used to generate the test patterns. The Fault 
Coverage (FC) and the Test Length (TL) are two important 
outputs since they represent the effectiveness of the proposed 
AT compared to a deterministic one. We also save the patterns 
list to further compute the AC metrics. 

 
Fig. 5. Test generation example 

Fig. 5 gives an example of the test generation. First of all, 
the target fault is the S@1 affecting the primary input P1 
(circled red cross in the figure). The ATPG determines the 
logical values to be applied to the first 5 primary inputs (from 
P1 to P5) for sensitizing and propagating the fault effect 
through the circuit gates to reach O1. The primary inputs 
impacting only on the O2 fan-in cone are simply randomly 
filled (from P6 to P9). The logical values are shown in the Fig. 
5. It is clear that more than one fault is tested for “free” thanks 
to the input assignments. In this particular example, we test 
also S@0 affecting P3 and P4, S@1 affecting P6 and S@0 

affecting P7. Thus, we can also detect faults affecting O2 cone 
thanks to the random filling. 

TABLE I.  EXAMPLE 

Outputs #. Faults Detected Faults FC(%) TL O1 O2 
O1 9 9 5 87.5 6 
O2 7 3 7 100 2 

 

Table I summarizes the test generation for the given 
example. Let us consider the first row. It reports the ATPG 
data executed by using the O1 fault list. The achieved fault 
coverage is 87.5% and 6 test patterns are generated. The 
column “detected faults” gives the detail per each fault list. It 
can be seen that targeting the O1 fault list will result in 
detecting for “free” 5 faults of the O2 fault list thanks to the 
random fill. 

 

E. Exhaustive Fault Injection 
Error Probability (Pε) and the Error Magnitude (ε) are 

metrics allowing the evaluation in the AC context. Pε 
represents the ratio of erroneous responses among the total 
responses that the circuit can produce. ε gives the hamming 
distance between the erroneous response and the golden one. Pε 
can be computed for any digital circuits while ε computation is 
only possible for arithmetic circuits or when the workload is 
known. Since we do not consider a particular workload, we 
compute both metrics by running an exhaustive fault injection 
campaign. All possible stuck-at-faults are injected (one after 
the other) and the exhaustive pattern list is simulated. It is 
worth to mention that this exhaustive fault injection can only 
be applied for small circuits (i.e., with a limited number of 
outputs). In this work is used only for validation, in the general 
case the workload has to be known in order to compute the 
metrics. Responses are then compared to the golden ones to 
compute Pε metric. ε metric is obtained in the same way but the 
hamming distance between the simulated fault injection and the 
golden response is obtained with the help of the output ranking 
computed during the functional analysis. Once again this is 
done only for arithmetic circuits since they do not require a 
workload to determine the weight of the outputs. 

III. EXPERIMENTAL RESULTS 
The AT flow has been validated on three case studies. All 

the circuits have been synthesized with a 45nm technology 
library 0. Table II reports the main characteristics of each 
circuit in terms of number of primary inputs (#. PIs), primary 
outputs (#. POs) and logic gates (#. Gates). All the case studies 
are purely combinational circuits. The first two are arithmetic 
circuits able to compute 4-bit sum, subtraction and logic 
operation. Moreover, the ALU2 can also compute comparisons 
between the two inputs (i.e., equals-to, greater-than and less-
than). The last circuit is the c432 from the ISCAS’85 
benchmarks suite [11]. We selected these benchmarks in order 
to have two cases for which both the functional and structural 
analyses can be applied, while for the last one, only the 
structural analysis is applied. 
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TABLE II.  CASE STUDIES 

Circuit #. PIs #. POs #. Gates 
ALU 11 4 51 

ALU2 12 7 127 
c432 36 7 160 

The goal of the validation is to show that the structural 
analysis can be used instead of the functional one. Moreover, 
we want to show that the error obtained by the structural 
analysis is comparable with the one obtained through the 
functional one. Thus, the proposed structural approach can be 
adapted to any kind of circuits without the knowledge of the 
workload. In the next sub-sections we present the results for 
each case study. 

A. ALU 
The Fig. 6 shows the block diagram of the ALU. This 

circuit can compute the standard arithmetic and boolean 
operation over the two 4-bit inputs. 

 
Fig. 6. ALU block diagram 

TABLE III.  ALU RESULTS 

Outputs FC (%) TL Pε 
εavg εmax 

1 96.58 19 0.199 0.580 7 
2 98.16 21 0.140 0.243 3 
3 98.95 23 0.060 0.060 1 
4 99.47 24 0 0 0 

Table III reports the results obtained by applying the AT 
flow described in the Section II. Since this case study is an 
arithmetic circuit, we applied both the functional and structural 
analyses. In this particular case, the order provided by the two 
analyses is the same: z3, z2, z1 and z0. This is because the MSiB 
(z3) is the one having the most important fan-in cone and thus it 
also corresponds to the MSuB. The first column of Table III 
gives the number of primary outputs considered in the second 
step for generating the fault list and, consequently the test 
patterns. Please remember that we selected the primary output 
for the fault list and the test pattern generation accordingly with 
their ranking (i.e., from the MSiB/MSuB down to the 
LSiB/LSuB). Looking at first row, we can see that if we 
consider only one output (i.e., the fault list contains only the 
faults affecting the fan-in cone of that primary output), we can 
achieve a high stuck-at fault coverage (96.58%) with a 
probability of 0.199 to have a failure at the output (i.e., due to 
the untested faults). For this case, the average error magnitude 
(εavg) is 0.580 (i.e., the average deviation form the expected 
output in the presence of faults) and maximum error magnitude 
(εmax) is 7 (i.e., the highest difference observed between the 
fault-free circuit and the faulty one). Please consider that a 
maximum deviation of 7 in the result correspond to a 
maximum error of 46.67% (i.e., 7 over 15). 

Then, by adding the remaining outputs we slightly increase 
the fault coverage, to reach at the end 99.47%. Considering the 
test length, we can notice that the number of test patterns varies 
from 19 up to 24. Thus, only considering one output we can 
reduce the test length of 12.5%. Depending on the final system 
quality, the test engineer can therefore select the appropriate set 
of primary output leading to the desired trade-off between fault 
coverage, test length, Pε and εmax. 

Note that the last line in Table III represents the case of a 
standard deterministic test where all stuck-at-faults are 
considered during the test generation (i.e., the upper bound of 
the FC and TL). 

B. ALU2 
The Fig. 7 shows the block diagram of the ALU2. This 

circuit can compute the standard arithmetic and boolean 
operation over the two 4-bit inputs and, in addition, 
comparison between the inputs. 

 
Fig. 7. ALU2 block diagram 

Even if this circuit is quite simple in terms of netlist and 
number of inputs and outputs (as reported in Table II), it is 
interesting since the functional analysis is not so obvious. 
Clearly, z3 is still the MSiB of the data outputs, but what is the 
weight of the logical outputs (l, g, and e)? Once again, this 
question can only be answered by the knowledge of the 
workload. In the following we consider two possible scenarios: 

• S1: the logical outputs are more significant than the data 
outputs. Thus the Functional analysis will provide the 
rank l, g, e, z3, z2, z1 and z0. 

• S2: the logical outputs are less significant than the data 
outputs. Thus the Functional analysis will provide the 
rank z3, z2, z1, z0, l, g and e. 

Let us consider S1 as the target scenario for our 
experiment, so that we can observe what happen when the 
output ranking is different for functional and structural 
analysis. 

TABLE IV.  FUNCTIONAL ANALYS: SCENARIO S1 

Outputs FC(%) TL Pε εavg 
εmax 

1 76.19 27 0.287 1.551 15 
2 76.62 29 0.257 1.328 15 
3 77.16 31 0.250 1.271 15 
4 94.83 55 0.192 0.536 7 
5 97.52 62 0.145 0.245 3 
6 98.28 66 0.082 0.082 1 
7 100.00 75 0 0 0 

ALU	
AND			a	&	b	
OR			a	|	b	
XOR			a	^	b	

NAND			~(a	&	b)	
NOR			~(a	|	b)	
ADD			a	+	b	
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----	
----	
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ALU	
AND			a	&	b	
OR			a	|	b	
XOR			a	^	b	

NAND			~(a	&	b)	
NOR			~(a	|	b)	
ADD			a	+	b	
SUB			a	–	b	

SHIFT	LEFT			a	<<	1	
SHIFT	RIGHT		a	>>	1	

----	
----	

a0	
a1	
a2	
a3	

b0	
b1	
b2	
b3	

z0	
z1	
z2	
z3	

l	
g	
e

sel0	
sel1	
sel2	
sel3	



 

TABLE V.  STRUCTURAL ANALYSIS: SCENARIO S2 

Outputs FC(%) TL Pε εavg 
εmax 

1 85.56 38 0.256 0.592 7 
2 88.36 45 0.209 0.302 3 
3 89.76 50 0.147 0.141 1 
4 93.10 57 0.067 0.063 1 
5 99.35 70 0.039 0.038 1 
6 99.89 71 0.007 0.007 1 
7 100.00 72 0 0 0 

Tables IV and 0 report the results obtained by using only 
the functional and the structural analysis respectively. We can 
immediately compare the tables. Let us consider the first row 
of both the cases. For the functional analysis, when considering 
only one output and its related fan-in cone set of stuck-at faults, 
we achieve 76% of FC. Conversely, when the output is 
provided by the structural analysis we can reach 85% of FC. 
There is a quite huge difference of 9% of FC. The Pε and εavg, 
εmax metrics also show a significant difference between the two 
cases. The ones associated to the structural analysis (see Table 
0) are lower than those obtained by using the functional 
analysis. Especially the εavg and εmax are reduced from 1.55 to 
0.59 and from 15 down to 7 respectively. Which correspond to 
2.6 times reduction in εavg and a 2.1 times reduction in εmax 
when comparing our structural analysis with the functional 
one. Finally, both the analysis lead us a maximum reduction of 
about 45% of test length compared to the upper bound case 
(i.e. the last line of the tables where all stuck-at faults are 
considered during the test generation).  

Similar to the first case study (see Section III.A), we can 
comment that depending on the final system quality, the test 
engineer can therefore select the appropriate analysis leading to 
the desired trade-off between fault coverage, test length, Pε and 
ε metrics value. 

However, a more interesting comment is about the 
differences between the structural and functional analysis. In 
this case, the structural analysis is even better than the 
functional one. Due to lack of results, we cannot claim that it is 
always true, but it is a non-intuitive result: only considering the 
structural information we can improve the coverage of the 
functionalities of the target circuit since both Pε and ε are 
reduced. 

C. c432 
The last case study is the public available benchmark c432 

[11]. As reported in Table II it has 36 primary inputs. Even if 
this number is not so high, it becomes to be not interesting to 
determine the Pε by using the exhaustive fault injection (the 
complexity will rapidly increases). Indeed, this case study has 
been selected in order to put the study in a context close to real 
cases where the Pε and ε can only be computed with a given 
workload. Thus, the Table VI does not provide any value for Pε 
and ε.  

Reported results are indeed interesting: by considering only 
one output (i.e., the MSuB), we can achieve the 97.32% of FC. 

On the other hand, if the complete fault list is generated the FC 
is 97.88%. So we simply loose 0.5% of fault coverage. 
Looking at the test complexity, we can reduce it by 4% if we 
consider only the MSuB output for the fault list generation.  

TABLE VI.  C432 RESULTS 

Outputs FC(%) TL 
1 97.32% 65 
2 97.77% 67 
3 97.88% 68 
4 97.88% 68 
5 97.88% 68 
6 97.88% 68 
7 97.88% 68 

IV. CONCLUSION 
The contribution of this work was to investigate an 

approach opposite w.r.t. the state-of-the-art. Instead to classify 
the faults according to the applied workload, we exploit a 
structural analysis to determine the most vulnerable circuit 
elements and thus generate test patterns for these elements. 
Preliminary results indicate that the resulting method, called 
Approximate Test can really lead to provide benefits in terms of 
test time reduction. Test engineer can select the desired trade-
off between quality and test complexity. The proposed 
structural analysis methodology seems interesting and 
promising step toward making the AT applicable for any kind 
of circuits.  
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