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Abstract

The preshaped curved beam is used as bistable mechanism in MEMS, its be-
havior is characterized by the snapping forces and stresses that evolve during
deflection between the two sides of buckling. Based on analytical models, the
influence of variating the material and dimension parameters on the behavior
of the curved beam is analyzed. The limit of miniaturization of the beam based
on the stress limits is identified. Further, a design optimization methodology is
provided which allows selecting the miniature dimensions of the curved beam
after defining the range of possible dimensions. This method ensures a required
bistablity behavior in terms of stroke and holding forces, while respecting the de-
sign requirement. Several design constraints are defined including material and
technological limitations and some other specifications. The results in different
cases of optimization problems showed to be the same using a proposed opti-
mization methodology and a standard gradient based optimization algorithm.

Keywords: Preshaped curved beam, Design methodology, Miniaturization

1. Introduction

The design of a preshaped curved beam is still paying the price for the
lack of a physical intuition and a methodology of optimization. The design of
a preshaped curved beam is investigated in this paper in an effort to provide
efficient computational frameworks and elements for designers.5

Curved beam structure is a component widely used in MEMS as a sim-
ple bistable mechanism that combines the advantages of passive holding and
compliant mechanisms. The bistable structure is generally simple which allows
working easily in confined spaces. The stable positions are robust and have
good repeatability while no energy is required to hold the positions. Compared10
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to precompressed [1, 2, 3] and prestressed [4, 5] curved beams, the preshaped
curved beam has an advantage at microfabrication level insofar as the integra-
tion in MEMS is simpler and monolithic microfabrication is possible [6, 7, 8, 9].
All of those are advantages, as far as the miniaturization of mechatronic systems
is concerned.15

The analytical modeling constitutes a basis for the design of these kinds
of beams. Several studies in the literature covered the analytical modeling of
preshaped curved beams [7, 8, 9, 10, 11, 12, 13, 14, 15]. These models are either
static or dynamic. However, the dynamic behavior of a curved beam is very
fast compared to its most common applications in MEMS devices (switch [16],20

positioning [17], relays [18], braille devices [19], etc.). The design study in this
paper aims to optimize the quasi-static behavior of the curved beam. For other
fast applications (such as resonators [20]), where the dynamic is important, the
design can be relied on dynamic modeling [13, 14, 15].

As for the static modeling, the bistability and pull-in behavior of electrostat-25

ically actuated preshaped curved beam was studied in [10, 11, 21]. The modeling
of electromagnetically actuated preshaped curved beams is presented in [7]. The
modeling of a preshaped curved beam actuated by a point force at its middle
length was investigated in [8] with neglecting high modes of buckling. Expres-
sions describing the snapping force behavior during deflection between the two30

sides of buckling were obtained and showed good accordance with FEM simula-
tions and experiments. The modeling with considering high modes of buckling
was presented recently in [9]. Expressions for the snapping forces and internal
stresses were developed where considering high modes of buckling showed better
accordance with FEM results, mainly for the stress calculation. The snapping35

forces calculated from [8, 9] showed also good accordance with the experiments
made in [22]. For the purpose of generalization, numerical modeling of an ar-
bitrarily preshaped curved beam subjected to arbitrary distributed mechanical
and/or electrostatic loadings is presented in [12]. To the best of the author’s
knowledge, no existing research addresses the dimensioning and optimization of40

preshaped curved beams.
The analytical expressions obtained in the modeling constitute a basis for

the design. The accurate determination of the relation between the design pa-
rameters of the curved beam (material and dimensions) and the snapping forces
is very important for the integration of the curved beam in a complete microsys-45

tem. At the same level, determination of the maximal stress value according
to the material and dimensions allows the identification of the miniaturization
limits and avoidance of the fracture.

The design of the preshaped curved beam is investigated in this paper based
on the analytical expressions provided in the modeling. In a first part, the50

influence of variating the material and dimension parameters on the main char-
acteristics that define the behavior of the curved beam are investigated. These
characteristics are the important snapping positions and forces, internal stress
and limits of miniaturization. In a second part, a design optimization methodol-
ogy is presented and developed to identify the miniature dimensions that allow55

an expected bistable behavior. Different design constraints including material
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and technological limitations and some other specification are presented and
their corresponding conditions on the dimensioning are defined. Afterwards,
the optimization problem is solved using standard gradient based optimization
algorithm and a visual interpretation methodology. The optimization results60

using the two methods showed to be the same in different presented cases.
The works made in this paper seek to fill the gap between the modeling

and the real dimensioning of preshaped curved beams. The elements provided
constitute a basis for the design of a preshaped curved beam in order to get
its most miniature dimensions while providing a set of design requirements.65

Nevertheless, provided elements constitute a complete toolbox for designers.
They can be changed easily to suit other design requirements and optimization
scenarios. Further, knowing that MEMS costs are closely related to their surface
footprints, the design elements presented in this paper constitute a basis for
the economical study of the final realization of preshaped curved beam based70

systems.

2. Model

The model in question is a clamped-clamped preshaped curved beam which
is fabricated directly on the shape of the first mode of buckling. This shape is
most commonly reported [8, 9, 23] since it is similar to bistable buckled beam75

resulting from axially compressed or prestressed straight beam. Figure 1 shows a
schematic of a preshaped curved beam with the different dimension parameters:
depth b, thickness t, length l and initial height of buckling h.

Figure 1: Schematic of a preshaped curved beam in its initial position and during deflection.

An applied lateral force f at the middle of the curved beam causes a deflec-
tion d at its middle as shown in Figure 1. A simple one preshaped curved beam80

shows bistability only for high values of the height-to-thickness ratio Q = h/t.
The bistability, in this case, is highly asymmetric and the stability margin is
very low in the second side of buckling.

Usually, a bistable mechanism of preshaped curved beams consists of two
curved beams at least that are connected by a shuttle at the middle as shown85

in Figure 2.
The deflection in this case is constrained; the asymmetrical modes of buckling

are eliminated and a rectilinear displacement of the shuttle is ensured during
deflection. The bistability of a constrained preshaped curved beam is ensured for
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Figure 2: Pair of preshaped curved beams as bistable mechanism shown during deflection
between the two sides of buckling.

Q ≥ 2.31 [8, 9]. The design study in this paper concerns constrained preshaped90

curved beams.
The snapping forces and internal stresses evolve in two different ways during

deflection of the curved beam between the two sides of buckling. During deflec-
tion from one side, the length of the beam is compressed and the axial stress
increases with deflection. Behavior of the force with the deflection is nonlin-95

ear in this zone. However, after a certain limit of deflection, particularly in an
intermediate zone between the two sides of buckling, the axial stress becomes
constant due to the appearance of the third mode of buckling in the shape of
the curved beam. Behavior of the force becomes linear with the deflection in
this zone.100

Figure 3 shows characteristic curve of the snapping force during deflection.
The zone between dtop and dbot is the linear zone, while the force behavior
outside this zone is non linear.

ftop

fbot

dtop dbot

dstart dm dend

d

f

Figure 3: Snapping force characteristic curve during deflection of a preshaped curved beam.

For Q > 2.78, the top point (dtop, ftop) is the highest point on the curve,
while for Q > 2.71, the bottom point (dbot, fbot) is the lowest point on the curve.105

For lower values of Q, the higher and lower force points are in the nonlinear zone.
Usually, in a bistable curved beam, the ratio Q is higher than 2.78 and the top
and bottom points are the higher and lower points respectively.

The existence of positive and negative values of the snapping force indicates
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the existence of two stable positions in the two buckling sides. The stability110

margin in the second side of buckling increases for higher values of Q. In case
of no external applied forces at rest, dstart and dend are the two stable positions
and the distance between them is the stroke of the curved beam.

Otherwise, the stroke can be defined differently using stop blocks [17] that
limit the curved beam position between two stop positions in between dstart115

and dend. This allows defining the stroke between stable positions and equally
the holding force at each position. The design method presented in section 4 is
based on the use of stop blocks to define the stroke and holding forces.

The different snapping points presented in Figure 3 are dependent on the
dimension and material parameters as can be concluded from their expressions120

[9]:
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{

0,
4

3
,

3

2
+

√
1

4
− 4

3Q2

}
dtop, dbot = h ·

(
28

27
± 2π

3

√
1

6
+

16

81π2
− 1

Q2

)
ftop, fbot =

Ebt3h

l3
· 32π2

9

(
4

9
∓ π

√
1

6
+

16

81π2
− 1

Q2

) (1)

where E is the Young’s modulus for the material. The existence of the above
snapping points is not ensured for Q < 2.31 (signs of expressions under the
square root are negative) where the bistability condition is not satisfied.

The stress state in the curved beam consists of bending and axial stresses. As125

the case of the snapping force, the total stress, which is the sum of the bending
and axial stresses, evolves in two ways between the two zones of deflection [9].
The most relevant stress value for the design is the value of the maximal stress
along the curved beam during deflection σdmax. Figure 4 shows the curve shape
of σdmax during deflection.

dend

d
28
27
h

σmaxσmax
d

dbotdtop

Figure 4: Curve shape of the maximal stress in a bistable preshaped curved beam during
deflection.

130

The modeling shows that the maximum value σmax of σdmax along the dis-
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tance between dstart and dend is at d = 28h/27 for Q > 2.36. The expression of
σmax is as follows [9]:

σmax =
Eth

l2
4π2

3

(
1 +

1

Q
+

√
64

27π2
+ 2− 12

Q2

)
(2)

3. Parameters variation influence on the mechanical characteristics

A key starting point in the design of a preshaped curved beam is to under-
stand the influence of changing the different dimensions and material parameters
on the mechanical characteristics of the curved beam. The relations between
the different parameters and characteristics are analyzed in this section.135

3.1. Positions, forces and stresses

As can be concluded from (1) and (2), the different positions, force and stress
points are dependent directly or inversely on a power function of the material
Young’s modulus, the depth b and the length l. However, the relation with
the height h and the thickness t is more complicated since both are related to140

each other with respect to the ratio Q. Usually, the value of Q is not a design
requirement, but it strongly influences the behavior of the preshaped curved
beam.

For constant values of Q, the height h and the thickness t evolve simultane-
ously with the same ratio. In this case, the position, force and stress charac-145

teristics are related directly to a power function of h and t. However, changing
h and t differently induces a variation on the value of Q which has a nonlin-
ear influence on the values of the different characteristics. In the other side,
for high values of Q (let’s say Q > 6), the nonlinear influence of variating Q
can be neglected. Therefore, the different characteristics can be considered as150

proportional to a power function of h and t for high values of Q.
In light of that, the different positions, force and stress points can be ex-

pressed in two ways as follows:

d∗ = t · f1h∗(Q) = h · f1t∗(1/Q)

f∗ =
Ebt4

l2
· f2h∗(Q) =

Ebh4

l2
· f2t∗(1/Q)

σmax =
Et2

l2
· f3h(Q) =

Eh2

l2
· f3t(1/Q)

(3)

where d∗ and f∗ represent the different positions and force points respectively,
and f1h∗(Q), f1t∗(1/Q), f2h∗(Q), f2t∗(1/Q), f3h(Q) and f3t(1/Q) can be con-155

cluded from the expressions of d∗, f∗, and σmax respectively.
The two expressions for each characteristic serve for presenting the influence

of variating h and t separately. The expressions with f1h∗(Q), f2h∗(Q) and
f3h(Q) represent the influence of variating h separately while the expressions
with f1t∗(1/Q), f2t∗(1/Q) and f3t(1/Q) represent the influence of variating t160

separately (1/Q = t/h). Two plots are presented in the following for each
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characteristic in (3) in order to visualize the influence of variating h and t
respectively.

3.1.1. Positions

The variations of dtop, dbot and dend with respect to Q are demonstrated in165

Figure 5. These curves visualize the influence of variating h for constant values
of t. The curves dbot and dend increase monotonically with respect to Q while
the curve dtop decreases to a minimum at Q = 4.74 and increases after that.
All the three positions are directly proportional to h for high and/or constant
values of Q.170

mimimum at Q=4.74

d=(yvalue)⋅t

t constant

Figure 5: Curves of dtop, dbot and dend with respect to Q = h/t. The curves show the
influence of variating h separately according to f1h∗.

The variations of dtop, dbot and dend with respect to 1/Q = t/h are demon-
strated in Figure 6. These curves visualize the influence of variating t for con-
stant values of h. It can be noticed that dbot and dend decrease and dtop increases
with respect to 1/Q.

d=(yvalue)⋅h

h constant

Figure 6: Curves of dtop, dbot and dend with respect to 1/Q = t/h. The curves show the
influence of variating t separately according to f1t∗.
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3.1.2. Snapping forces175

The values of the different snapping forces f∗ are proportional to the Young’s
modulus E, the depth b and inversely proportional to the cubic value of the
length l3. The variations of ftop and fbot with respect to Q are demonstrated
in Figure 7.

f=(yvalue)⋅

Figure 7: Curves of ftop and fbot with respect to Q = h/t. The curves show the influence of
variating h separately according to f2h∗.

Equation (3) and Figure 7 show that the snapping forces f∗ increases mono-180

tonically with respect to h (according to f2h∗(Q)) for constant values of the
other parameters (E, b, t and l).

Analyzing the equations of ftop and fbot in (1) shows that they have a max-
imum at Q = 2.52 and Q = 3.00 respectively when changing the value of the
thickness t. The forces increase with t after these values of Q (lower values of185

t/h), while they change inversely before that. The variations of ftop and fbot
with respect to 1/Q are demonstrated in Figure 8.

f=(yvalue)⋅

2.45

Figure 8: Curves of ftop and fbot with respect to 1/Q = t/h. The curves show the influence
of variating t separately according to f2t∗.

For constant values of Q, f∗ are proportional to the fourth power value of
the thickness t4 and/or the fourth power value of the height h4. However, for
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high values of Q, f∗ are proportional to the cubic value of the thickness t3 and190

to the height h.

3.1.3. Maximal stress

The value of the maximal stress σmax is proportional to the Young’s modulus
E and inversely proportional to the square value of the length l2. The curves of
σmax with respect to Q (according to f3h) and with respect to 1/Q (according195

to f3t) are demonstrated in Figures 9 and 10 respectively.

=(yvalue)⋅

Figure 9: Curves of σmax with respect to Q = h/t. The curves show the influence of variating
h separately according to f3h.

=(yvalue)⋅

Figure 10: Curves of σmax with respect to 1/Q = t/h. The curves show the influence of
variating t separately according to f3t.

As the case of the snapping forces, Figure 9 shows that σmax increases mono-
tonically with respect to the height h for constant values of the other parameters
(E, t and l).

Analyzing the equation of σmax in (2) shows that the internal stress is max-200

imized for Q = 2.62 when variating the thickness t for constant values of the
height h. As demonstrated in Figure 10, the variations of t and σmax are pro-
portional for Q > 2.62, while they change inversely before that.
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For constant values of Q, σmax is related proportionally to the square value
of the thickness t2 and/or the square value of the height h2. However, for high205

values of Q (Q > 6), σmax is related proportionally to the thickness t and the
height h.

3.2. Stress and miniaturization limits

After defining the maximum value of the internal stress σmax, an important
requirement in the design of a preshaped curved beam is that σmax must remain
under a critical limit σcrit.

σmax < σcrit (4)

The critical limit σcrit can be determined according to the design preferences,
it can be the yield strength, the fatigue limit, the fracture limit, etc..210

Compliance with this criterion defines a critical limitation on the size of the
curved beam, mainly in terms of miniaturization. The length l is the main
dimension in terms of size. Miniaturizing l leads to higher values of the internal
stresses and to reduce the security margin before reaching the stress limits.
The expression of the minimal allowable length lmin before exceeding the stress215

limits can be concluded from (4).

lmin =

√
E

σcrit
· t · f4h(Q) =

√
E

σcrit
· h · f4t(1/Q) (5)

where f4h =
√

(f3h) and f4t =
√

(f3t).

The minimal allowable length lmin is higher when the material is more fragile
(σcrit ↘) and less flexible (E ↗). As for the dimensions, lmin is proportional to
l
√
σmax as can be concluded from (2) and (4). Therefore, the variation of lmin220

with respect to t, h and Q is proportional to the square root of the variation of
σmax with respect to t, h and Q. Idem, lmin is maximized for Q = 2.62 when
changing the value of the thickness t for constant values of the other parameters
(E, σcrit and h).

The curves of lmin with respect to Q (according to f4h) and with respect to225

1/Q (according to f4h) are demonstrated in Figures 11 and 12 respectively.
Thereafter, the minimal possible length lmin of a preshaped curved beam

can be determined directly from (5). However, the most miniature size is not
necessarily the optimal size that ensures all the design requirements. A design
methodology is presented in the next section that allows choosing the optimal230

dimensions and ensuring the design requirements of a preshaped curved beam.

3.3. Summary of the parameters variation influence

In light of the above, a variable scale influence is remarked between the mate-
rial and dimension parameters and the different characteristics of the preshaped
curved beam. Table 1 summarizes the effects of changing these parameters on235

the different characteristics d∗, f∗, σmax and lmin.
The arrow↗means that the concerned characteristic in the column increases

when increasing the variable in the row. The arrow ↘ means that it evolves in
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=(yvalue)⋅

Figure 11: Curve of lmin with respect to Q = h/t. The curve shows the influence of variating
h separately according to f4h.

=(yvalue)⋅

Figure 12: Curve of lmin with respect to 1/Q = t/h. The curve shows the influence of
variating t separately according to f4t.

the reverse direction. The power index means that the concerned characteristic
evolves proportionally to the index power (1/2,1,2,3,4) of the variable.240

The parameter ”Q const.” refers to the variation of h and t simultaneously
with a constant ratio Q. The parameter ”area” refers to the variation of h, t
and l proportionally. This parameter clarifies the influence of scaling of the area
of preshaped curved beams. In microfabrication, the device area determines the
number of devices per wafer. Thereby, the unit cost is related to the area of245

the device. The parameter ”volume” refers to the variation of b, h, t and l
proportionally. Besides, the depth of the wafer (or the device layer) is usually
equivalent to the value of b. Therefore, knowing the influence of variating the
volume is an economic indicator since it allows choosing the wafer and deter-
mining number of elements per wafer and the etching time which determine the250

fabrication cost.
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Table 1: Influence of the variation of the material and dimension parameters on the positions,
snapping forces, maximal stress and limit of miniaturization of the length.

Parameters d∗ f∗ σmax lmin

E — ↗1 ↗1 ↗ 1
2

σcrit — — — ↘ 1
2

b — ↗1 — —

l — ↘3 ↘2 —

t ∝ (f1t∗) ∝ (f2t∗) ∝ (f3t) ∝ (f4t)

h ∝ (f1h∗) ↗ (f2h∗) ↗ (f3h) ↗ (f4h)

Q const. ↗1 ↗4 ↗2 ↗1

area ↗1 ↗1 — ↗1

volume ↗1 ↗2 — ↗1

4. Design optimization methodology

In this section, a design optimization methodology of the preshaped curved
beam is presented. The miniaturization of the curved beam is concerned in
the design optimization while ensuring the required performance and a set of255

constraints. The performance of the curved beam bistable mechanism is charac-
terized by the stroke ds between the two stable positions and the holding force
fh at each stable position. The design constraints include a set of specifications
that are defined according to a design requirement and some limitations that
must be respected usually in any design.260

After defining the different constraints, the design optimization problem is
solved by a standard optimization algorithm (Sequential quadratic program-
ming) and by visual interpretation. The results are exactly the same in the
two cases which validates the calculation. However, the visual interpretation
methodology presented in this paper involves the identification of the set of265

all the possible dimensions which satisfy the required performance and ensure
the different constraints. This is not possible using the optimization algorithm
which provides only the optimal dimensions.

A set of specifications is chosen to be considered in the design procedure in
this paper. The choice of these specifications can be probably found in large270

number of design cases. The material and the depth b are predefined (generally
these variables are related to the choice of the wafers in microfabrication) and
stop blocks are used to define the stable positions.

As for the stop blocks, other specifications are defined relatively. A sym-
metrical snapping force behavior between the two stable sides is concerned.275

Thereby, the stable positions are held with the same holding force value. In
addition, the distance between the initial position and the first stop block must
be higher than a defined distance. This last condition is related to some geo-
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metrical limits since minimal space is required for the practical fabrication and
activation of stop blocks.280

Besides, two main limitations are considered: a minimal achievable fea-
ture size called “fabrication limit”and a maximal allowable stress called “stress
limit”. The design methodology, limitations and specifications are summarized
in the block diagram in Figure 13.

Design methodology

Force

Stroke

Specifications:
 - Material and Depth
 - Stop blocks:   - symmetrical behavior
                        - geometrical limitation{

Possible and 
optimal

dimensions

Limitations:
 - Fabrication limit
 - Stress limit

Figure 13: Block diagram representing the design methodology.

In the following, the different conditions on the dimensions are extracted.285

These conditions correspond to the required performance, specification and lim-
itations. Afterwards, the optimization problem for a specific design is defined
and solved. The field of possibilities for the dimensions reduces with each con-
dition which leads in a final stage to define the miniature dimensions of the
preshaped curved beam that allow reaching the desired performance with re-290

specting the different constraints.

4.1. Material

Often, the material is chosen regarding the fabrication process or defined in
the design specifications. The parameters that are related to the material are
the Young’s modulus E and the stress limit σcrit.295

In terms of the stress, materials with lower E/σcrit ratio lead to more im-
portant margin of dimensions according to the stress limits. In terms of the
snapping force, materials with higher values of E generate higher forces.

4.2. Stop blocks

In the design specifications, stop blocks are used to define the stable posi-300

tions. In this case, after fabrication, the curved beam is pushed manually beyond
the first stop block. After that, the position of the curved beam is bounded be-
tween the two stop blocks at ds1 and ds2. Figure 14 shows the stable positions
of the curved beam without and with the use of stop blocks.
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Stop block 1

Stop block 2

(a) (b)

ds1

ds2

d d

dstart

dend

Figure 14: The two stable positions of the curved beam at dstart and dend (a), the new stable
positions at ds1 and ds2 which are imposed by two stop blocks (b).

The stop blocks allow defining the stroke ds between the two stable positions305

and defining the holding forces fs1 and fs2 which are the snapping forces at these
positions. Figure 15 shows the main snapping points that are used in the design
of a preshaped curved beam.

Figure 15: Important snapping points for the design of preshaped curved beams.

The stop blocks positions at ds1 and ds2 are symmetric between the positive
and negative sides of the snapping forces (with respect to dm).310 

ds1 =
4

3
h− ds

2

ds2 =
4

3
h+

ds
2

(6)

In this context, the value of the holding force fh at the stop blocks (fh =
fs1 = fs2) is equivalent to:

fh =
8π2

3

Ebdst
3

l3
(7)

Considering that the snapping forces must remain linear during deflection
and symmetric with respect to dm, the maximal stroke that can be defined is
when the second stable position ds2 is at dbot. This is specially true since the
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distance between dbot and dm is lower than the distance between dtop and dm.
The first stable position ds1 is at ds1m in this case. The maximal stroke dsmax315

(dsmax = dbot − ds1m) is then expressed as follows:

dsmax = −16

27
h+

4π

3
h

√
1

6
+

16

81π2
− 1

Q2
(8)

In light of the above, the stroke ds is limited by the value of dsmax. This
leads to the following condition on h and t in order to ensure a linear behavior
of the force along the stroke ds.

h ≥ hds =
2ds
π2

+

√(
4

π4
+

27

8π2

)
d2s + 6t2 (9)

Another specification for the stop blocks is related to the first stop block
position at ds1. After fabrication, the preshaped curved beam is pushed beyond
the first stop block for activation. The first stop block is fabricated between the
as-fabricated and the as-activated position of the preshaped curved beam. A
minimal size of the first stop block in the design results in a minimal distance
ds1min for the first stop block position. This leads to the following condition:

ds1 ≥ ds1min (10)

Introducing the expression of ds1 in the last condition leads to a minimum320

on the value of h independently from the other dimensions.

h ≥ hmin =
3

4
ds1min +

3

8
ds (11)

4.3. Limitations

Two main limitations are considered in the design, the fabrication limit and
the stress limit. A minimal feature size is generally allowed in the fabrication
process. As the thickness is the smallest dimension, this leads to a condition on
the thickness that must be equivalent or higher than the minimal feature size
tmin.

t ≥ tmin (12)

Concerning the stress limit, the maximal stress must remain lower than a
critical limit (4). Besides, a minimum of the length l can be determined from
(7) to ensure the capacity of the curved beam to provide the holding force:325

l ≥ lmin = t 3

√
8π2

3

Ebds
fh

(13)

Comparing the value of lmin to provide fh in (13) with the value of lmin to
respect the stress limits in (5), leads to the following condition on the height h:

h ≤ hs =
t

c1

(
c2 +

√
(1 + c1)c22 + 12c1

)
(14)
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with c1 = 1 + 64
27π2 and c2 = 1− 3

√
3b2d2sσ

3
crit

π2Ef2
h

.

Equation 14 shows that Q = h/t must be lower than a determined value
in order to ensure the symmetric holding forces without exceeding the stress330

limits. This value is related to the performance parameters (ds and fh), the
material (E and σcrit) and the depth b. Calling α this higher limit on Q, the
value of α is equivalent to the following:

α =
1

c1

(
c2 +

√
(1 + c1)c22 + 12c1

)
(15)

Later in Figure 16, α represents the slope of the curve line hs related to the
condition in (14).335

4.4. Depth

In microfabrication, MEMS components including preshaped curved beams
are fabricated in wafer plane by etching the wafer through its thickness across
a lithographic pattern. Hence, the depth b of the curved beam is generally
equivalent to the thickness of the wafer (or the device layer). This dimension340

has an influence on the value of the snapping force produced by the beam (7)
while no influence is noticed on the internal stresses. It can be defined to adjust
the value of the forces in cases that the wafer is not chosen previously.

The design in this paper is based on predefining the depth before choosing
the other dimensions. However, if the depth can be variable depending on the345

fabrication technology, then it can be changed to go further in miniaturization.
As can be concluded from (15), smaller values of the depth b lead to reducing

the slope α of hs. The value of b that leads to a slope α of hs is independent
from the other dimensions as follows:

b =
fh

dsσcrit

√√√√ E

σcrit

π2

3

(
1 + α+ α

√
64

27π2
+ 2− 12

α2

)3

(16)

However, the depth b must be higher than a minimal limit in order to provide350

the required performance in terms of the holding force and the stroke. Other-
wise, for lower values of b, no possible dimensions allows the design requirements
without exceeding the stress limits.

The holding force can be ensured by respecting the condition on h which
must be lower than hs as clarified in (14). Idem, the stroke can be ensured by355

respecting the condition on h which must be higher than hds as clarified in (9).
Thereby, hs must be higher than hds in order to ensure the existence of possible
dimensions.

The curve of hds with respect to thickness t tends asymptotically towards
a slope of

√
6 for high values of t. Hence, the slope α of hs must be higher360

than
√

6 in order to ensure the existence of possible dimensions that satisfy the
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different constraints and the required performance (see later Figure 16). This
leads to the following condition on b:

b > bmin = 18.19
fh

dsσcrit

√
E

σcrit
(17)

The minimal limit bmin of b is dependent only on the material properties
and performance parameters. Equation 17 can used to verify the capacity to365

fabricate operational preshaped curved beams with required performance on a
wafer with given material and dimensions.

Noting that for b values very close to bmin, high values of the other dimen-
sions are required to ensure the required performance and constraints. If the
miniaturization is concerned, the depth b must be high enough to be able to370

consider the minimum of the other dimensions.

4.5. Design optimization

As the miniature dimensions of the preshaped curved beam are searched
in this paper, the objective function in the design optimization is to minimize
the volume. The volume of the cube containing the curved beam in its initial375

position is considered in the optimization problem (volume= bl(h + t
2 )). The

optimization problem is summarized by the following:

minimize
b,t,h,l

volume

subject to



t ≥ tmin (fabrication limit)
h ≤ hs (stress limit)

h ≥ hmin (geometrical constraint)
h ≥ hds (provide ds)
l ≥ lmin (provide fh)

b constant (wafer size)
material (wafer material)

(18)

The miniaturization problem in (18) is solved by two methods. The first one
is numerical using an optimization algorithm. The sqp (sequential quadratic
programming) optimization algorithm available on MATLAB showed to be ef-380

ficient to solve the optimization problem. The other method is by visual inter-
pretation of the different conditions presented in (18). The visual interpretation
method is detailed in the following.

Considering a predefined value of the depth b, it can be noticed that the
condition on the length (lmin (13)) is proportional to the thickness t, while385

the other conditions on the thickness t and the height h (hds (9), hmin (11),
tmin (12) and hs (14)) are independent from the length l. This means that
miniaturizing t and h separately leads necessarily to the miniaturization of l
and in results of the total volume which evolves monotonically with respect to
b, t, h and l.390

The different conditions on t and h can be visualized in a 2D plot which shows
clearly the range of possible dimensions for t and h. The optimal dimensions in
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this range are the most miniature ones. Taking the following example, choosing a
wafer with silicon material (E = 169GPa, σcrit = 0.5GPa) and a thickness (b =
100 µm), considering minimal feature size (tmin = 10 µm) defining ds1min = 45395

µm and setting the performance parameters (ds = 30 µm and fh = 0.5 mN).
Figure 16 shows the field of possible dimensions of t and h. The dimensions in
the white part allow reaching the desired performance and respecting limitations
and specifications.

Figure 16: Field of possibilities for the thickness and the height. The possible dimensions are
in the white part.

The points 1, 2, 3, 4, and 5 are the intersection between curves (hmin and400

tmin), (hs and tmin), (hds and tmin), (hs and hmin) and (hs and hds) respec-
tively. The most miniature dimensions in Figure 16 correspond to point 1
(t = 10µm, h = 45µm). Thereby, the first stop block position is at ds1 = 45µm
and the second one is at ds2 = 75µm. The miniature length corresponding to
point 1 is calculated from (13), it is equivalent to l = 2.988mm. In result, all405

the dimensions are obtained. Besides, it is noticed that these optimal dimen-
sions are the same obtained with sqp optimization algorithm on Matlab. Noting
that the optimization algorithm on Matlab converges to the same set of optimal
dimensions. This may return to the convex nature of the problem where only
one optimal solution (local and global) exists.410

Nevertheless, variating the design inputs and constraints, the relative posi-
tions of the points 1-5 in Figure 16 can change. The points 1-5 may become
inside or outside the zone of possible dimensions accordingly. Depending on
the different cases clarified in Table 2, the resulting most miniature dimensions
correspond to one of the points 1,3,4 or 5. h1, ..., h5 denote the corresponding415

height of points 1, ..., 5 respectively.
The different cases in Table 2 could be reached by variating fh and ds.

Figures 17, 18 and 19 show the optimal dimensions (t, h, and l respectively)
obtained while variating fh and ds.

Every point in the curves in Figures 17, 18 and 19 is a result of an op-420

timization problem. The results calculated numerically with sqp optimization
algorithm on Matlab and those calculated with an algorithm based on the visual
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Table 2: Different cases for the miniature dimensions of t and h.
Cases Optimal point

Case 1 h2 < h3 & h1 < h5 5
Case 2 h1 < h3 < h2 3
Case 3 h3 < h1 < h2 1
Case 4 h1 > h2 & h1 > h5 4

Case 5 α <
√

6 no solution
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Figure 17: Optimal thickness dimension obtained by optimization algorithm and visual inter-
pretation with variating fh and ds.
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Figure 18: Optimal height dimension obtained by optimization algorithm and visual interpre-
tation with variating fh and ds.

methodology are exactly the same which validates the reasoning and calculation.
The curve hds in Figure 16 is dependent on ds and independent from fh.

Three values of ds are considered while variating fh in the optimization results425

shown in Figures 17, 18 and 19. For ds = 30µm and ds = 45µm, the curve hds
remains below point 1 (h3 < h1), while for higher values of ds (ds = 60µm) the
curve hds becomes higher than point 1 (h3 > h1).

At low values of fh, the curve hs is higher than point 1 (h2 > h1) and point
3 (h3 > h1). Thus the optimal dimensions are at point 1 for ds = 30µm and430

ds = 45µm, while it is at point 3 for ds = 60µm.

19



0

1

2

3

4

5

6

7

8

9

0 0.5 1 1.5 2 2.5 3

fh(mN)

l(mm)

ds=45µm
ds=60µm

ds=30µm

ds=45µm
ds=30µm

ds=60µm op
ti
m
iz
.
vi
su
al

Figure 19: Optimal length dimension obtained by optimization algorithm and visual interpre-
tation with variating fh and ds.

While increasing fh, the slope α of hs decreases and the curve hs becomes
below point 1 (h2 < h1) and point 3 (h3 < h1) at certain limits. For ds = 30µm
and ds = 45µm, at higher values of fh, the optimal point becomes at point 4
and afterwards at point 5. For ds = 60µm, the optimal point becomes at point435

5 for high values of fh. The transition between the different cases of optimal
points can be noticed in the change of slope of curves in Figures 17, 18 and 19.

Furthermore, for higher values of fh, the slope α of hs becomes closer to
√

6
and the different dimensions become extensively high. When α is below

√
6,

no possible dimensions can satisfy the required performance and constraints.440

Normally, higher values of the depth b must be considered in these cases in
order to increase α and decrease the different dimensions. If so, it is preferable
to choose the depth b in a way that the curve hs is close to point 1 or point 3
(depending on the cases, h3 > h1 or h3 < h1). In this way, the length which
is the main dimension in terms of miniaturization can reach its most miniature445

possible value as shown in Figure 19.
The design methodology presented in this paper is proposed for a design

with some specific constraints. These constraints may vary from one design to
another. The same methodology can be adopted for other designs with other
specifications, where the corresponding conditions must be extracted firstly and450

the range of possible dimensions are defined subsequently. The design methodol-
ogy can be changed to suit each design requirement based on the design elements
provided in this paper.

5. Conclusion

The design of a preshaped curved beam used as a bistable mechanism in455

MEMS applications was investigated in this paper. After introducing the model,
the influence of variating the different parameters (material properties and di-
mensions) on the behavior of the preshaped curved beam was analyzed. The
limit of miniaturization of the beam related to the stress limit was also identi-
fied. A design optimization methodology was then proposed. After defining the460
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different constraints, the miniature dimensions are searched either numerically
using an optimization algorithm or either by visual interpretation methodology.
This methodology allows identifying the field of possible dimensions that allows
a desired performance and respecting the design specifications and limitations.
This is possible thanks to the explicit modeling expressions obtained from the465

modeling with high modes of buckling, which showed high accordance with FEM
simulations and experiments. Afterwards, the most miniature dimensions are
identified among the field of possible dimensions. The results in different cases
of optimization problems showed to be the same obtained using the optimization
algorithm and the proposed methodology which validates the reasoning and the470

calculation.
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Université Pierre et Marie Curie (2013).
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[23] M. Vangbo, An analytical analysis of a compressed bistable buckled beam
69 (3) (1998) 212216. doi:10.1016/S0924-4247(98)00097-1.540

23

http://dx.doi.org/10.1016/S0924-4247(98)00097-1

	Introduction
	Model
	Parameters variation influence on the mechanical characteristics
	Positions, forces and stresses
	Positions
	Snapping forces
	Maximal stress

	Stress and miniaturization limits
	Summary of the parameters variation influence

	Design optimization methodology
	Material
	Stop blocks
	Limitations
	Depth
	Design optimization

	Conclusion

