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Abstract—A recent large-scale study revealed that the uncor-

rectable bit error rates in data center solid-sate drives (SSDs) 

may fall far below the JEDEC standard recommendations. 

Here, a technique is proposed to improve the tolerated raw bit 

error rate (RBER) based on the observation that (a) a small SSD 

ratio may have a much higher RBER than the rest and (b) the 

RBER is dominated by the retention error rate. Instead of em-

ploying stronger but costly error-correcting codes an approach 

is used to estimate the remaining retention time, i.e., the reliable 

data storage time, of flash memory pages. This estimation can 

be performed each time a memory page is read based on the 

number of detected retention errors and the elapsed time since 

data was programmed. The fact that the estimated remaining 

retention time is smaller than a maximum time interval before 

the next read and check operation is an indication that data 

needs to be refreshed. It is estimated that the tolerated RBER 

can be increased by up to 35× over a storage period of 3 years if 

the stored data are checked on a monthly basis and refreshed 

only if necessary. The proposed technique has the ability to 

adapt the average time between refresh operations to the actual 

RBER. Maximum refresh time reductions of about 12x are re-

ported as compared to systematic refresh schemes.  

Keywords—NAND flash; SSD; reliability; adaptability; data 

retention; bit error rate 

I. INTRODUCTION 

Solid-state drives (SSDs) based on NAND flash memories 
provide an attractive storage solution as they are faster and 
less power hungry than traditional hard-disc drives [13]. Un-
fortunately, the continuous technology scaling and emergence 
of flash memories with multilevel cells (MLC) brought not 
only cost per gigabit reductions but also reliability degrada-
tions. For instance, the cumulative number of program/erase 
(P/E) cycles that can be sustained by a flash memory cell, i.e., 
the cycling endurance, is decreased by an order of magnitude 
each time the cell storage capacity is enhanced with an addi-
tional bit [5][13][19]. What is more, a recent large-scale study 
revealed that the uncorrectable bit error rate (UBER) of data 
center SSDs can significantly exceed the JEDEC standard rec-
ommendations [12]. The reported UBER values are between 
10-11 and 10-9 while client and enterprise class SSDs are re-
quired to provide an UBER below 10-15 and 10-16, respectively 

[9]. 

An efficient approach to improve UBER is to use stronger 
error-correcting codes (ECCs). Unfortunately, powerful 
ECCs come with important storage and latency overheads. For 
instance, the storage overhead of a BCH code increases almost 
linearly with the number of correctable errors [7]. 

The need for strong ECCs may be reduced by containing 
the raw bit error rate (RBER). Besides technological fixes or 
solutions based on improved read and write algorithms [1][4] 
[13], the RBER can be tempered if the stored data are period-
ically refreshed [2][13][14][17]. A refresh operation can be 
executed in-place by injecting only the missing amount of 
charge into the floating gate of the flash memory cells or by 
relocating the data to a different physical location [2][3]. Re-
location operations may result in significant P/E cycle over-
head especially in the case of read-intensive applications for 
which the data relocation frequency may become larger than 
the functional update rate [2]. A way to reduce this overhead 
is to adapt the relocation rate to the number of P/E cycles en-
dured by each flash memory block [2][3]. 

Existent refresh schemes are based on worst-case scenar-
ios, oblivious to intra- and inter-device variations, which may 
lead to unnecessary overheads with respect to response la-
tency, dissipated power and P/E cycles. For example, the 
large-scale study reported in [12] unveiled that only a small 
number of SSDs may contribute to the overall UBER degra-
dation. 

This work proposes an approach to avoid the utilization of 
strong ECCs or worst-case refresh frequencies for dealing 
with a whole population of NAND flash memories or SSDs 
that may contain some error-prone units. The idea is to exploit 
the fact that the retention error rate dominates the RBER in 
NAND flash memories [3] and take advantage of flash read 
operations to estimate the remaining reliable retention time for 
each memory page. Such an estimation can be done based on 
the detected number of retention errors and the retention age, 
i.e., the elapsed time since data was programmed. A valid 
memory page needs to be refreshed only when its estimated 
remaining retention time is smaller than the time left to the 
next read and check operation. 
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Such a technique is effective when a maximum time inter-
val is imposed between consecutive read and check operations 
of any memory page. For example, the tolerated RBER can be 
increased by up to 35× over a storage period of 3 years if one 
makes sure that the stored data are checked at least once in a 
month. The resulting data refresh frequency is not necessarily 
correlated with the data check frequency since it depends on 
the actual RBER. It is shown that the refresh probability is 
negligible at RBERs that can be managed by the available 
ECC alone and starts to increase only at larger RBERs. Com-
pared to systematic refresh schemes able to ensure the same 
protection level, flash refresh time reductions of about 12× 
have been simulated. 

The solution proposed here is orthogonal to other tech-
niques used to reduce the number of retention errors based on 
the utilization of read reference voltages which are aware of 
(a) the data retention age [4] or (b) the number of bits vulner-
able to retention errors [11]. 

Types of storage errors that may affect NAND flash mem-
ories are analyzed in Section II. The proposed refresh scheme 
based on the estimation of the remaining retention time of 
flash memory pages is presented in Section III. A method to 
reduce the number of check operations is proposed in Section 
IV. Simulation results concerning the improvement of the tol-
erated RBER and the reduction of the refresh frequency are 
reported in Section V. Concluding remarks are drawn in Sec-
tion VI. 

II. TYPICAL STORAGE ERRORS IN NAND FLASH MEMORIES 

A flash memory cell consists of a MOS transistor with a 
supplementary floating gate or a charge trap layer embedded 
in the dielectric between channel and control gate. Data are 
programmed via the injection/erasure of electric charge 
into/from the floating gate or the charge trap layer. The thresh-
old voltage distribution created by the injected charge into the 
floating gate of an MLC flash memory is illustrated in Fig. 1 
[13]. In a NAND flash memory, between 32 and 64 memory 
cells are connected together to form a string. Thousands of 
strings are assembled in a storage array called block and few 
thousands of blocks may be contained in a flash memory chip. 
In a block, memory cells on the same string are accessed with 
the help of different word lines. The bits stored in memory 
cells accessed by the same word line are logically grouped into 
one or several pages. 

A NAND flash memory can be affected by different types 
of storage errors like retention errors, write errors, also called 
program-interference or over-programming errors, read- 
disturb errors and erase errors. Retention errors affect the abil-
ity of a memory to keep the stored information over a required 
period of time. As shown in Fig. 2, retention errors appear due 
to a drift to the left of the threshold voltage distribution and 
the resulting crossing of the reference values used during read 
operations. For retention ages larger than one month, the re-
tention error rate largely dominates the other error rates [3].  

The remaining error types are characterised by a drift to 
 the right of the threshold voltage distribution. Write errors 

are induced by parasitic capacitance-coupling affecting 
memory cells on a certain word line subsequent to a program 
operation on a neighbour word line. Once a memory block is 
fully programmed, the number of write errors does not in-
crease with the retention age. In NAND flash memories, the 
write errors have the second largest occurrence rate [3].  

Erase errors are the consequence of an erase operation that 
fails to reset all cells in a memory block to the erased state [3]. 
Upon the occurrence of an erase error an entire block may be 
marked as bad and discarded [13]. 

A read-disturb error occurs when the content of a memory 
cell is corrupted due to repeated read operations of cells on the 
same string. In the following, read-disturb errors will be ne-
glected due to their very small occurrence rate [3]. 

Retention errors will be considered as the only storage er-
rors whose rate may increase with the retention age once a 
memory bloc has been programmed. It will be assumed that 
the retention RBER (𝑅𝐵𝐸𝑅𝑅𝐸𝑇), i.e., the probability that a vul-
nerable bit is affected by a retention error, is given by the fol-
lowing expression: 

𝑅𝐵𝐸𝑅𝑅𝐸𝑇(𝑡𝐴𝐺𝐸) = 1 − 𝑒−𝜆𝑡𝐴𝐺𝐸      (1) 

where 𝑡𝐴𝐺𝐸 is the retention age. The parameter 𝜆 is called fail-
ure rate and may vary from one SSD or flash memory to an-
other [12][15], between the pages of the same memory block 
[3] and with the number of P/E cycles endured by a memory 
block [2][3]. This law is in agreement with reported results 
[15] and our own experience. The law also has the properties 
of a cumulative distribution function, i.e., 𝑅𝐵𝐸𝑅𝑅𝐸𝑇(0) = 0 
and 𝑅𝐵𝐸𝑅𝑅𝐸𝑇(∞) = 1.  

Retention errors can be easily distinguished from other er-
ror types. Typically, each read operation is followed by an er-
ror correction step during which the erroneous bits are identi-
fied with the help of an ECC. The error-correcting process al-
lows to infer the polarity of each error, i.e., the difference be-
tween the corrected and the initial values of the erroneous bit. 
The error polarity allows to identify the error type if one as-
sumes that errors can only result from threshold voltage tran-
sitions between neighbouring states.   

 

Fig. 1  Threshold voltage distribution and example of logical state 
encoding for a 2-bit MLC flash memory. 
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Fig. 2  Threshold voltage distribution of the logical states in a 2-bit MLC 

flash memory affected by (a) retention errors, (b) erase errors and 

(c) write and read-disturb errors. 

Table I gives the retention error fingerprints for the MLC 
considered in Fig. 2. For flash memories with 1 bit per cell 
(SLC), the retention error fingerprint is given by the first line 
in Table I. 

TABLE I.  RETENTION ERROR FINGERPRINTS FOR THE MLC FLASH 

MEMORY CELL CONSIDERED IN FIG. 2. 

Bits in the 

same cell 

Read 

value 

Corrected 

 value 

Value of the 

other bit  

First bit 1 0 - 

Second bit 1 0 1 

Second bit 0 1 0 

III. SELECTIVE REFRESH BASED ON A LINEAR 

APPROXIMATION OF THE RETENTION RBER  

Here, an approach is proposed to deal with retention RBER 
variations in NAND flash memories beyond the error protec-
tion provided by an ECC. The main idea is to take advantage 
of read operations of any valid flash memory page to estimate 
its left retention time 𝑡𝐿𝐸𝐹𝑇  i.e. the storage time before the 
UBER target is exceeded [9]. Assuming a maximum time pe-
riod 𝑇𝐶𝐻𝐸𝐶𝐾  between two consecutive read operations of any 
page, the read data has to be relocated or refreshed if 𝑡𝐿𝐸𝐹𝑇  is 
smaller than 𝑇𝐶𝐻𝐸𝐶𝐾 . 

The proposed 𝑡𝐿𝐸𝐹𝑇 estimation is based on the observation 
that (1) can be approximated by the linear relation (2) since, 
in concrete situations, the product 𝜆𝑡𝐴𝐺𝐸  is much smaller than 
1. For instance, if one considers an RBER equal to 10-3, which 
is already a very large value, 𝜆𝑡𝐴𝐺𝐸  is equal to 10-3 with a dif-

ference of about 510-7 between (1) and (2). Smaller and more 
realistic RBER values correspond to smaller 𝜆𝑡𝐴𝐺𝐸 values and 
the relative error induced by (2) becomes much smaller. 

𝑅𝐵𝐸𝑅𝑅𝐸𝑇(𝑡𝐴𝐺𝐸) ≅ 𝜆𝑡𝐴𝐺𝐸            (2) 

Taking into account that RBER represents the number of 
retention errors divided by the number of vulnerable bits and 
neglecting the statistical variations that may affect the number 
of retention errors, one obtains: 

𝑀−𝑛¬𝑅𝐸𝑇

𝑛𝑅𝐸𝑇
=

𝑡𝐴𝐺𝐸+𝑡𝐿𝐸𝐹𝑇

𝑡𝐴𝐺𝐸
              (3) 

where: 

• 𝑛𝑅𝐸𝑇 represents the number of retention errors at the re-
tention age 𝑡𝐴𝐺𝐸 . 

• 𝑛𝑅𝐸𝑇  stands for the number of non-retention errors that 
may appear during the programming of the block where 
the considered memory page is stored, 

• M is an a priori known parameter and refers to the max-
imum number of errors that can be corrected with the 
available ECC, 

• 𝑀 − 𝑛𝑅𝐸𝑇  stands for the maximum number of retention 
errors that can be corrected in the considered memory 
page. 

Based on (3), 𝑡𝐿𝐸𝐹𝑇 can be estimated as follows: 

𝑡𝐿𝐸𝐹𝑇 = 𝛼𝐷𝐴𝑀𝑃𝑡𝐴𝐺𝐸 (
𝑀−𝑛¬𝑅𝐸𝑇

𝑛𝑅𝐸𝑇
− 1)     (4) 

where the damp factor 𝛼𝐷𝐴𝑀𝑃 is used to take into account sta-
tistical variations that may affect the number of retention er-
rors. Here, 𝛼𝐷𝐴𝑀𝑃 values between 0.005 and 0.1 are used. In 
the absence of retention errors, i.e., 𝑛𝑅𝐸𝑇 = 0, 𝑡𝐿𝐸𝐹𝑇 is consid-
ered to be equal to the target retention time.  

Neither the parameter 𝜆 nor the number of bits vulnerable 
to retention errors in the considered page does come out in the 
final expression and they do not need to be estimated in order 
to get 𝑡𝐿𝐸𝐹𝑇. 
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The variables 𝑛𝑅𝐸𝑇 and 𝑛𝑅𝐸𝑇  can be calculated with the 
help of the ECC decoder. For example, the decoding scheme 
of a BCH ECC is usually concluded by the execution of a so-
called Chien algorithm that checks each bit position for a po-
tential error [7]. When an error location is found, a simple ver-
ification of the conditions in Table I allows to identify a reten-
tion or non-retention error. Two specially devoted counters 
can be used to keep track of 𝑛𝑅𝐸𝑇 and 𝑛𝑅𝐸𝑇 . 

The retention age 𝑡𝐴𝐺𝐸 can be calculated as the difference 
between a timestamp associated to the page being accessed 
and the current state of the timer used to provide timestamps 
[6]. A single timestamp may be used to characterize the pro-
graming time of all pages in a flash memory block [18]. The 
resulting storage overhead of the timestamp table is signifi-
cantly smaller than in the case of other metadata structures 
such as the remapping table of the flash translation layer [18]. 

The necessary check operations that should follow a page 
read operation are formalized in Algorithm 1 described below. 
A maximum time interval 𝑇𝐶𝐻𝐸𝐶𝐾  between consecutive check 
operations can be imposed via periodic scrubbing [16]. As it 
will be shown later, the tolerated RBER can be significantly 
improved when 𝑇𝐶𝐻𝐸𝐶𝐾  is equal to one or a few months. 

 

Algorithm 1:   Optimization of flash page refresh based on linear     
approximation of RBERRET  

Require: Read data from a flash memory page that has been de-
coded and corrected with the help of an ECC with known 
error correction strength 

Require: nRET, the number of already existing retention errors  

Require: nRET, the number of already existing non-retention er-
rors 

Require: TCHECK, the maximum time interval between consecutive 
check operations 

1 Calculate the retention age tAGE of the accessed page 

2 
 

Get the remaining retention time tLEFT as a function of tAGE, nRET 

and nRET such that the UBER target is still preserved  

3 if tLEFT < TCHECK then 

4 Refresh the considered page 

5 end 

 
The remaining retention time 𝑡𝐿𝐸𝐹𝑇  can be computed on-

line or off-line for all possible 𝑛𝑅𝐸𝑇 and 𝑛𝑅𝐸𝑇  combinations. 
In the latter case, the storage overhead can be reduced by ob-
serving that 𝑡𝐿𝐸𝐹𝑇 decreases with 𝑛𝑅𝐸𝑇 and one only needs to 
store the largest 𝑛𝑅𝐸𝑇 value with 𝑡𝐿𝐸𝐹𝑇 larger than 𝑇𝐶𝐻𝐸𝐶𝐾 . In 
such a case, the line 3 in Algorithm 1 may be implemented as 
the comparison between the maximum tolerated 𝑛𝑅𝐸𝑇 and the 
measured 𝑛𝑅𝐸𝑇 . The cost of storing the maximum tolerated 
𝑛𝑅𝐸𝑇 does not depend on the storage capacity of the protected 
SSD or flash memory system. This cost increases proportion-
ally with 1/𝑇𝐶𝐻𝐸𝐶𝐾  and with the maximum number of errors 

that can be corrected by the available ECC. For example, this 
cost amounts to a few hundred bits with an ECC able to cor-
rect up to 10 errors per page and 𝑇𝐶𝐻𝐸𝐶𝐾  equal to 1 month. 

Refresh operations have a negative impact on the average 
response time of a flash memory system or SSD. It has been 
reported that this impact can be reduced by increasing the re-
fresh interruption granularity [17]. The performance overhead 
of the proposed refresh scheme is expected to be lower since 
not all check operations have to be followed by a refresh op-
eration. Furthermore, a method to decrease the number of 
check operations is proposed in the following section. 

IV.  REDUCTION OF THE NUMBER OF CHECK OPERATIONS  

Check operations as described in Algorithm 1 can be im-
posed periodically via warnings triggered by a conventional 
or temperature aware timer [18]. Since such checks can also 
be associated to functional read operations, frequently ac-
cessed pages may be skipped during the periodical checks 
triggered by the timer. 

This can be achieved with the help of one flag bit per flash 
memory page that indicates whether the page has already been 
checked. The page flag is set to 0 each time a page is read, 
programmed or refreshed as illustrated in Fig. 3. After the first 
subsequent warning, the page does not need to be checked, 
only its flag is set to 1. After a second warning, the page has 
to be checked and its flag set to 0 only if the page is still valid 
and if no functional read operation occurred between the first 
and second warnings. Otherwise, only the page flag will be set 
to 1. Invalid pages can be neglected and the warnings need to 
be triggered with a period 𝑇𝑊𝐴𝑅𝑁𝐼𝑁𝐺  which is equal to 
𝑇𝐶𝐻𝐸𝐶𝐾/2. 

In order to improve performance with the proposed 
method, the page flags have to be kept in the RAM memory 
of the SSD controller and not in the relatively slower flash 
memory. This method has no storage overhead since the page 
flags do not need to be stored but only initialized to 1 at system 
start-up. 

 

Fig. 3  Management of page flags 𝐹𝑃𝐴𝐺𝐸  used to reduce the number of 

page read and checks as decribed in Algorithm 1. 

V. SIMULATION RESULTS 

In order to assess the effectiveness of the proposed ap-
proach, we first evaluated the increase of the tolerated 
𝑅𝐵𝐸𝑅𝑅𝐸𝑇  with respect to the case when the stored data is not 
refreshed. We considered data characterized by a small func- 
tional update frequency and, implicitly, very large retention 
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age 𝑡𝐴𝐺𝐸. Such data may contain user files, executable files 
and operating system files. 

The obtained results are reported in Table II for different 
numbers of correctable errors per page. The tolerated 
𝑅𝐵𝐸𝑅𝑅𝐸𝑇  values are compliant with the requirement to keep 
UBER below 10-16 [9]. UBER calculation details are given in 
Annex I and Annex II. It should be noted that UBER is a bit-
level observable that only depends on 𝑅𝐵𝐸𝑅𝑅𝐸𝑇 , page size, 
ECC strength, refresh frequency and numbers of non-reten-
tion errors and bits vulnerable to retention errors in a page. 
The impact of the page size is not investigated since it affects 
UBER only as a scaling factor. Only 2KB pages have been 
considered in the most unfavourable case when all bits are vul-
nerable to retention errors.  

As illustrated in Table II, the tolerated 𝑅𝐵𝐸𝑅𝑅𝐸𝑇  is in-
creased by the reduction of 𝑇𝐶𝐻𝐸𝐶𝐾 , i.e., the maximum time 
interval between two successive check operations of flash 
memory pages. When  𝑇𝐶𝐻𝐸𝐶𝐾  is equal to 1 month, the ob-
tained improvement factors are between 32× and 35×. Better 
results should be expected for lower  𝑇𝐶𝐻𝐸𝐶𝐾  values. Moreo-
ver, the maximum tolerated 𝑅𝐵𝐸𝑅𝑅𝐸𝑇  values and resulting 
improvement factors are pessimistic as check operations trig-
gered by functional read operations are not taken into account. 

A 𝑇𝐶𝐻𝐸𝐶𝐾  equal to 1 month may have a larger impact on 
the tolerated 𝑅𝐵𝐸𝑅𝑅𝐸𝑇  than a multiplication by four of the 
number of correctable errors. This can be observed by com-
paring the 1 month column for 10 correctable errors with the 
no check column for 40 correctable errors. A 𝑇𝐶𝐻𝐸𝐶𝐾  value 
equal to 6 months may provide a larger improvement of the 
tolerated 𝑅𝐵𝐸𝑅𝑅𝐸𝑇  than a duplication of the number of cor-
rectable errors. This can be verified by comparing the 6 
months column for 20 correctable errors with the no check col-
umn for 40 correctable errors. For BCH codes, the increase of 
the number of correctable errors from 20 to 40 may augment 
the storage overhead by 75%. This overhead may become 
230% when the number of correctable errors is changed from 
10 to 40. 

The results reported here can only be expected for systems 
 

with downtimes much shorter than the imposed check period 
𝑇𝐶𝐻𝐸𝐶𝐾 . This is true for enterprise class SSDs with limited 
outage periods, i.e., maximum few hours per year [19]. When 
longer outage periods are expected, one has to consider the 
maximum downtime 𝑇𝑃𝑂𝑊𝐸𝑅−𝑂𝐹𝐹  and modify the if condition 
in Algorithm 1 such that a data refresh operation is initiated if 
𝑡𝐿𝐸𝐹𝑇 < 𝑇𝐶𝐻𝐸𝐶𝐾 + 𝑇𝑃𝑂𝑊𝐸𝑅−𝑂𝐹𝐹 . In such a case, the benefit 
brought by the proposed approach can be calculated by con-
sidering an imposed check period equal to 
𝑇𝐶𝐻𝐸𝐶𝐾 + 𝑇𝑃𝑂𝑊𝐸𝑅−𝑂𝐹𝐹 .  For instance, if both 𝑇𝐶𝐻𝐸𝐶𝐾  and 
𝑇𝑃𝑂𝑊𝐸𝑅−𝑂𝐹𝐹  are 1 month, the improvements obtained with 
our approach are given by the 2 months column in Table II. 
The case when 𝑇𝑃𝑂𝑊𝐸𝑅−𝑂𝐹𝐹  is equal to 3 months corresponds 
to a JEDEC requirement for enterprise class SSDs [9]. In 
Table II, the 4 months column gives worst-case improvement 
factors larger than 8× for JEDEC compliant enterprise class 
SSDs in which data are checked every month. 

The reported improvements of the tolerated 𝑅𝐵𝐸𝑅𝑅𝐸𝑇   
require a number of refresh operations that may be greatly 
reduced as compared to a conventional scheme with system-
atic refresh operations [2][3]. As illustrated in Fig. 4, when the 
check period is 1 month, the average time between refresh op-
erations may be significantly improved as compared to the 
case when the data are systematically refreshed, not to speak 
of the difficulty to infer an ideal refresh period at run-time for 
a scheme with systematic refresh operations. 

A larger average time between refresh operations enables 
a reduction of the time during which the flash chips are ac-
cessed for refresh operations. Compared to a systematic re-
fresh scheme with fixed refresh frequency, the reduction of 
the time spent for refresh-triggered read and write operations 
can be expressed as follows: 

𝑇𝑆𝑌𝑆_𝑅𝐸𝐹𝑅𝐸𝑆𝐻

𝑇𝑅𝐸𝐹𝑅𝐸𝑆𝐻
=

(𝜏𝑊𝑅+𝜏𝑅𝐷) 𝐷𝑆𝑌𝑆_𝑅𝐸𝐹𝑅𝐸𝑆𝐻  𝑓𝑆𝑌𝑆_𝑅𝐸𝐹𝑅𝐸𝑆𝐻

𝜏𝑅𝐷 𝐷𝐶𝐻𝐸𝐶𝐾 𝑓𝐶𝐻𝐸𝐶𝐾+𝜏𝑊𝑅 𝐷𝑅𝐸𝐹𝑅𝐸𝑆𝐻 𝑓𝑅𝐸𝐹𝑅𝐸𝑆𝐻
   

where: 

• 𝑇𝑅𝐸𝐹𝑅𝐸𝑆𝐻  and 𝑇𝑆𝑌𝑆_𝑅𝐸𝐹𝑅𝐸𝑆𝐻  represent the overall times 

spent for refresh-triggered read and write operations 
with the proposed and systematic refresh schemes,

TABLE II.     IMPROVEMENT OF THE MAXIMUM RETENTION RBER THAT CAN BE TOLERATED IN A 2KB FLASH MEMORY PAGE. 
THE REPORTED RBER FIGURES CORRESPOND TO A TARGET RETENTION TIME OF 36 MONTHS. 
IT IS CONSIDERED THAT ALL BITS IN A PAGE ARE VULNERABLE TO RETENTION ERRORS AND THAT THERE ARE 0 NON-
RETENTION ERRORS. 

Number of  

correctable 

errors 

per page 

Maximum tolerated RBERRET with UBER ≤ 10-16 Improvement factor with respect to no refresh 

no check 

check period (𝑻𝑪𝑯𝑬𝑪𝑲) check period (𝑻𝑪𝑯𝑬𝑪𝑲) 

6 months 4 months 3 months 2 months 1 month 6 months 4 months 3 months 2 months 1 month 

10 2.6410-5 1.4410-4 2.1410-4 2.8510-4 4.2610-4 8.5210-4 5.5 8.1 10.8 16.1 32.3 

20 1.6510-4 9.6210-4 1.4210-3 1.8910-3 2.8310-3 5.6510-3 5.8 8.6 11.5 17.2 34.2 

30 3.8410-4 2.2110-3 3.3210-3 4.4210-3 6.6310-3 1.3210-2 5.8 8.6 11.5 17.3 34.4 

40 6.5610-4 3.8910-3 5.8210-3 7.7610-3 1.1610-2 2.3110-2 5.9 8.9 11.8 17.7 35.2 
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Fig. 4  Average time between refresh operations with the proposed 

scheme and an ideal systematic refresh scheme with the refresh fre-

quency adapted to the actual RBER. We considered flash memory 
pages with 2KB bits and up to 40 correctable errors. Each colored 

curve stops at the maximum retention RBER that can be tolerated. 

• 𝜏𝑊𝑅  and 𝜏𝑅𝐷  stand for the latencies of page write and 
read operations, 

• 𝑓𝑆𝑌𝑆_𝑅𝐸𝐹𝑅𝐸𝑆𝐻  and 𝐷𝑆𝑌𝑆_𝑅𝐸𝐹𝑅𝐸𝑆𝐻  represent the fixed re-

fresh frequency and the amount of data that needs to be 
systematically refreshed with a conventional refresh 
scheme, 

• 𝑓𝐶𝐻𝐸𝐶𝐾  and 𝑓𝑅𝐸𝐹𝑅𝐸𝑆𝐻  are the check frequency and the 
average refresh frequency of the proposed refresh 
scheme, 

• 𝐷𝐶𝐻𝐸𝐶𝐾  and 𝐷𝑅𝐸𝐹𝑅𝐸𝑆𝐻  represent the amounts of data that 
are checked and refreshed with the proposed scheme. 

With the method proposed in Section IV to reduce the 
amount of checked data, 𝐷𝐶𝐻𝐸𝐶𝐾 will include all data with a 
retention age larger than 𝑇𝑊𝐴𝑅𝑁𝐼𝑁𝐺  in Fig. 3. The same is true 
for 𝐷𝑆𝑌𝑆_𝑅𝐸𝐹𝑅𝐸𝑆𝐻  when the method illustrated in Fig. 3 is 

adapted to implement a systematic refresh scheme [8]. In our 
experiments, 𝛼𝐷𝐴𝑀𝑃 in (4) is selected such that the maximum 
tolerable UBER is reached at an 𝑅𝐵𝐸𝑅𝑅𝐸𝑇 for which the av-
erage retention time is equal to 𝑇𝐶𝐻𝐸𝐶𝐾 = 1/𝑓𝐶𝐻𝐸𝐶𝐾 . Since the 
average retention time can be expressed as1/𝑓𝑆𝑌𝑆_𝑅𝐸𝐹𝑅𝐸𝑆𝐻 , 

𝑓𝑆𝑌𝑆_𝑅𝐸𝐹𝑅𝐸𝑆𝐻  and 𝑓𝐶𝐻𝐸𝐶𝐾  are equal. As a consequence, 

𝐷𝑆𝑌𝑆_𝑅𝐸𝐹𝑅𝐸𝑆𝐻  and 𝐷𝐶𝐻𝐸𝐶𝐾 will be equal as well. Since 

𝐷𝑅𝐸𝐹𝑅𝐸𝑆𝐻  is smaller or equal to 𝐷𝐶𝐻𝐸𝐶𝐾 , a lower bound for the 
reduction of the time spent for refresh-triggered read and write 
operations can be defined as follows:  

𝑇𝑆𝑌𝑆_𝑅𝐸𝐹𝑅𝐸𝑆𝐻

𝑇𝑅𝐸𝐹𝑅𝐸𝑆𝐻
≥

(𝜏𝑊𝑅+𝜏𝑅𝐷) 𝑓𝑆𝑌𝑆_𝑅𝐸𝐹𝑅𝐸𝑆𝐻

𝜏𝑊𝑅𝑓𝑅𝐸𝐹𝑅𝐸𝑆𝐻+𝜏𝑅𝐷𝑓𝐶𝐻𝐸𝐶𝐾
        (5) 

Figures 5 to 8 illustrate estimations of the lower bound 
used in (5) for MLC NAND flash chips with average write and 
read latencies equal to 975𝜇𝑠  and 50𝜇𝑠  [10], respectively. 
Maximum reductions of about 12× are obtained for retention 
RBER values that actually do not require refresh operations. 
For flash memory and SSD populations where only a small 
number of units are error-prone [12], the average reduction of 
the time spent for refresh-triggered read and write operations 
is expected to approach the maximum reduction values near 
the vertical dashed lines in figures 5 to 8. Even better results 
 

 
Fig. 5  Reduction of the overall time spent for refresh-triggered read and 

write operations compared to a systematic scheme with fixed 

refresh frequency. Each curve stops at the maximum tolerated 

retention RBER. The considered parameters are the same as those 

used in Fig. 4.  

 
Fig. 6  Similar to Fig. 5 but for an ECC able to correct up to 30 errors per 

flash memory page. 

 
Fig. 7  Similar to Fig. 5 but for an ECC able to correct up to 20 errors per 

flash memory page. 

 
Fig. 8  Similar to Fig. 5 but for an ECC able to correct up to 10 errors per 

flash memory page. 
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can be obtained for larger 𝜏𝑊𝑅/𝜏𝑅𝐷 ratios. 

When up to 10 errors per page can be corrected, the reduc-
tions of the time spent for refresh operations are smaller and 
the curve shapes are different as illustrated in Fig. 8. This is 
due to the fact that in this case refresh operations are avoided 
only in the absence of retention errors. This is also the reason 
for the slightly smaller improvement factors reported in Table 
II. 

Here, the impact of ECC encoding and decoding on re-
fresh latency is not explicitly considered as these steps can be 
performed in parallel to flash chip operations. For BCH codes 
and other linear block ECCs the encoding latency is relatively 
small. Moreover, during triggered check operations the ECC 
decoding process does not need to be completed if the number 
of detected errors does not require a refresh operation. For ex-
ample in the case of a BCH, the number of errors is calculated 
before the relatively long error correction step [7]. This means 
that the ECC decoding latency is relatively small when the 
number of errors and the refresh probability are low. Particu-
larly, the absence of errors can be rapidly detected by check-
ing whether the generated syndrome is an all-zero vector. 

The discussed refresh schemes may also trigger erase op-
erations when data refresh is based on data relocations. One 
can estimate that the number of erase operations is propor-
tional to the amount of data that needs to be refreshed and, 
implicitly, relocated. In this case, the reduction of the number 
of refresh-triggered erase operations can be expressed as 
shown below: 

𝐸𝑆𝑌𝑆_𝑅𝐸𝐹𝑅𝐸𝑆𝐻

𝐸𝑅𝐸𝐹𝑅𝐸𝑆𝐻
=

𝐷𝑆𝑌𝑆_𝑅𝐸𝐹𝑅𝐸𝑆𝐻𝑓𝑆𝑌𝑆_𝑅𝐸𝐹𝑅𝐸𝑆𝐻

𝐷𝑅𝐸𝐹𝑅𝐸𝑆𝐻𝑓𝑅𝐸𝐹𝑅𝐸𝑆𝐻
    

where 𝐸𝑅𝐸𝐹𝑅𝐸𝑆𝐻  and 𝐸𝑆𝑌𝑆_𝑅𝐸𝐹𝑅𝐸𝑆𝐻  represent the numbers of 

refresh-triggered erase operations with the proposed and sys-
tematic refresh schemes. 

As long as 𝑓𝑅𝐸𝐹𝑅𝐸𝑆𝐻  is smaller than 𝑓𝑆𝑌𝑆_𝑅𝐸𝐹𝑅𝐸𝑆𝐻 , 

𝐷𝑅𝐸𝐹𝑅𝐸𝑆𝐻  is also smaller or equal to 𝐷𝑆𝑌𝑆_𝑅𝐸𝐹𝑅𝐸𝑆𝐻  and a lower 

bound for the reduction of the number of refresh-triggered 
erase operations can be defined as follows: 

𝐸𝑆𝑌𝑆_𝑅𝐸𝐹𝑅𝐸𝑆𝐻

𝐸𝑅𝐸𝐹𝑅𝐸𝑆𝐻
≥

𝑓𝑆𝑌𝑆_𝑅𝐸𝐹𝑅𝐸𝑆𝐻

𝑓𝑅𝐸𝐹𝑅𝐸𝑆𝐻
             (6) 

 Estimations of the lower bound used in (6) are illustrated 
in figures 9 to 12. As with the read and write operations, max-
imum reductions of the number of refresh-triggered erase op-
erations, i.e. larger than 30×, are obtained for retention RBER 
values that actually do not require refresh operations. At such 
RBER values, one could expect that the reduction would be-
come very high or reach infinity. This is not the case as reten-
tion errors may still occur and trigger refresh operations even 
with the proposed method. The reductions could be improved 
by increasing the value of 𝛼𝐷𝐴𝑀𝑃 in (4) at the cost of a smaller 
tolerated retention RBER. 

The number of refresh-triggered erase operations and, im-
plicitly, the time required for the execution of such operations  

 
Fig. 9  Reduction of the number of refresh-triggered erase operations 

compared to a systematic scheme with fixed refresh frequency. 
Each curve stops at the maximum tolerated RBER. The considered 

parameters are the same as those used in Fig. 5.  

 
Fig. 10  Similar to Fig. 9 but for an ECC able to correct up to 30 errors per 

flash memory page. 

 
Fig. 11  Similar to Fig. 9 but for an ECC able to correct up to 20 errors per 

flash memory page. 

 
Fig. 12  Similar to Fig. 9 but for an ECC able to correct up to 10 errors per 

flash memory page. 
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is reduced to a larger extent than the time spent for refresh-
triggered read and write operations. This means that the fig-
ures reported for the reduction of the read and write operations 
can be used as a lower bound for the reduction of the time 
spent for all three types of refresh-triggered operations. 

VI. CONCLUSIONS 

An approach was proposed to improve the tolerated raw 
bit error rate (RBER) in NAND flash-based SSDs via an esti-
mation of the remaining retention time. This estimation can be 
performed each time a flash memory page is read and relies 
on the number of detected retention errors and the calculated 
retention age, i.e., the elapsed time since data was pro-
grammed. The checked data should be refreshed if the esti-
mated remaining retention time is smaller than a maximum 
time period to the next read operation. Improvement factors of 
the tolerated retention error rate between 32× and 35× have 
been simulated for data checked on a monthly basis over a 
storage period of 3 years. Such an improvement may be larger 

than what can be obtained by using an ECC able to correct 4 
more errors. Even for a check period of 6 months the tolerated 
RBER improvement can be larger than when the ECC strength 
is doubled. The proposed method has the ability to adapt the 
average time between refresh operations to the actual retention 
RBER. This enabled maximum refresh time reductions of 
about 12× as compared to systematic refresh schemes. 

ANNEX I 

In the absence of refresh operations, the uncorrectable bit 
error rate (UBER) of a flash memory page can be computed 
with the expression below based on the assumption that only 
retention errors may accumulate in time [15]. 

𝑈𝐵𝐸𝑅(𝑡𝐴𝐺𝐸) =
1

𝑁
 ∑ (

𝑁𝑉𝑈𝐿

𝑛𝑅𝐸𝑇
) (𝑅𝐵𝐸𝑅𝑅𝐸𝑇(𝑡𝐴𝐺𝐸))

𝑛𝑅𝐸𝑇

𝑁𝑉𝑈𝐿

𝑛𝑅𝐸𝑇=𝑀−𝑛𝑅𝐸𝑇+1

 

                                                                  × (1 − 𝑅𝐵𝐸𝑅𝑅𝐸𝑇(𝑡𝐴𝐺𝐸))𝑁𝑉𝑈𝐿−𝑛𝑅𝐸𝑇  

where: 

• 𝑡𝐴𝐺𝐸 represents the storage period, 

• N is the total number of bits in a flash memory page, 

• M is the maximum number of errors that can be corrected 
with the available ECC, 

• 𝑁𝑉𝑈𝐿 is the actual number of bits vulnerable to retention 
errors in the considered flash memory page,             

• 𝑛𝑅𝐸𝑇 and 𝑛𝑅𝐸𝑇  are the numbers of bits affected by re-
tention and non-retention errors in the considered flash 
memory page, 

• 𝑀 − 𝑛𝑅𝐸𝑇  represents the maximum number of reten-
tion errors that can be corrected with the available ECC 
in the considered flash memory page, 

• 𝑅𝐵𝐸𝑅𝑅𝐸𝑇(𝑡𝐴𝐺𝐸) is calculated according to (1). 

ANNEX II 

For flash memories with pages that are periodically 
checked and may be refreshed according to Algorithm 1, 
UBER can be obtained by adding the probabilities of the un-
correctable errors that may occur in a flash memory page be-
tween consecutive check operations as follows: 

𝑈𝐵𝐸𝑅 =
1

𝑁
 ∑ 𝑈𝐵𝐸𝑅(𝑖)

⌈
𝑇𝑀𝐴𝑋

𝑇𝐶𝐻𝐸𝐶𝐾
⌉

𝑖=1

 

where: 

• N is the total number of bits in a flash memory page, 

• 𝑇𝑀𝐴𝑋 is the maximum required retention time, 

• 𝑇𝐶𝐻𝐸𝐶𝐾  is the time interval between consecutive trig-
gered check operations, 

• 𝑈𝐵𝐸𝑅(𝑖) represents the contribution to UBER of the un-
correctable errors that may occur during the time interval 
between the (i-1)th and ith triggered check operations, 

•  stands for the ceiling function. 

UBER(i) can be calculated with the relation below that 
takes into account the occurrence probabilities of all retention 
error numbers which do not impose a page refresh according 
to Algorithm 1 during the (i-1)th check operation and (b) the 
probability that during the ith triggered check operation the er-
rors cannot be corrected anymore:  

𝑈𝐵𝐸𝑅(𝑖) = ∑ 𝑃((𝑖 − 1) ∗ 𝑇𝐶𝐻𝐸𝐶𝐾 , 𝑁𝑉𝑈𝐿 , 𝑛𝑅𝐸𝑇)

𝑛𝑖−1

𝑛𝑅𝐸𝑇=0

 

× [1 − ∑ 𝑃(𝑇𝐶𝐻𝐸𝐶𝐾 , 𝑁𝑉𝑈𝐿 − 𝑛𝑅𝐸𝑇 , 𝑛′
𝑅𝐸𝑇)

𝑀−𝑛𝑅𝐸𝑇−𝑛𝑅𝐸𝑇

𝑛′
𝑅𝐸𝑇=0

] (7) 

where: 

• 𝑃((𝑖 − 1) ∗ 𝑇𝐶𝐻𝐸𝐶𝐾 , 𝑁𝑉𝑈𝐿 , 𝑛𝑅𝐸𝑇) is the occurrence prob-
ability of 𝑛𝑅𝐸𝑇 retention errors that do not impose a page 
refresh according to Algorithm 1 during the (i-1)th check 
operation, 

• 𝑛𝑖−1  is the maximum number of retention errors for 
which the if condition in Algorithm 1 is false and no re-
fresh operation needs to executed during the (i-1)th check 
operation, 

• 𝑃(𝑇𝐶𝐻𝐸𝐶𝐾 , 𝑁𝑉𝑈𝐿 − 𝑛𝑅𝐸𝑇 , 𝑛′𝑅𝐸𝑇) is the occurrence proba-
bility of 𝑛′ retention errors that can still be handled by 
the available ECC during the ith check operation, 

• M is the maximum number of errors that can be corrected 
by the available ECC, 
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• 𝑁𝑉𝑈𝐿 is the actual number of bits vulnerable to retention 
errors in the considered flash memory page,             

• 𝑛𝑅𝐸𝑇  is the number of non-retention errors in the con-
sidered flash memory page, 

• 𝑛𝑅𝐸𝑇 and 𝑛′𝑅𝐸𝑇  are numbers of retention errors that can 
be tolerated in the considered flash memory page. 

The probability to have 𝑛𝑅𝐸𝑇 retention errors in a flash 
memory page with 𝑁𝑉𝑈𝐿 vulnerable bits after a storage period 
𝑖 ∗ 𝑇𝐶𝐻𝐸𝐶𝐾  can be calculated recursively as follows: 

𝑃(𝑖 ∗ 𝑇𝐶𝐻𝐸𝐶𝐾, 𝑁𝑉𝑈𝐿, 𝑛𝑅𝐸𝑇) = ∑ 𝑃((𝑖 − 1) ∗ 𝑇𝐶𝐻𝐸𝐶𝐾, 𝑁𝑉𝑈𝐿 , 𝑛′𝑅𝐸𝑇)

min(𝑛𝑅𝐸𝑇,𝑛𝑖−1)

𝑛′𝑅𝐸𝑇=0

 

  × 𝑃(𝑇𝐶𝐻𝐸𝐶𝐾 , 𝑁𝑉𝑈𝐿 − 𝑛′𝑅𝐸𝑇 , 𝑛𝑅𝐸𝑇 − 𝑛′𝑅𝐸𝑇) 

where:  

• each term represents the probability of a possible repar-
tition of 𝑛𝑅𝐸𝑇 retention errors over the time period be-
fore the (i-1)th check operation and the time interval be-
tween the (i-1)th and ith check operations, 

• as in (7), 𝑛𝑖−1 indicates that not all error occurrence sce-
narios are possible due to a refresh operation that may be 
triggered during the execution of the (i-1)th check opera-
tion, 

• for 𝑖 = 1, one can use the expression below: 

𝑃(𝑇𝐶𝐻𝐸𝐶𝐾 , 𝑁𝑉𝑈𝐿, 𝑛𝑅𝐸𝑇) = (
𝑁𝑉𝑈𝐿

𝑛𝑅𝐸𝑇
) (𝑅𝐵𝐸𝑅𝑅𝐸𝑇(𝑇𝐶𝐻𝐸𝐶𝐾))

𝑛𝑅𝐸𝑇
 

                                                     × (1 − 𝑅𝐵𝐸𝑅𝑅𝐸𝑇(𝑇𝐶𝐻𝐸𝐶𝐾))
𝑁𝑉𝑈𝐿−𝑛𝑅𝐸𝑇
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