N
N

N

HAL

open science

Implementation of fault tolerance techniques for
integrated network interfaces

Douglas Rossi de Melo, Cesar Zeferino, Antonio Ramos, Luigi Dilillo, Eduardo

Augusto Bezerra

» To cite this version:

Douglas Rossi de Melo, Cesar Zeferino, Antonio Ramos, Luigi Dilillo, Eduardo Augusto Bezerra. Im-
plementation of fault tolerance techniques for integrated network interfaces. 3rd IAA Latin American

CubeSat Workshop (IAA-LACW 2018), Dec 2018, Ubatuba, Brazil. lirmm-02008453

HAL Id: lirmm-02008453
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02008453
Submitted on 7 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02008453
https://hal.archives-ouvertes.fr

This is a self-archived version of an original article.
This reprint may differ from the original in pagination and typographic detail.

Title: Implementation of Fault Tolerance Techniques for Integrated Network Interfaces
Author(s): Douglas Melo, Cesar Zeferino, Antonio Ramos, Luigi Dilillo, and Eduardo Bezerra
DOI:

Published:

Document version: Post-print version (Final draft)

Please cite the original version:

Douglas Rossi de Melo, Cesar Zeferino, Antonio Ramos, Luigi Dilillo, Eduardo Augusto Bezerra.
“Implementation of fault tolerance techniques for integrated network interfaces,” 3rd IAA Latin American
CubeSat Workshop (IAA-LACW), Dec 2018, Ubatuba, Brazil.

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for your
research use or educational purposes in electronic or print form. You must obtain permission for any other use.
Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised
user.

IMPLEMENTATION OF FAULT TOLERANCE TECHNIQUES FOR INTEGRATED NETWORK
INTERFACES

Douglas Melo)®® | Cesar Zeferino'", Antonio Ramos™, Luigi Dilillo®, Eduardo Bezerra®®
M Laboratory of Embedded and Distributed Systems, University of Vale do Itajat, Brazil, {drm,
zeferino}@univali.br
@ Laboratory of Communications and Embedded Systems, Federal University of Santa Catarina, Brazil, {drm,
eduardo.bezerra}@eel.ufsc.br
) Laboratoire d ‘Informatique, de Robotique et de Microélectronique de Montpellier, France, {drm, dilillo,
eduardo.bezerra}@ lirmm.fr
4 Department of Science and Industry Systems, University of South-Eastern, Norway, antonio.ramos @usn.no

Keywords: Networks-on-Chip, Network Interface, Fault Tolerance

The increasing demand for safety and mission-critical computational systems to operate in hostile environ-
ments, along with the component miniaturization for such systems, have triggered the need for developing fault
tolerance techniques to mitigate the incidence of system failures and increase reliability. Communication architec-
tures used in computers for aerospace applications are made up of a growing number of processing cores. Some
approaches that are proposed in the literature do not meet the communication requirements of future on-board
computers composed of multiple cores. Networks-on-Chip are the successors of the bus for multicore interconnec-
tion, integrating cores by the means of Network Interfaces. This work discusses the implementation and evaluates
the performance of the Hamming encoding, the Triple Modular Redundancy (TMR), and temporal redundancy
into the eXtensible Interface for Routing Unit (XIRU) Network Interface. Five scenarios are considered based on
the combination of these techniques. Results show that the TMR in FIFO buffers is the most costly technique in
terms of area usage, the Hamming code has the highest power dissipation, while the temporal redundancy has the
lower operation frequency. Finally, a modified version of XIRU to integrate cores into Network-on-Chip systems
with reliability requirements is devised. We intend to use the interface to integrate the cores of future cubesats
developed in the FloripaSat project.

1. Introduction

The demand for real-time embedded computing has been increasing significantly in recent years. The design
of such systems is always subject to a specific set of requirements that includes performance, real-time execution
capability, response time, with reduced size and costs [1]. Modern embedded systems usually require processors
with increased performance, while keeping physical dimensions and power dissipation as low as possible.

Recent advances in integrated circuits manufacturing technology allowed the construction of complete com-
puting systems in a single chip, known as Systems-on-Chip (SoCs). The components of a SoC can be designed
independently of each other and made available by manufacturers in the form of IP (Intellectual Property) cores.
In SoCs with few cores, components are interconnected by shared buses. However, this communication archi-
tecture does not meet the requirements of SoCs composed of several dozen cores, which demand parallelism and
performance scalability [2].

A solution to overcome the bus limitations is represented by NoCs (Networks-on-Chip), scalable and reusable
architectures that provide parallelism in communication. In SoCs based on NoCs, each core of the system is
connected to one router, which is connected to neighboring routers. However, a Network Interface (NI) between
cores and routers is necessary for an effective communication [3].

Miniaturization of the circuits and the increasing operating frequency result in a higher incidence of faults in
SoCs [4]. The occurrence of faults can be a serious problem, especially in the presence of external interference.
For such critical cases, SoC designers have to use fault tolerance techniques to ensure proper operation of these
systems.

In general, fault tolerance techniques are based on redundancy and can be classified into spatial, temporal, and
information. Spatial redundancy consists of component replication and the insertion of a voter that compares the
outputs of these components and chooses the value on a majority principle. In temporal redundancy, a component
performs its operation more than once and a voter compares the results of those executions. Information redun-
dancy consists of adding bits to the message to detect and correct possible errors. Therefore, the implementation
of fault tolerance mechanisms results in some overhead, whether in performance, silicon area, or dissipated power

[5].

Several cores for SoCs employ fault tolerance techniques in their design. Examples are the soft-core LEON3
[6], commonly used in space applications, and the works of [7] and [8] on System-on-Chip Interconnection Net-
work (SoCIN) [2]. SoCIN uses the XIRU (eXtensible Interface for Routing Unit) [9] to integrate cores based on
the Avalon bus. In [10], the authors added support for the AMBA-AHB bus to XIRU, without applying any fault
tolerance technique.

This work aims at implementing and evaluating the use of fault tolerance techniques on XIRU. We have im-
plemented Hamming encoding, the TMR (Triple Modular Redundancy), and temporal redundancy techniques, as
well as combinations of those. We observed a significant area overhead when combining TMR and the Hamming
encoding technique. The combination of techniques presents the highest fault coverage. A significant reduction in
operating frequency was observed using temporal redundancy, while no significant changes were noticed in terms
of power dissipation.

The remainder of this paper is organized as follows. Section 2 presents a brief background on Network
Interfaces, Section 3 describes the proposed techniques, while Section 4 discusses the performance evaluation
results in various scenarios. Finally, Section 5 presents conclusions and suggestions for future works.

2. Background

Network Interface (NI) is the component that provides communication services and translates protocols be-
tween core and router. An NI comprises a front-end and a back-end [4], as shown in Fig. 1. The front-end can
be represented by the session layer, whereas the lower layers of the OSI (Open System Interconnection) model
represent the back-end. The front-end communicates with the core and it is responsible for facilitating reuse
across platforms owing to its standardized point-to-point protocol. Conversely, the back-end communicates with
the router and provides high-level communication services (session layer), reliable data transfer (transport layer),
packaging and routing (network layer), error detection (link layer), and resolution of physical problems (physical
layer) [3].

Network Interface

Core < Front-End [« Back-End > Router

Y
Y
A
A

Figure 1: Network Interface [4].

3. Development

In this work, we implement and add fault tolerance components to the XIRU Network Interface (Fig. 2). We
used VHDL for hardware description on the Intel Quartus II (version 13.0spl), the Mentor Graphics ModelSim
(version 10.1d) for simulation, and the Altera DE2 kit with the EP2C35F672C6 FPGA for prototyping. We
structured this development into five incremental scenarios, as described below.

3.1. Scenario 1: Hamming encoding

The first scenario consists of integrating the Hamming encoder and decoder at the edge of the Network layer,
as shown in Fig. 3. Fault tolerance occurs in end-to-end communication, i.e., encoding packets going out to the
router, and decoding and correcting packets arriving from the router. The input of the Hamming encoder is 34 bits
long, while the output has 41 bits.

The Hamming code detects up to two errors and can correct a single one (SECDED - Single Error Correction,
Double Error Detection). In an error-free scenario, the result of the Hamming calculation and the parity calculation
is equal to 0. In the case of a single error, both Hamming and parity result in a different value, indicating an error.
In the case of a double error, the Hamming calculation results in a value other than zero, while the parity bit is
inverted again.

3.2. Scenario 2: Triple Modular Redundancy (TMR) on controllers

The second scenario is the application of TMR on the XIRU controllers. We triplicated the Flow Controller
(FC) components of the Network layer, and the controllers of the Generic layer, as shown in Fig. 4. We have also
added a voter for each replicated component.

Front-End

N

Y V N

Back-End

fNetwork

Figure 2: XIRU Network Interface [9].

3.3. Scenario 3: TMR on FIFOs

In this scenario, we applied TMR on the XIRU memorization components (FIFOs), as shown in Fig. 5. These
FIFOs are in the Network layer, and are the only components that have been modified for this scenario.

3.4. Scenario 4: Hamming and TMR

This scenario applies end-to-end protection using the Hamming encoding and TMR in the controllers and
memorization components, as shown in Fig. 6.

3.5. Scenario 5: Temporal redundancy on controllers

This scenario applies temporal redundancy on the controllers of the Generic layer. The execution is processed
three times and, in the end, a voter compares the results of the executions and sets the output signal. Fig. 7
represents the technique that have been applied to the XIRU network interface.

4. Results

After synthesis and verification, we have analyzed and compared the different implementations with respect
to use of FPGA resources, i.e, look-up tables (LUTs) and flip-flops (FFs), and performance in terms of maximum
operation frequency and average power dissipation. Table I shows the obtained results. As can be observed,
Scenario 4 is the one with highest resource utilization. This is expected since it implements the Hamming encoding
and TMR on the controllers and on the FIFOs. Indeed, there was an increase of 170.82% of LUTSs in the master
unit against 135.63% in the slave unit in comparison to the original implementation. Concerning the flip-flops,
the overhead of this scenario was 143.60% in the master unit against 137.95% in the slave unit. The lowest
performance was verified in Scenario 5, with a decrease of 34.40% of the maximum operating frequency in
the master unit and 37.30% reduction in the slave unit. Moreover, the addition of new circuits to the system
increases the critical path, thereby causing a degradation in the maximum frequency of operation. Finally, no
significant variation in terms of dissipated power was observed across the different scenarios, presenting an average
consumption of 135 mW.

There are some differences among the scenarios related to fault coverage rate. Hamming code (Fig. 3) works
as an end-to-end solution, so it can’t detect nor correct any fault in the NI infrastructure. The TMR on controllers
(Fig. 4) and TMR on FIFOs (Fig. 5) can mask single event and also single permanent faults. The combination of
the former techniques (Fig. 6) protects control and memorization structures. In contrast, the temporal redundancy
(Fig. 7) protects from transient faults but is ineffective against permanent ones.

Specific
Generic
Network
Specific
Generic
Network

TMR on controllers.

NoC

io 2

Scenar

Figure 4

: : . :
> : 1 o !
@A _ : s g g
" &b m e "
! = ' H
. = " "
e il 1 A l
g v 25| ! S € 8 Y "
2 e 9 le €8 leu 5 : e | o | "
g |« o £ 8 [« «— 5 |€ L € :
@ w G 0 i en ! < L H
g 0| ¢ = <—| & "
[=] ' m ' (=] '
m H H m H
= 1 m i = H
[H (N H
s 3 18| = S| |8 :
S § i = .. © i |3 "
< ' - H < '
; =) m :
y = H = le 3y = H
? o '] ' 7 o '
N | = ! N o !
> 5) > > © e »
X 9 =< o \
g 25 : g _
> o Ly ——> > o H
@ 1 H
= ! .
u . e .
on ' H
o ' H
= " E |
: o 5 "
H > o o
H > H
Vel I :
L J J
3 x i Y
° o
k= [=4
i i ig g
€ x € x
g g s g
I o I]

Front-End

Adaptation
r v
‘Generic
Packetizer Depacketizer !
A
m'.'.'.'.'.'.'.'.'.'.'.'.'.'. .':
FIFO FIFO Voter 5
Back-End ~ A4 A :
vy ¥ :
Voter FIFO <] FIFO (1 FIFO |«
A A
ENetwork
X
P N AT :
NoC

Front-End - Adaptation ESpecific

S [N O —— A A A] L

S A N I o

LED L ol
! ‘Generic

H Packetizer Depacketizer !

: X w 5

; FIFO |_|FIFO | |FIFO Yotey :

H — | :

Back-End < | i . A4 A :

\ 4 v ¢ v

H Voter Voter FIFO (I FIFO (I FIFO |« '

A A A
e e e Voter ENetwork

E A o E

Voter Hamming Hamming :

' Coder Decoder A

NoC |

Figure 6: Scenario 4: Hamming and TMR.

| Core

R

Adaptation Specific
... A A A gl
YV Vv :
H < 51 '+ Generic
H % —>» Packetizer Depacketizer |«— E '
A
' \ 4
Back-End 4
FIFO FIFO [«
A
) 4 ! Network
A
!
............................... B e —.

Router

Figure 7: Scenario 5: Temporal redundancy on controllers.

Table 1: Synthesis Results

Scenario | Component | LUTs | FFs | Fmax(MHz)
Original Master 281 422 212.04
Slave 407 448 221.73
1 Master 287 422 212.27
Slave 410 448 216.26
2 Master 327 448 178.44
Slave 517 486 187.06
3 Master 701 994 195.96
Slave 823 1020 202.10
4 Master 761 1028 165.84
Slave 959 1066 192.34
5 Master 311 448 139.10
Slave 503 486 139.02

5. Conclusion

This work discusses the application of fault tolerance techniques in a network interface for use in reliable
systems based on NoCs. As expected, the use of redundancy techniques resulted in an increase in the utilization of
logical resources and in the performance degradation, especially in the scenario combining the Hamming encoding
and TMR.

We are currently computing the fault coverage and evaluating the communication latency and energy con-
sumption in each scenario. As future work we intended to adapt the network interface for the next generation
of FloripaSat platform [11], using a SoC in which all components (processor, network interface, and routers) are
protected by reliability techniques.

Acknowledgments

The authors would like to thank the Coordenacdo de Aperfeicoamento de Pessoal de Nivel Superior - Brasil
(CAPES), the University of Vale do Itajai (UNIVALI), and the Norwegian Centre for International Cooperation in
Education (SIU), for supporting this work.

References

[1] F. Vahid, T. Givargis, Embedded system design: a unified hardware/software introduction, New York: Wiley,
2002.

[2] C. A. Zeferino, A. A. Susin, Socin: a parametric and scalable network-on-chip, in: Integrated Circuits and
Systems Design, 2003. SBCCI 2003. Proceedings. 16th Symposium on, IEEE, pp. 169-174.

[3] G. De Micheli, L. Benini, Networks on chips: technology and tools, Academic Press, 2006.

[4] D. Bertozzi, The data-link layer in noc design, Micheli, G.; Benini, L.” Networks on Chips: Tecnology and
Tools”, New York: Morgan Kaufmann Publishers (2006).

[5] D. J. Sorin, Fault tolerant computer architecture, Synthesis Lectures on Computer Architecture 4 (2009)
1-104.

[6] A. Gaisler, S. Goteborg, Leon3 multiprocessing cpu core, Aeroflex Gaisler, February (2010).

[7] F. Veiga, C. A. Zeferino, Implementation of techniques for fault tolerance in a network-on-chip, in: Com-
puting Systems (WSCAD-SCC), 2010 11th Symposium on, IEEE, pp. 80-87.

[8] T. F. Pereira, D. R. de Melo, E. A. Bezerra, C. A. Zeferino, Mechanisms to provide fault tolerance to a
network-on-chip, IEEE Latin America Transactions 15 (2017) 1034-1042.

[9] D. Melo, M. Wangham, C. Zeferino, Xiru: Interface de rede extensivel para integracdo de niicleos a uma
rede-em-chip, Revista de Informatica Tedrica e Aplicada 21 (2014) 10-31.

[10] F. L. Gaya, C. A. Zeferino, D. R. Melo, E. A. Bezerra, Amba-ahb network interface for core interconnection
in a network-on-chip, Iberchip (2017).

[11] P. Villa, L. Slongo, J. Salamanca, V. Martins, F. Silva, S. Martinez, L. Mariga, B. Eiterer, 1. Vidal, V. Mene-
gon, L. Coelho, X. Travassos, K. Paiva, A. Spengler, F. Souza, L. Becker, D. Lettnin, E. Bezerra, A complete
cubesat mission: the floripa-sat experience, in: 1st IAA Latin American Cubesat Workshop, volume 2, pp.
307-314.

