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Abstract

Estimating the maximum number of concurrent speakers from single-channel
mixtures is a challenging problem and an essential first step to address various
audio-based tasks such as blind source separation, speaker diarization, and audio
surveillance. We propose a unifying probabilistic paradigm, where deep neural
network architectures are used to infer output posterior distributions. These prob-
abilities are in turn processed to yield discrete point estimates. Designing such
architectures often involves two important and complementary aspects that we in-
vestigate and discuss. First, we study how recent advances in deep architectures
may be exploited for the task of speaker count estimation. In particular, we show
that convolutional recurrent neural networks outperform recurrent networks used
in a previous study when adequate input features are used. Even for short seg-
ments of speech mixtures, we can estimate up to five speakers, with a significantly
lower error than other methods. Second, through comprehensive evaluation, we
compare the best-performing method to several baselines, as well as the influence
of gain variations, different datasets, and reverberation. The output of our pro-
posed method is compared to human performance. Finally, we give insights into
the strategy used by our proposed method.

1 Introduction

In a “cocktail-party” scenario, one or more microphones capture the signal from many concurrent
speakers. In this setting, different applications may be envisioned such as localization, crowd mon-
itoring, surveillance, speech recognition, speaker separation, etc. When devising a system for such
a task, it is typically assumed that the actual number of concurrent speakers is known. This as-
sumption turns out to be of paramount importance for the effectiveness of subsequent processing.
Notably, for separation algorithms [57], real-world systems do not straightforwardly provide infor-
mation about the actual number of concurrent speakers. It, therefore, is desirable to close the gap
between theory and practice by devising reliable methods to estimate the number of sound sources
in realistic environments. Surprisingly, very few methods exist for this purpose in an audio context,
in particular from a single microphone recording.

From a theoretical perspective, estimating the number of concurrent speakers is closely related to
the more difficult problem of identifying them, which is the topic of speaker diarization [6, 60, 62,
63]. Intuitively, if a system is able to tell who speaks when, it is naturally also able to tell how
many speakers are actually active in a mixture. We call this strategy “counting by detection”. A
good working diarization system would be able to sufficiently address the speaker count estimation
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Figure 1: Illustration of our application scenario of three concurrent speakers (A, B, C) and their
respective speech activity. Bottom plot shows the mixture (input), the number of concurrently active
speakers and its maximum k which is our targeted output.

problem using this strategy. However, it appears to be a very complex problem to tackle when one
is only interested in the number of concurrent speakers. Furthermore, as current diarization systems
only work when a clear segmentation is possible, the first step of such a system often is to find
homogeneous segments in the audio where only one speaker is active. The segment borders can be
found by speaker change detection [84]. These homogeneous segments are used to discriminate and
temporally locate the speakers within a given recording. When sources are simultaneously active, as
in real cocktail party environments, existing segmentation strategies fail. In fact, overlapping speech
segments typically are a major source of error in speaker diarization [6].

To improve the robustness of these detection-based methods, a number of approaches attempt to
detect and possibly reject the overlapping speech segments to improve performance [13,36]. Overlap
detection has since evolved into its own line of research with many recent publications such as [4,
26, 30, 71]. Overlap detection can be seen as a binarized version of the count estimation problem
where the number of speakers equals to one (no overlap) or more than one (overlap). It is, therefore,
possible to apply a count estimation system for the overlap detection problem but not vice versa.
Also, an overlap detection system cannot be easily utilized in a source separation system. In fact, it
should be noted that before the arrival of deep learning based separation systems, models required
long context and in such a case, for methods like NMF, the number of concurrent speakers could
be introduced as a regularization term [45]. In recent years, however, large improvements were
achieved by deep learning based methods [31, 85] at shorter segment duration (often 1-5 seconds).
In such approaches, it becomes possible to apply separation only when its “needed”. In this scenario,
a method of estimating the maximum number of concurrent speakers becomes useful and in some
cases essential.

When speaker overlap is as prevalent as in a “cocktail-party” scenario, developing an algorithm to
detect the number of speakers is challenging. This is in contrast to humans whom we know are
excellent in segregating one source from a mixture [15] and tend to use this skill to perceptually
segregate speakers before they can estimate a count, as highlighted, e.g. in [42]. As shown in [41,
42], humans are able to correctly estimate up to three simultaneously active speakers without using
spatial information. Similarly, in music, psycho-acoustic researchers came up with a “one-two-
three-many” hypothesis [37, 68, 75]. The question if machines could outperform humans, or if they
are subject to similar limitations, remains to be answered.

Identifying isolated sources in realistic mixtures is challenging [15] and psychology studies in vi-
sion [39] have shown that humans can instantly estimate the number of objects without actually
counting and therefore identifying them. This phenomenon is known as subitizing and has been
inspiring research in vision [17]. Since there are indications that the auditory system is also capable
of subitizing sources [77], we transfer this fact to the audio domain and directly attempt in this study
to estimate the number of audio sources instead of counting them after identification. We refer to
this strategy as “direct count estimation”.
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Directly estimating the number of sources in audio mixtures has many applications and appears as a
reasonable objective that mimics the process of human perception. Since humans do have two ears
that provide spatial diversity, a first natural idea to imitate human performance is to exploit binaural
information to proceed to source count estimation. In terms of signal processing, this is achieved by
estimating directions of arrival (DoA) and clustering them [8,9,22,47,52,55,56,79]. However, many
audio devices are equipped with only a single microphone, and being able to also count sources, in
that case, is desirable. Consequently, the single-channel scenario has been considered in many
studies.

One of the first single-channel methods was proposed in 2003 by Arai [7]. It is based on the as-
sumption that speech mixed from more than one speaker has a more complex amplitude modulation
pattern than a single speaker. The modulation pattern is aggregated and used as a decision func-
tion to distinguish between different numbers of speakers. In [65], the authors propose an energy
feature based on temporally averaged mel filter outputs. The number of concurrent speakers was de-
termined by manually determining thresholds that best match individual speaker counts. In a more
recent work, Xu et.al. [82] estimate the number of speakers by applying hierarchical clustering to
fixed-length audio segments using mel frequency cepstral coefficients (MFCCs) and additional pitch
features. The method assumes the presence of at least some non-overlapped speech and was eval-
uated on real-world data of 20 hours duration. An average count estimation error of one speaker
is reported using excerpts of eight-minutes duration and featuring up to eight speakers. In another
vein, Andrei et.al. [5] proposed an algorithm which correlates single frames of multi-speaker mix-
tures with a set of single-speaker utterances. The resulting score was then used to estimate the
number of speakers using thresholds.

In all the aforementioned methods, the speaker count estimation problem was devised. The dif-
ferent strategies undertaken there rely on classical and grounded signal processing strategies and
exhibit fair performance in a controlled setup. However, our experience shows (see Section 6) that
they leave much room for improvement when applied to more diverse and challenging signals than
those corresponding to their targeted applications, notably in the case of many different and con-
stantly overlapping speakers. This is due to their main common weakness, which is to rely on the
assumption that there are segments where only one speaker is active, in a way that is similar to the
classical speaker diarization studies mentioned before. In [76] a first data-driven approach based
on a recurrent network was presented, motivated by the recent and impressive successes of deep
learning approaches in various audio tasks like speech separation [27, 31, 85] and speaker diariza-
tion [24, 35, 83]. The methods proposed in [76] to address speaker count estimation using deep
learning were built upon recent methods to count objects in images, which is a popular application
with many contributions from the deep learning community [10,14,17,43,48,69,80,86,87]. In [76]
two main paradigms were evaluated: a) count estimation as regression problem, where the systems
are directly trained to output the number of objects as a point estimate, and b) classification, where
every possible number of objects is encoded as a different class and the output of a predicting sys-
tem corresponds to a probability distribution over these classes. The results of the proposed method
indicated that a classification based neural network performed better than one based on regression.
One drawback, however, is that the maximum number of speakers (the number of classes) is known
in advance.

In this study, we build upon [76] and focus on the network architecture design, as well as on finding
limitations for different test scenarios. This work makes the following contributions: i) we gen-
eralize the problem formulation by fusing classification and regression, which allows estimating
discrete outputs while controlling the error term. This is done by picking a point estimate from
a full posterior distribution provided by the deep architectures; ii) in addition to the recurrent net-
work introduced in [76], we propose alternative speaker-independent neural network architectures
based on the convolution operation to improve count estimation. Each of the proposed networks
is adjusted to estimate the number of speakers from audio segments of 5 seconds; iii) we test the
performance of these networks in multiple experiments and compare them to several baseline meth-
ods, pointing out possible limitations. Furthermore, we present a statistical analysis of the results
to determine whether classification outperforms regression for all architectures; iv) we conducted
a listening experiment to relate the best-performing machine to human performance. We describe
one of the strategies taken by the data-driven approach that might explain its superior performance.
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Finally, for the sake of reproducibility, the trained networks (models), as well as the test dataset, are
made available on the accompanying website2 and the github repository3.

The remainder of this paper is organized as follows. In Section 2, we describe the count estimation
problem formally and the general ideas we propose to tackle it. In Section 3, we propose several
architectures, each of them adjusted to estimate the number of speakers from short audio segments
of 5 s. In Section 5, we then assess several common hyperparameters for all of our proposed archi-
tectures, so that we are able to propose a single, best-performing model. In Section 6 this model is
compared to several baseline systems under various acoustical conditions. Additionally, we com-
pare the proposed method to human performance. We point out possible limitations and provide
indications for the strategy being taken by the DNN in Section 7 before we conclude in Section 8.

2 Problem Formulation

We consider the task of estimating the maximum number of concurrent speakers k ∈ Z+
0 in a single-

channel audio mixture x. This is achieved by applying a mapping from x to k. We now provide
details on the notations, the general structure of the method, and various ways to exploit the deep
learning framework to estimate k.

2.1 Signal Model

Let x be a time domain vector with N samples, representing a linear mixture of L single speaker
speech signal vectors sl. The value observed at time instant n for the mixture is given by xn and for
the individual speech segments by snl. The mixture then results in

xn =

L∑
l=1

snl ∀n ∈ ZN . (1)

Naturally, each speaker l = 1, . . . , L is not active at every time instant. On the contrary, we assume
there is a latent binary speech activity variable vnl ∈ {0, 1} that is either provided by a ground truth
annotation or computed using a voice activity detection method.

Our objective of estimating the maximum number of concurrent speakers can now be formulated as

k = max
n

(
L∑
l=1

vnl

)
n ∈ {1, . . . , N}. (2)

As can be seen, our proposed task of estimating k ≤ L, is more closely related to source separation
whereas the estimation of L is more useful for tasks where speakers do not overlap. For instance,
three non-overlapping speakers would result in L = 3 and k = 1. It should be noted that at short
time scales both task definitions provide the same outcome because on such a time scale the speaker
configuration usually does not change. The problem arises for long-term recordings (e.g. larger than
ten seconds) which are not considered in this work. In any case, we want to emphasize that in all
experiments presented in this paper, we made sure that for all audio segments L = k.

In the remainder of this work, we assume that no additional prior information about the speakers
is given to the system except possibly the maximum number of concurrent speakers kmax, that is
application-dependent and represents an upper bound for the estimation.

While speaker diarization would mean estimating the whole speech activity matrix vnl, our problem
of estimating only k in (2) is more abstract as it requires a direct estimation of the count as advocated
in Section 1.

In Figure 1, we illustrate our setup in a “cocktail-party” scenario featuring L = 3 unique speakers.
At any given time, we see that at most k = L = 3 speakers are active at the same time and k = 2
could be the outcome if a smaller excerpt would be evaluated. By processing such excerpts in a
sliding-window fashion, our proposed solution can be applied straightforwardly to context sizes
commonly used in source separation. Furthermore, our proposed system can be used also to detect
overlap (k > 1), which can be useful as a pre-processing step for diarization.

2https://www.audiolabs-erlangen.de/resources/2017-CountNet.
3https://github.com/faroit/CountNet.
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Now, the system we propose is actually not inputting the signal vector x, but rather a Time-
Frequency (TF) representation as the absolute value of the short-time Fourier transform of x that
is denoted by X. In the following, X is the non-negative input for the system.

2.2 Probabilistic Formulation

In a supervised scenario, let {Xt, kt}t be all of our learning examples, where t ∈ 1, . . . , T denotes
the t-th training item from the training database. For the purpose of learning a mapping between X
and k, we adopt a probabilistic viewpoint and introduce a flexible generative model that explains
how a particular source count k corresponds to some given input X.

First, we consider that all training samples {Xt, kt}t are independent. For each sample, we consider
that kt is drawn from a probability distribution of a known parametric family, parameterized by
some latent and unobserved parameters yt

P (kt | Xt) = L (kt | yt) , (3)
the distribution L (· | yt) is called the output distribution in the following. We further assume that
there is some deterministic mapping between Xt and yt, embodied as

yt = fθ (Xt) , (4)
where θ are the parameters for this deterministic mapping, that is independent of the training item t.
This results in an output distribution given by

P (kt | Xt) = L (kt | fθ (Xt)) . (5)
Assume for the rest of this section that these parameters θ are known. Given a previously unseen
input X, expression (5) means we can compute the distribution of the source count k.

The objective of our counting system is to produce a point estimate k̂ rather than a whole output
distribution P (k | X). A first option is to pick as an estimate the most likely outcome for the output
distribution, thus resorting to Maximum A Posteriori (MAP) estimation:

k̂ = argmax
k
L (k | fθ (X)) . (6)

However, MAP is not the only option and a broad range of point estimation techniques may be
obtained when resorting to decision theory [11]. We may for example also choose k̂ as the value
that minimizes the marginal average cost of choosing an estimate k̂ instead of the true value k, when
k is distributed with respect to the output distribution

k̂ = argmin
u

∫
k

d (k, u)L (k | fθ (X)) dk, (7)

where d (k, u) is the cost of picking u as an estimate when the true value is k. It may be any function
that seems appropriate, and does not necessarily need to be differentiable. However, we retain the
more general formulation (7) because other choices will sometimes prove more effective, as we
show later. For notational convenience, we write (7) as

k̂ = q (fθ (X)) , (8)
and q (·) is called the decision function. Using this strategy, we have everything to produce a single
source count estimate k̂ from input features X, provided the parametric family L and the mapping
fθ as well as its parameters θ are known.

In this study, we choose a deep neural network for the mapping fθ, whose weights θ are trained in a
supervised manner. Once a particular network architecture has been chosen, learning its parameters
is achieved through classical stochastic gradient descent. If we assume that the particular family L
of output distributions has been chosen, it appears natural to learn the parameters θ that maximize
the likelihood of the learning data. More specifically, the total cost to be minimized becomes

C =

T∑
t=1

− logL (kt | fθ (Xt)) . (9)

The derivative of this cost (9) with respect to the parameters can be used to learn the network
parameters.

Three different choices for the family of output distributions (classification, Gaussian regression and
Poisson regression) are summarized below.
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2.2.1 Classification

In a classification setting, the output distribution is directly taken as discrete, discarding any meaning
concerning the ordering of the different possible values. Given some particular input X, the network
generates the posterior output probability for (kmax+1) classes (including k = 0) and a maximum a
posteriori (MAP) decision function is chosen that simply picks the most likely class q = argmax(·).
Classification based approaches have successfully been applied in deep neural networks for counting
objects [43, 69, 87] in images.

2.2.2 Gaussian Regression

In regression, k is derived from an output distribution defined on the real line. However, this comes
with the additional difficulty of handling the fact that k is integer.

The output distribution in this setting is assumed to be Gaussian and the associated cost function is
the classical squared error. During inference and given the output fθ (X) of the network, the best
discrete value that is consistent with the model is simply the rounding operator q = [·].
Gaussian regression has achieved state-of-the-art counting performance in computer vision using
deep learning frameworks [14, 48, 86].

2.2.3 Discrete Poisson modeling

When it comes to modeling count data, it is often shown effective to adopt the Poisson distribu-
tion [23]. First, this strategy retains the advantage of the classification approach to directly pick a
probabilistic model over the actual discrete observations, avoiding the somewhat artificial trick of
introducing a latent variable that would be rounded to yield the observation. Second, the model
avoids the inconvenience of the classification approach to completely drop dependencies between
classes.

Due to these advantages, the Poisson distribution has been used in studies devising deep architectures
for counting systems [61]. For instance in [16, 23, 61], it is shown that the number of objects in
images can be well modeled by the Poisson distribution. Inspired by these previous works, we
also consider the Poisson output distribution P (k | fθ (X)) where P (· | λ) denotes the Poisson
distribution with scale parameter λ.

In that setup, the cost function at learning time is the Poisson negative log-likelihood and the deep
architecture at test time provides the predicted scale parameter fθ (X) ∈ R+, which summarizes the
whole output distribution.

As a decision function q in this setting, we considered several alternatives. A first option is to
again resort to MAP estimation and pick the mode [fθ (X)] of the distribution as a point estimate.
However, experiments showed that the posterior median yields better estimates, and is given by

q (fθ (X)) = argmin
k̂

∞∑
k=0

∣∣∣k̂ − k∣∣∣P (k | fθ (X)) (10a)

= median (k ∼ P (fθ (X))) (10b)

≈
⌊
fθ (X) +

1

3
− 0.02

fθ (X)

⌋
, (10c)

where the last expression is an approximation of the median of a Poisson distributed random variable
of scale parameter fθ (X) [19].

3 DNNs for Count Estimation

Applying deep learning to an existing task often is a matter of choosing a suitable network archi-
tecture. Typically an architecture describes the overall structure of the network including (but not
limited to) the type and number of layers in the network and how these layers are connected to
each other. In turn, designing such an architecture requires deep knowledge about input and output
representations and their required level of abstraction. Many audio-related applications like speech
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recognition [32] or speaker diarization share similar common architectural structures, often found
by incorporating domain knowledge and through extensive hyper-parameter searches. For our task
of source count estimation, however, domain knowledge is difficult to incorporate, as our studies
aim at revealing the best strategy to address the problem. This is why we chose architectures that
already have shown a good level of generalizability for audio applications.

3.1 Network Architectures

The input of all networks is a batch of samples, represented as time-frequency representations X ∈
RD×F×C , whereD refers to the time dimension, F to the frequency dimension andC to the channel
dimension (in the single-channel case, C = 1). In the following, we discuss several commonly used
DNN architectures and their benefits in using them for the task of estimating the number of speakers.
All architectures under investigation are summarized in Fig. 2.

3.1.1 Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNNs) are a variant of standard fully-connected neural networks,
where the architecture generally consists of one or more “convolution layers” followed by fully-
connected layers leading to the output.

Since the individual elements of the filters (weights) are learned during the training stage, convolu-
tional layers can also be interpreted as feature extractors. By stacking up additional layers, CNNs
can extract more abstract features in higher level layers [73].

The sizes of the filter kernels are crucial, and it was shown in [59] that many audio applications can
benefit if domain knowledge is put into the design of the filter kernel size. The use of small filter
kernels, as often used in image classification tasks, does not necessarily decrease performance, when
combined with many layers. Also larger kernels increase the number of parameters and therefore
the computational complexity. It was shown in [67] that 3 × 3 kernels resulted in state-of-the-art
results in singing voice detection tasks. Due to its hierarchical architecture, CNNs with small filters
have the benefit that they can model time and frequency invariances regardless of the scaling of the
frequency axis.

Our proposed architecture is similar to the ones proposed by [66] used for singing voice activity
detection. In our proposed CNN, we consider local filters of size 3 × 3. In the first layer, 2D
convolution is performed by moving the filter across both dimensions of the input in steps of 1
element (striding s = 1 to generate C = 64 feature maps/channels resulting in an output volume
of 64 × (D − 3 + 1) × (F − 3 + 1). In the subsequent convolution layers, a similar operation is
applied but for each convolutional layer, we consider a different number of feature maps. Note, that
the convolution operation is performed independently for every input channel, and then summed up
along the dimension C for each output element. In preliminary experiments we found that by using
max-pooling we received significantly better performance when used after CNN layers.

3.1.2 Recurrent Neural Networks (RNN)

While convolutional layers excel in capturing local structures, RNNs can detect structure in sequen-
tial data of arbitrary length. This makes it ideal to model time series; however, in practice, the
learned temporal context is limited to only a few time instances, because of the vanishing gradi-
ent problem [33]. To alleviate this problem, forgetting factors (also called gating) were proposed.
One of the most popular variants of RNNs with forgetting factors is the Long Short-Term Mem-
ory (LSTM) [34] cell. In [76] such an architecture based on three bi-directional LSTM cells, was
proposed. The architecture is similar to the one employed in [46].

3.1.3 Convolutional Recurrent Neural Networks (CRNN)

Recently, a combination of convolutional and recurrent layers were proposed for audio-related
tasks [3, 18, 64, 88].

The main motivation to stack these layers is to combine the benefits of convolutional layers with
those of recurrent architectures, namely the benefit of convolutional layers in aggregating local fea-
tures with the ability of recurrent layers to model long-term temporal data.
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Table 1: Parameter Optimization of F-CNN Model through hyper-parameter search. Bold hyper-
parameters were found optimal.

Layer Parameters Value Range
CNN 1 Feature Maps {16,32, 64}
CNN 1 Filter Length {3, 5, 7}
Pooling 1 Pooling Length {1,2, 4}
CNN2 Feature Maps {16,32, 64}
CNN2 Filter Length {3, 5, 7}
Pooling 2 Pooling Length {1, 2, 4}
CNN 3 Presence of Layer {Yes, No}
CNN 3 Feature Maps {16, 32,64, 128}
CNN 3 Filter Length {3, 5, 7}
Pooling 3 Pooling Length {1,2, 4}
Fully Connected 1 Hidden Unit {64,128}
Dropout 1 Dropout Percentage [0.1,0.2, 0.5]
Fully Connected 2 Hidden Unit {32,48}
Dropout 2 Dropout Percentage [0.1,0.2, 0.5]

There are different ways to stack CNNs and RNNs to form a CRNN architecture. In our application
the motivation is to aggregate local time-frequency features coming from the output convolutional
neural network and use the LSTM layer to model long temporal structures. As the output of a CNN
layer is a 3D volume D × F × C and the input of a recurrent layer only takes a 2D sequence, the
dimension would need to be reduced. Naturally, the time dimension would need to be kept, therefore
the channel dimension C is stacked with the frequency dimension F resulting in aD×F ·C output.

3.1.4 Full-band Convolutional Neural Networks (F-CNN)

Architectures where filters span the full frequency range and therefore apply convolution in temporal
direction only, have already been successfully deployed in speech [3] and music application [18,21,
58]). Our motivation here is that the activity of speakers happen over wide frequency ranges and a
count (unlike in counting objects in images) cannot be split into sub counts. The full-band kernel
configuration only affects the first hidden layer, as in consecutive outputs all frequency bands are
squashed down to one single frequency band using “valid” convolutions. This is computationally
very efficient, because it reduces the middle layer’s dimensionality of the network significantly
due to this aggregation. To further optimize the performance of the network, we applied a hyper-
parameter optimization technique using Tree-structured Parzen Estimator (TPE) [12]. We used a
search space of several hyper-parameters as shown in Table 1 and set the maximum number of
evaluations to 200.

The results are in agreement with the findings in [66] where small filter kernels of size 3 outper-
formed larger kernels. Also, it can be seen from the results, that increasing the number of feature
maps of the convolutional layers does not necessarily increase the performance.

3.1.5 Full-Band Convolutional Recurrent Neural Networks (F-CRNN)

Similarly to CRNN and to the Deep Speech 2 implementation [3], we added an LSTM recurrent
layer to the output of the last convolutional layer. Since each filter output is only of dimension one,
an additional flattening as in CRNN is not required.

3.2 Output Activation Functions for Count Estimation

For each of the decision functions a suitable output activation and loss is used.

3.2.1 Classification

For classification, the output is required to be one-hot-encoded so that the output is of dimension
y ∈ BL+1, where L is the maximum number of concurrent speakers to be expected. In the final
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Figure 2: Overview of the proposed architectures.

layer of the network, a softmax activation function is used with the cross-entropy function as the
loss.

3.2.2 Gaussian Regression

For the Gaussian regression model, the final output layer is of dimension y ∈ R1. The output layer
nodes have linear activation, and mean squared error is used as the loss function.

3.2.3 Poisson Regression

For the Poisson regression, the likelihood of parameter λ given the true count k is computed by
the negative log-likelihood loss E =

∑
λ − k ∗ log(λ + eps). The output layer activation is the

exponential function.

4 Training

To successfully train and evaluate the proposed DNNs, due to the number of parameters, a large
amount of training data is required. In this section, we introduce relevant speech corpora and de-
scribe how the training dataset was assembled.

4.1 Speech Corpora and Annotations

To date, many available speech datasets contain recordings where only a single speaker is active.
Datasets that include overlapped speech segments, either lack accurate annotations because the an-
notation of speech onsets and offsets in mixtures is cumbersome for humans as shown in Section 1
or lack a controlled auditory environment such as in TV/broadcasting scenarios [28]. Since a real-
istic dataset of fully overlapped speakers is not available, we chose to generate synthetic mixtures.
We recognize that in a simulated “cocktail-party” environment, mixtures lack the conversational
aspect of human communication but provide a controlled environment which helps to understand
how a DNN solves the count estimation problem. As we aim for a speaker independent solution,
we selected a speech corpus with preference to a high number of different speakers instead of the
number of utterances, thus increasing the number of unique mixtures. We selected LibriSpeech
clean-360 [54] which includes 363 hours of clean speech of English utterances from 921 speak-
ers (439 female and 482 male speakers) sampled at 16 kHz. In the further course of this work
(see Section 6), we also present the results from test sets of two other datasets as listed in Table 2.
Furthermore, we included non-speech examples from the TUT Acoustic Scenes dataset [51] in our
training data to avoid using zero input samples for k = 0 to increase the robustness against noise.
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Table 2: Overview of speech corpora used in this work.
Number of Speakers

Name Language Train Valid. Test

LibriSpeech [54] English 921 40 40
TIMIT [25] English 462 24 168
THCHS [81] Mandarin 30 10 10

A single training tuple {X, k} is generated by a synthetic speech mixture and their ground truth
speaker count k. The mixtures are formed from random utterances of different speakers where
silence in the beginning and end was removed to increase the overlap within one segment. In fact,
our method to generate synthetic samples results in an average overlap for k = 2 of 85% and
for k = 10 of 55% (based on 5s segments). This procedure is similar to [50] used to label the
data. Signals are mixed according to (1), peak normalized and then transformed to a time-frequency
matrixX ∈ D×F . Based on a voice activity detection algorithm (VAD), we used an implementation
based on the WebRTC Standard [1] where we computed the ground truth output k via (2). All
samples are normalized to the average Euclidean norm of duration frames to be robust against gain
variations as proposed by [78]. Furthermore, the data was scaled to zero mean and unit standard
deviation across the frequency dimension F over the full training data. Scaling parameters were
saved for validation and test. For a more detailed description of the data set, the reader is referred
to [76].

4.2 Training Procedure

For all experiments we chose a medium sized training dataset of k ∈ {0, . . . , 10} forming a total
of Ttrain = 20.020 mixtures (1820 per k), each containing 10 seconds of audio, resulting in 55.55
hours of training material. For each sample fed into the network, we select a random excerpt of
duration D from each mixture. If not stated otherwise, D = 5 seconds. That way, for each epoch,
the network is seeing slightly different samples, reducing the number of redundant samples and thus
helping to speed up the stochastic gradient based training process. 4 A similar training procedure
is detailed in [66, 76]. Each architecture is trained using the ADAM optimizer [44] (learning rate:
1 · 10−3, β1 = 0.9, β2 = 0.999, ε = 1 · 10−8) using mini-batches of size 32. Our training procedure
verifies that all samples within a batch are from a different set of speakers. In addition to the training
dataset, we created a fully separated validation dataset of Tvalid = 5720 samples using a different set
of speakers from LibriSpeech dev-clean. Early stopping (patience = 10) is applied by monitoring
the validation loss to reduce the effect of overfitting. Training never exceeded more than 50 epochs.

We used the Keras [20] framework and trained on multiple instances of Nvidia GTX 1080 GPUs.

5 Model Selection

In this section, we evaluate three configurations of our proposed architectures, introduced in Sec-
tion 3. Besides the architecture, we investigate different input representations as well as the three
proposed output distributions (see Section 2). The goal of this is to determine the effect of these
parameters and fix them to select a final trained network (model) based on these parameters.

To allow for a controlled test environment and at the same time limit the number of training itera-
tions, we fix certain parameters: In this experiment, the level of the speakers was adjusted before
mixing such that they have equal power. Furthermore, the input duration D was fixed to five sec-
onds. For all experimental parameters, we repeated the training three times with different random
seeds for each run and report averaged results to minimize random effects caused by early stopping.
We used the LibriSpeech dataset for both training and validation and performed evaluation of all
models on Ttest = 5720 unique and unseen speaker mixtures from LibriSpeech test-clean set with
kmax = 10.

4Note that for the validation and testing, excerpts are fixed.
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Several well-established input representations were evaluated in [76] such as (linear or logarithmi-
cally scaled) short-time Fourier transform (STFT), Mel filter bank outputs (MEL), Mel Frequency
Cepstral Coefficients (MFCC) representations, typically chosen for speech applications.

Even though MFCCs are used in related tasks and are included in our baseline evaluations, they are
known to perform poorly when used in CNNs [70]. This is why we decided to not to use the MFCCs
as an input for the proposed architectures. The remaining input representations are identical to those
listed in [76]:

1) STFT: magnitude of the Short-time Fourier transform computed using Hann-windows. A frame
length of 25 ms has been used. The resulting input is X ∈ R500×201.
2) LOGSTFT: logarithmically scaled magnitudes from STFT representation using log(1+STFT ).
The resulting input is X ∈ R500×201.
3) MEL: compute mapping from the STFT output directly onto Mel basis using 40 triangular filters.
The resulting input is X ∈ R500×40.

Before feature transformation, all input files were re-sampled to 16 kHz sampling rate. All features
are computed using a hop size of 10 ms.

5.1 Metric

Whereas the intermediate output y is treated as either a classification or a regression problem (see
Section 2) we evaluate the final output k as a discrete regression problem. We, therefore, employ the
mean absolute error (MAE) which is also commonly used for other count related tasks (c.f. [61,86]).
Since the MAE depends on the true count k, we also present the MAE per class as:

MAE(k) =
1

Ttest

Ttest∑
t=1

∣∣∣k̂ − k∣∣∣ . (11)

which is then averaged across the classes, i.e.,

MAE =
1

kmax

kmax∑
k=0

MAE(k). (12)

5.2 Model Comparison
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Figure 3: Average mean absolute error (MAE) on mixtures of speakers with equal power as de-
scribed in SECTION 5.2 per ground truth count k = [0 . . . 10]. Error bars show the 95% confidence
intervals. Results in (a) are averaged over factors shown in (b) and (c) and similarly for (b) and (c).

To find the best parameters we performed training and evaluation for different input representations
and output distributions (c.f. [76]) as well as all proposed architectures resulting in 135 models.
On average each model was trained for 25 epochs before early stopping was engaged. We present
the results filtered by the three factors (Architecture, Input and Output) in Fig. 3. One can see
that the overall trend of the count error in MAE is similar regardless of the parametrization: all
models are able to reliably distinguish between k = 0 and k = 1, followed by a nearly linear
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Table 3: Mixed Effects Linear Model for k = {1, 2 . . . 7}. Model: MAE ∼ architecture +
feature+ objective+ (1|k)

Factor Coef. Std.Err. z P > |z|
Intercept 0.305 0.091 3.360 0.001
architecture = CRNN -0.028 0.011 -2.419 0.016
architecture = F-CNN 0.102 0.011 8.976 0.000
architecture = F-CRNN 0.102 0.011 8.947 0.000
architecture = RNN 0.094 0.011 8.240 0.000
feature = STFT -0.079 0.009 -8.946 0.000
feature = STFTLOG -0.001 0.009 -0.117 0.907
objective = P-Regression 0.040 0.009 4.555 0.000
objective = G-Regression 0.067 0.009 7.651 0.000
Random Effect k 0.057 0.297

increase in MAE between k = {1, 2 . . . 7}. For k > 7 it can be seen that the classification type
models have learned the maximum of k across the dataset, hence the prediction error decreases
when k reaches its maximum. This is because classification based models intrinsically have access
to the maximum number of sources determined by the output vector dimensionality. Furthermore,
one can see that all three factors have only little effect on the overall performance of the model,
which is especially the case for small k. As indicated by Fig. 3a, choosing linear STFT as input
representation generally results in a better performance compared to MEL and even LOGSTFT.
Concerning the output distribution, a similar observation can be made about classification which
outperforms Poisson regression and Gaussian regression, as indicated by Fig. 3b. In Fig. 3c the
performance of our proposed architectures are compared: while CNN and CRNN are close, both of
them perform better than full frequency band F-CNN and F-CRNN models as well as the recurrent
based architecture, proposed in [76]. However, it is interesting that, despite its simplicity, the F-CNN
and F-CRNN, perform similarly to the Bi-LSTM architecture.

The results are supported by a statistical evaluation based on mixed effect linear model (see Table 3)
where k is modeled as a random effect (for further details we refer to [49]). For a fair comparison
(i.e. reducing the bias towards classification type network) of all models we only evaluate results
for k = {1, 2 . . . 7}; however, all networks were trained on k = {0, . . . , 10}. These results indicate
that CRNN performs statistically significantly better than the CNN. Concerning the input represen-
tation, we can report that using STFT representation outperforms the log-scaled STFT as well as
the MEL representation. Interestingly, we did not find any significant differences between MEL
and STFTLOG in MAE performance. With respect to the output distributions, we can report that
Classification outperforms the other two distributions while Poisson regression performs better than
Gaussian regression which confirms the findings made in [76] based on the RNN model. Therefore,
we select the CRNN classification model with STFT features for subsequent experiments.

Figure 4 gives an indication of the efficiency of each model and the trade-off between performance
and complexity in terms of parameters and floating point multiplications. It can be seen that the
CRNN is not only the one that performs best but also has significantly fewer parameters than the
CNN model. In contrast, the F-CRNN model does only have a fraction of the number of parameters
of the other models, which makes it the most suitable model for mobile applications.

6 Evaluation Results

In this section, we perform several experiments on the proposed CRNN model that has been selected
in the previous section. We assess the performance of this model by showing the results of three
experiments that augment the test data by choosing a different dataset, varying amplitude gain levels
and introduce reverberation. These results also include several baseline methods. Furthermore, we
present the effect of training sample duration and compare the results from the DNN to human
performance gathered in a listening experiment.
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Figure 4: Complexity in number of floating point multiplications and number of weight parameters
(in brackets) over performance in MAE of our five proposed models.

6.1 Baselines

In order to make a meaningful comparison to the CRNN model we propose several baseline methods.
Since we are dealing with a novel task description, related speaker count estimation techniques like
those introduced in Section 1 can hardly be used as baselines. Specifically, [82] would not work
on fully overlapped speech, [5] does not scale to the size of our dataset, since it requires to cross-
correlate the full database against another. Finally, [65] proposes a feature but does not employ a
fully automated system that can be used in a data-driven context. We, therefore, decided to propose
our own baseline methods.

VQ This method uses a feature proposed by Sayoud [65] based on 7th MEL filter coefficient
(MFCC7) which was shown to encode sufficiently important speaker-related information. The
temporal dimension of X is squashed down by subtracting the mean and standard deviation as
X = MFCC7 − STD(MFCC7) ∈ R1. In [65] the mapping from X ⇒ k is done by manually
thresholding X . To translate this into a data-driven approach, we employed a vector quantizer (us-
ing k-means) to get an optimal mapping with respect to the sum of squares criterion. Further, as
preprocessing, we added the same normalization as for our proposed CRNN which in turn decreases
the performance of the method significantly as it is highly gain dependent.

SVM, SVR We found that the information encoded in the 7th MFCC coefficient as used in the VQ
baseline, may not suffice to explain the high variability in our dataset. This is especially important
for larger speaker counts. We therefore extended VQ by including all 20 MFCCs but using the same
temporal dimensionality reduction, resulting in X = MFCC − STD(MFCC) ∈ R20. To deal
with significantly increased dimensionality of X , we used a support vector machine (SVM) with
a radial basis function (RBF) kernel. Similarly to our proposed DNN based methods, we treat the
output as either a classification problem or a regression problem through the use of support vector
regression (SVR).

6.2 Results on Gain Variations

In our parameter optimization in Section 5 we evaluated mixtures with speakers having equal power.
In a more realistic scenario, speakers often differ in volume between utterances. We simulate this
by introducing gain factors between 0.5 and 2.0, randomly applied to the sources, hence resulting
in a deviation of 6 dB compared to the reference where all speakers are mixed to have equal power.
We applied this variation only to the test data to evaluate how models generalize to this updated
condition. The results of this experiment are presented in Table 4. MEAN corresponds to the case
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Table 4: Averaged MAE results of different methods on several datasets for k = [0 . . . 10] with
equal power and random gains (up to ±6 dB)) as well as reverberation. Bold face indicates the
best-performing method.

Trained on LIBRI LIBRI-Reverb

Test Set LIBRI THCS10 TIMIT LIBRI-Reverb

Variation – ±6 dB Reverb – ±6 dB – ±6 dB Reverb

CRNN 0.27 ± 0.22 0.43 ± 0.39 1.63 ± 0.22 0.36 ± 0.25 0.50 ± 0.46 0.31 ± 0.33 0.52 ± 0.52 0.48 ± 0.22
RNN [76] 0.38 ± 0.28 0.57 ± 0.49 1.41 ± 0.87 0.58 ± 0.50 0.76 ± 0.72 0.48 ± 0.41 0.72 ± 0.65 0.59 ± 0.43
SVR 0.58 ± 0.27 0.61 ± 0.31 0.76 ± 0.35 0.69 ± 0.28 0.73 ± 0.32 0.70 ± 0.45 0.62 ± 0.36 0.71 ± 0.35
SVC 0.63 ± 0.39 0.66 ± 0.37 0.85 ± 0.51 0.77 ± 0.37 0.77 ± 0.36 0.89 ± 0.75 0.76 ± 0.61 0.78 ± 0.45
VQ [65] 2.41 ± 1.08 2.41 ± 1.06 2.41 ± 1.08 2.98 ± 1.62 2.98 ± 1.60 2.13 ± 1.06 2.15 ± 1.07 2.41 ± 1.13
MEAN 2.73 ± 1.63 2.73 ± 1.63 2.73 ± 1.63 2.73 ± 1.64 2.73 ± 1.63 2.73 ± 1.63 2.73 ± 1.63 2.73 ± 1.63

when k = 5 is predicted for all test samples. Our results indicate that augmenting the mixture gains
does have an impact on performance, for both, our proposed CRNN model as well as the baseline
methods. For example, for the CRNN model the performance drops by 60% from 0.27 MAE to 0.43
MAE on the LIBRI Speech test set, which is still about 40% better than the second best-performing
method SVR which drops from 0.58 MAE to 0.61 MAE.

6.3 Results on Different Datasets

We also present results on two additional datasets. Again, we only changed the test data; all networks
were trained on LIBRI Speech. Compared to LIBRI Speech, the TIMIT database has an overall lower
recording quality. This is reflected by our results where the performance in MAE drops only slightly
between these two datasets. Interestingly, even when we look at the results of the Mandarin language
THCS10 dataset, performance drops only slightly. More precisely, for our proposed CRNN model,
test performance on THCS10 is even better than on its own LIBRI dataset with gain variations. These
results suggest that the trained model is speaker and language independent.

6.4 Effect of Reverberant Signals

Different acoustical conditions such as increased reverberation time were shown [55] to have a large
effect in speaker counting. To analyze this effect, different acoustic conditions were simulated by
generating the room impulse responses using the image method [2, 29]. For this experiment we set
up an acoustical room with dimension (3.5 m × 4.5 m × 2.5 m) The microphone was positioned
at (1m, 1m, 1m). For the mentioned room, 350 different reverberation times were selected uni-
formly sampled between 0.1 and 0.5 seconds. For each of these reverberation times, we generated
unique room impulse responses that correspond to individual source positions which have minimum
distance 0.1 m to the walls and are otherwise positioned randomly on the (X, Y, 1m) plane. Each
speaker’s signal was convolved with a randomly selected room impulse response before mixing.
Results, again, are shown in Table 4. For the first time, we can see that the CRNN model signifi-
cantly drops in performance from 0.27 MAE to 1.64 MAE, whereas the SVR and SVM baselines
are only affected slightly. This is expected as these baselines are using a temporal aggregation of all
frames, whereas the CRNN is based on smaller (3 × 3) convolutional filter operations that are able
to capture the room acoustics as well. If we assume that our trained deep learning model is fully
speaker independent, a mixture of two utterances from the same speaker would get the same count
estimate as two different speakers. Hence, reverberation tends to result in overestimation and we
observed this even for k = 1 where it, in turn, resulted in an increase in MAE.

To further investigate whether the overestimation can be reduced via training with reverberant sam-
ples, we created a separate set of room impulse responses for the training dataset with different
room dimensions so that the model cannot learn the acoustical conditions from the training dataset.
From the results shown in the last column of Table 4 we can see that the retrained CRNN is able to
outperform the baselines again. Therefore, when retrained with reverberant samples, the proposed
model is able to better discriminate between a reverberant component of the same speaker and con-
tributions from different speakers. For robustness against different acoustic conditions, it is essential
to include reverberant samples in the training dataset.
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6.5 Effect of Duration and Overlap Detection Error

In our last experiment we want to address the influence of the input duration length D. In a real-
world application this parameter would be chosen as small as a possible, because a longer input
duration adds both algorithmic and computational delay to a real-time system. In a small experiment,
we took the proposed CRNN and retrained it using a different number of input frames ranging from
100 to 900 frames (corresponding to one to nine seconds of audio). For each input duration, we
trained the CRNN with three different initial seeds. Results are shown in Fig. 5. It can be seen
that five second duration is a good trade-off between performance and delay. If latency is critical,
keeping D above 2 seconds is recommended for good results. For segments as short as 1 second
the MAE of around 0.6 is almost twice as high as for segments of 5 seconds duration. However,
if instead of the count estimation MAE we compute the accuracy to detect overlap k > 1 vs. non-
overlap k ∈ 0, 1, we still achieve 98.7% accuracy (precision: 99.7%, recall: 98.7%). This shows
that our system can be effectively used to address overlap detection.
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Figure 5: Evaluation of trained CRNN networks over different input duration length D. Error bars
show 95% confidence intervals.

6.6 Listening Experiment

To compare the results of our trained CRNN on our synthesized dataset to human performance,
we chose to reproduce the experiments made in [41, 42]. Kawashima et al. found in extensive
experiments using Japanese speech samples, that participants were able to correctly estimate up
to three simultaneously active speakers without using any spatial cues. We conducted our own
study using the simulated data from the LIBRI Speech (power normalized) set mentioned earlier
in Section 4.1. We therefore randomly selected 10 samples for each k ∈ [0, . . . , 10], resulting in
100 mixtures of 5 seconds duration each. The experiment was done using between-group design,
where one group (blind experiment) did not get any prior information about the maximum number of
speakers in the test set (similar to [42]). However, the maximum number of speakers was revealed
to the other group (informed experiment), which is more related to our data-driven, classification
based CRNN. Further, none of the participants received any feedback about the error made during
the trials. Similarly to [42], lab-based experiments were conducted with ten participants for each
group (n = 20) using a custom designed web-based software.5 In all previous experiments, we
used the mean absolute error metric which does not reveal over and underestimation errors. We
therefore decided to report the average response for each group of k. The results of our lab-based
experiments are shown in Fig. 6. The results for up to three speakers indicate that humans perform
similarly (or better in terms of variance) compared to our proposed CRNN model. Results of the
blind experiment show that underestimation becomes apparent for k > 3. As a reference, we also
included the average results from [42] (Experiment 1, 5 seconds durations) which shows similar
results compared to our blind experiment. For larger speaker counts, the gap between humans and
algorithm is almost three speakers on average. Interestingly, the results of the informed experiment
reveal that this gap closes down to an average difference of one speaker. Finally, we can report
that the machine model reached superhuman performance. Unlike humans, the CRNN is subject to
over-estimations for 4 < k ≤ 9. However, with extensive training, humans might be able to perform

5The experiment is made available through the accompanying website.
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Figure 6: Average responses from humans ( EXP and Kawashima [42]) compared to our proposed
CRNN. Error bars show 95% confidence intervals.

on par. When we asked participants about the strategy they pursued, many reported that with more
than three speakers it is not possible to identify (and count) the speakers but rather compare the
density of the speech to that of 1-3 speakers. For higher speaker counts, participants reported that
the integrated phoneme activity was a relevant cue, supporting our previously mentioned hypothesis.

7 Understanding CountNet

In this section, we focus on the problem of interpreting the strategy undergone by this system for
successful counting.

7.1 Saliency Maps

We first conducted a visual analysis based on salience map representations [72]. In the deep learn-
ing context, saliency maps are visualizations that are able to show which specific input elements a
neural network used for a particular prediction. This allows an object classifier to be used for object
localization or in the case of audio spectrograms, which time-frequency bins are most relevant. The
common idea is to compute the gradient of the model’s prediction with respect to the input, holding
the weights fixed. This determines which input elements need to be changed the least to affect the
prediction the most.

In this work, we used guided backpropagation, first introduced in [74] and successfully deployed
in [66] to compute a saliency map for singing voice detection. For a given input of a three-speaker
mixture, we depicted the saliency map in Fig. 7. The saliency map indicates that our proposed
model does not rely much on the overlapped parts but instead utilize many of the single speaker time-
frequency bins as well as many high-frequency components such as plosives and fricative phonemes.

While the saliency map confirms that the network does exploit both low and high-frequency content
from the input signal, it is not sufficient to conjecture about the strategy implemented in the network.

7.2 Ablation Analysis

To provide further insight, we propose another layer-wise analysis, that provides information con-
cerning the behavior of the model at different successive layers. While we cannot show all filter
outputs (e.g. 64, for the first layer), instead, for each filter, we compute its loss with respect to the
input of the model using gradient update and sort the filters according to their loss behavior.
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Figure 7: Illustration of intermediate outputs from the proposed CRNN for each convolutional layer
for a given input with k = 3 speakers. Saliency map shows positive saliency of guided backpropa-
gation [74]. For each convolutional layer the nine most relevant filters were selected based on their
loss with respect to the input.

Figure 7 depicts the nine highest loss outputs per convolutional layer. We can observe that while the
first layer shows only low-level variations of the input, already the second layer seems to be more
abstract and emphasizes phoneme segmentations based on mid and high frequency content. While
filter outputs of layer 3 and 4 also show more low-frequency content such as the harmonic signals,
the overall visual impression is that the proposed CRNN focuses on the temporal segmentation of
phonemes.

The conducted analysis suggests that the network is doing count estimation based on the detection
of phonemes. To assess the validity of this interpretation, we directly verified the performance of the
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Table 5: Results of a binary logit regression test for the dependent variable correct response over
the independent variable speaking rate. The results are based on n = 2000 randomly drawn results
of the CRNN model trained and evaluated on the TIMIT dataset.

coef std err z P>|z|
speaking rate -1.2697 0.232 -5.477 0.000
intercept 4.3213 0.790 5.468 0.000

method as a function of the phoneme activity. In the following, we verify whether count estimates
are affected by the pronunciation speed.

We assume that the CRNN model learned the aggregated phoneme or syllable activity of all speakers
in a fixed, given excerpt. If that is the case, it would mean that the speaker count estimate would be
affected if the speakers would speak slower or faster in relation to the fixed input window (speaking
rate). We therefore want to see if very slow or very fast speakers significantly increase the error of
our proposed CRNN model. In turn we define a null hypothesis that there is no association between
the speaker count error probability and the value of the speaking rate.

To verify our hypothesis, we created another experiment based on the TIMIT dataset. It comes with
phoneme and word level annotations, from which the speaking rate (defined as syllables per second)
can be computed for each input sample [40]. To reduce the influence of the different acoustical
environment in TIMIT compared to Libri Speech, we retrained the CRNN classification model on
the TIMIT training dataset, using the same parameters as described in Section 4. At test time we
randomly generated 5 seconds excerpts of k = 6 from the TIMIT test subset and predicted the error
E(k) = k̂ − k for each CRNN output. We grouped the estimates into three classes: E(k) = 0
(correct response), E(k) > 0 (overestimation), E(k) < 0 (underestimation). For k = 6 we ended
up with two groups of results because overestimation did not take place. From the remaining two
groups underestimation and correct responses we randomly selected 1000 samples each, resulting
in an total sample size of n = 2000. For these samples we computed an average speaking rate of
3.40 syllables per second and a standard deviation of 0.2.

We chose a Generalized Linear Model (GLM) for the statistical test, as described in [38]. This allows
us model the results with a binary logit regression model that turns the mean of E into a binomial
distributed probability modeled by log linear values: logit(E) ∼ Intercept+ β · Speaking Rate. The
results of our test are shown in Table 5 and indicate the speaking rate has statistically significant
influence on the error p < 0.05, df = 1,Pseudo R2 = 0.0111. To better understand the effect of our
predictor, we computed an odds ratio exp(speaking rate) = 0.28.

This indicates that a decrease in speaking rate of 1 syllable per second will increase the likeliness
of an underestimation error by 28 percent. Even though this is considered as a small effect size,
it gives an interesting hint for the strategy taken of our proposed model and also suggests that for
improved robustness, training would benefit from a large variety of speaking rates. Furthermore, it
still remains unclear the model would suffer from languages with a speaking rate which is naturally
higher or lower than English or Chinese (see [53]).

8 Conclusion

We introduced the task of estimating the maximum number of concurrent speakers in a simulated
“cocktail-party” environment using a data-driven approach, discussing how to frame this task in
a deep learning context. Building upon earlier work, we investigated what method is best to out-
put integer source count estimates and also defined suitable cost functions for optimization. In a
comprehensive study, we performed experiments to evaluate different network architectures. Fur-
thermore, we investigated and evaluated other important parameters such as input representations or
the input duration. Our final proposed model uses a convolutional recurrent (CRNN) architecture,
based on classification at the network’s output. Compared to several baselines, our proposed model
has a significantly lower error rate; it achieves error rates of less than 0.3 speakers in mean abso-
lute error for classifying zero to ten speakers—a decrease of 28.95% compared to [76]. In further
simulations, we revealed that our model is robust to unseen languages (such as Chinese), as well
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as varying acoustical conditions (except for reverberation, where the error increased significantly).
However, including reverberated samples in the training reduces the error. Additionally, we con-
ducted a perceptual experiment showing that these results clearly outperform humans. We hope
our research stimulates future research on data-driven count estimation, a task that currently lacks
real-world datasets. Lastly, in an ablation study, we found that the CRNN uses a strategy to segment
phonemes/syllables to estimate the count. Hence, we hypothesize that a speaker count estimate is
influenced by the average speaking rates of certain languages. Finally, to underpin this hypothesis,
we showed that the speaking rate has a significant effect on the error of our model.

Acknowledgments

The authors gratefully acknowledge the compute resources and support provided by the Erlangen
Regional Computing Center (RRZE).

Many thanks to Antoine Liutkus for his constructive criticism of the manuscript.

xix



References
[1] Webrtc vad v2.0.10. https://github.com/wiseman/py-webrtcvad.

[2] J. B. Allen and D. A. Berkley. Image method for efficiently simulating small-room acoustics. The Journal
of the Acoustical Society of America, 65(4):943–950, 1979.

[3] D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper, B. Catanzaro, J. Chen, M. Chrzanowski,
A. Coates, G. Diamos, et al. Deep speech 2: End-to-end speech recognition in English and Mandarin. In
Proc. Intl. Conference on Machine Learning, pages 173–182, 2016.

[4] V. Andrei, H. Cucuand, and C. Burileanu. Detecting overlapped speech on short timeframes using deep
learning. In Proc. Interspeech Conf., 2017.

[5] V. Andrei, H. Cucuand, A. Buzo, and C. Burileanu. Counting competing speakers in a time frame - human
versus computer. In Proc. Interspeech Conf., 2015.

[6] X. Anguera, S. Bozonnet, N. Evans, C. Fredouille, G. Friedland, and O. Vinyals. Speaker diarization: A
review of recent research. IEEE Trans. Audio, Speech, Lang. Process., 20(2):356–370, 2012.

[7] T. Arai. Estimating number of speakers by the modulation characteristics of speech. In Proc. IEEE Intl.
Conf. on Acoustics, Speech and Signal Processing (ICASSP), volume 2, pages II–197, 2003.

[8] S. Araki, T. Nakatani, H. Sawada, and S. Makino. Stereo source separation and source counting with map
estimation with dirichlet prior considering spatial aliasing problem. In Proc. Intl. Conference on Latent
Variable Analysis and Signal Separation (LVA/ICA), pages 742–750. Springer, 2009.

[9] S. Arberet, R. Gribonval, and F. Bimbot. A robust method to count and locate audio sources in a multi-
channel underdetermined mixture. IEEE Trans. Signal Process., 58(1):121–133, 2010.

[10] C. Arteta, V. Lempitsky, and A. Zisserman. Counting in the wild. In European Conference on Computer
Vision, pages 483–498. Springer, 2016.

[11] J. Berger. Statistical Decision Theory and Bayesian Analysis. Springer-Verlag, 1985.

[12] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization. In
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[75] F.-R. Stöter, M. Schoeffler, B. Edler, and J. Herre. Human ability of counting the number of instruments
in polyphonic music. In Proceedings of Meetings on Acoustics, volume 19, 2013.

xxii
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