, pnts ), grant n o PNTS-2018-5, as well as from the financial contribution from the French Ministry of agriculture "Agricultural and Rural Development

A. Bégué, D. Arvor, B. Bellón, J. Betbeder, D. De-abelleyra et al.,

V. Ferraz, C. Lebourgeois, M. Lelong, S. R. Simões, and . Verón, Remote sensing and cropping practices: A review, Remote Sensing, vol.10, issue.1, p.99, 2018.

S. Olen and B. Bookhagen, Mapping damage-affected areas after natural hazard events using sentinel-1 coherence time series, Remote Sensing, vol.10, issue.8, p.1272, 2018.

N. Kolecka, C. Ginzler, R. Pazur, B. Price, and P. H. Verburg, Regional scale mapping of grassland mowing frequency with sentinel-2 time series, Remote Sensing, vol.10, issue.8, p.1221, 2018.

L. Chen, Z. Jin, R. Michishita, J. Cai, T. Yue et al., Dynamic monitoring of wetland cover changes using time-series remote sensing imagery, Ecological Informatics, vol.24, pp.17-26, 2014.

L. Khiali, D. Ienco, and M. Teisseire, Object-oriented satellite image time series analysis using a graph-based representation, Ecological Informatics, vol.43, pp.52-64, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01741613

F. Guttler, D. Ienco, J. Nin, M. Teisseire, and P. Poncelet, A graph-based approach to detect spatiotemporal dynamics in satellite image time series, ISPRS Journal of Photogrammetry and Remote Sensing, vol.130, pp.92-107, 2017.
URL : https://hal.archives-ouvertes.fr/lirmm-01541930

B. Bellón, A. Bégué, D. L. Seen, C. A. De-almeida, and M. Simões, A remote sensing approach for regional-scale mapping of agricultural land-use systems based on NDVI time series, Remote Sensing, vol.9, issue.6, p.28, 2017.

J. Inglada, A. Vincent, M. Arias, B. Tardy, D. Morin et al., Operational high resolution land cover map production at the country scale using satellite image time series, Remote Sensing, vol.9, issue.1, p.95, 2017.

N. Kussul, M. Lavreniuk, S. Skakun, and A. Shelestov, Deep learning classification of land cover and crop types using remote sensing data, IEEE Geosci. Remote Sensing Lett, vol.14, issue.5, pp.778-782, 2017.

N. A. Abade, O. A. Júnior, R. F. Guimarães, and S. N. De-oliveira, Comparative analysis of modis time-series classification using support vector machines and methods based upon distance and similarity measures in the brazilian cerrado-caatinga boundary, Remote Sensing, vol.7, issue.9, pp.12160-12191, 2015.

R. Flamary, M. Fauvel, M. D. Mura, and S. Valero, Analysis of multitemporal classification techniques for forecasting image time series, IEEE Geosci. Remote Sensing Lett, vol.12, issue.5, pp.953-957, 2015.

I. Heine, T. Jagdhuber, and S. Itzerott, Classification and monitoring of reed belts using dual-polarimetric terrasar-x time series, Remote Sensing, vol.8, issue.7

L. Zhang and B. Du, Deep learning for remote sensing data: A technical tutorial on the state of the art, IEEE Geoscience and Remote Sensing Magazine, vol.4, pp.22-40, 2016.

Y. Bengio, A. C. Courville, and P. Vincent, Representation learning: A review and new perspectives, IEEE TPAMI, vol.35, issue.8, pp.1798-1828, 2013.

X. Zhu, D. Tuia, L. Mou, G. X. Zhang, F. Xu et al., Deep learning in remote sensing: A comprehensive review and list of resources, IEEE Geosci. Remote Sens. Mag, vol.5, pp.8-36, 2017.

D. Ienco, R. Gaetano, C. Dupaquier, and P. Maurel, Land cover classification via multitemporal spatial data by deep recurrent neural networks, IEEE GRSL, vol.14, issue.10, pp.1685-1689, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01931486

H. Lyu, H. Lu, and L. Mou, Learning a transferable change rule from a recurrent neural network for land cover change detection, Remote Sensing, vol.8, issue.6

P. Benedetti, D. Ienco, R. Gaetano, K. Ose, R. G. Pensa et al., M3fusion: A deep learning architecture for multi-{Scale/Modal/Temporal} satellite data fusion

A. Graves, A. Mohamed, and G. E. Hinton, Speech recognition with deep recurrent neural networks, in: ICASSP, pp.6645-6649, 2013.
DOI : 10.1109/icassp.2013.6638947

T. Linzen, E. Dupoux, and Y. Goldberg, Assessing the ability of lstms to learn syntax-sensitive dependencies, TACL, vol.4, pp.521-535, 2016.

A. Van-den-oord, N. Kalchbrenner, L. Espeholt, K. Kavukcuoglu, O. Vinyals et al., Conditional image generation with pixelcnn decoders, pp.4790-4798, 2016.

D. H. Minh, D. Ienco, R. Gaetano, N. Lalande, E. Ndikumana et al., Deep recurrent neural networks for winter vegetation quality mapping via multitemporal SAR sentinel-1, IEEE Geosci. Remote Sensing Lett, vol.15, issue.3, pp.464-468, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01931485

E. Ndikumana, D. H. Minh, N. Baghdadi, D. Courault, and L. Hossard, Deep recurrent neural network for agricultural classification using multitemporal SAR sentinel-1 for camargue, france, Remote Sensing, vol.10, issue.8, p.1217, 2018.
DOI : 10.3390/rs10081217

URL : https://hal.archives-ouvertes.fr/hal-01900540

K. Simonyan and A. Zisserman, Very deep convolutional networks for largescale image recognition

V. Nair and G. E. Hinton, Rectified linear units improve restricted boltzmann machines, pp.807-814, 2010.

S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, pp.448-456, 2015.

G. E. Dahl, T. N. Sainath, and G. E. Hinton, Improving deep neural networks for LVCSR using rectified linear units and dropout, pp.8609-8613, 2013.
DOI : 10.1109/icassp.2013.6639346

URL : http://www.cs.toronto.edu/~gdahl/papers/reluDropoutBN_icassp2013.pdf

K. Soma, R. Mori, R. Sato, N. Furumai, and S. Nara, Simultaneous multichannel signal transfers via chaos in a recurrent neural network, Neural Computation, vol.27, issue.5, pp.1083-1101, 2015.

D. H. Minh, D. Ienco, R. Gaetano, N. Lalande, E. Ndikumana et al., Deep recurrent neural networks for winter vegetation quality mapping via multitemporal sar sentinel-1, IEEE GRSL Preprint, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01931485

K. Cho, B. Van-merrienboer, C. ¸. Gülçehre, D. Bahdanau, F. Bougares et al., Learning phrase representations using RNN encoder-decoder for statistical machine translation, pp.1724-1734, 2014.
DOI : 10.3115/v1/d14-1179

URL : https://hal.archives-ouvertes.fr/hal-01433235

L. Mou, P. Ghamisi, and X. X. Zhu, Deep recurrent neural networks for hyperspectral image classification, IEEE TGRS, vol.55, issue.7, pp.3639-3655, 2017.
DOI : 10.1109/tgrs.2016.2636241

URL : https://doi.org/10.1109/tgrs.2016.2636241

D. Britz, M. Y. Guan, and M. Luong, Efficient attention using a fixed-size memory representation, pp.392-400, 2017.
DOI : 10.18653/v1/d17-1040

URL : https://doi.org/10.18653/v1/d17-1040

R. Gaetano, D. Ienco, K. Ose, and R. Cresson, Mrfusion: A deep learning architecture to fuse pan and ms imagery for land cover mapping

S. Hou, X. Liu, and Z. Wang, Dualnet: Learn complementary features for image recognition, IEEE ICCV, pp.502-510, 2017.
DOI : 10.1109/iccv.2017.62

O. Hagolle, M. Huc, D. Villa, G. Pascual, and . Dedieu, A Multi-Temporal and Multi-Spectral Method to Estimate Aerosol Optical Thickness over Land, for the Atmospheric Correction of FormoSat-2, LandSat, VENµS and Sentinel-2 Images, Remote Sensing, vol.7, issue.3, p.31, 2015.

V. Lebourgeois, S. Dupuy, E. Vintrou, M. Ameline, S. Butler et al., A combined random forest and OBIA classification scheme for mapping smallholder agriculture at different nomenclature levels using multisource data (simulated sentinel-2 time series, VHRS and DEM), vol.9, p.259, 2017.

D. P. Kingma and J. Ba, Adam: A method for stochastic optimization

R. Gaetano, D. Ienco, K. Ose, and R. Cresson, Mrfusion: A deep learning architecture to fuse PAN and MS imagery for land cover mapping