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Optimal exciting motion for fast robot
identi�cation. Application to contact painting tasks

with estimated external forces.
Takuma Katsumata, Benjamin Navaro, Vincent Bonnet, Philippe Fraisse,

Andr·e Crosnier, and Gentiane Venture

Abstract�Accurate geometric and inertial parameter estimates
of a modern manipulator are of crucial importance to obtain good
performances during a contact task or for obtaining more and
more required realistic simulations. CAD data are often provided
by the manufacturer, but these are inaccurate and do not take
into account eventual end-effector modi�cations. Fortunately,
they can be identi�ed. However, in real industrial applications,
dynamic identi�cation is rarely performed because it supposedly
requires a cumbersome and long procedure. There is a need of a
practical but accurate method to identify dynamics parameters.
Thus, this paper proposes a practical framework to identify a
Kuka LWR robot in less than 10 s. An experimental comparison
between several cost functions showed that logfdet(�)g is the
best trade-off for getting a good parameters accuracy within
a minimal time. The procedure identi�es very accurately the
inertial parameters of the robot and of its end-effector and
recognizes its geometric parameters from a look-up table. When
using identi�ed parameters, joint torques were estimated with an
RMS difference lower than 1 N.m when compared to measured
ones. The identi�ed model was then used to generate a contact
painting trajectory. During this contact task, the external forces
were estimated and controlled without the use of a force sen-
sor. Experimentation showed that the external forces could be
identi�ed with an RMS difference lower than 3 N.

Index Terms�Dynamic identi�cation, force control, painting
task, Kuka LWR.

I. INTRODUCTION

MODERN robotics is highly linked to the development
of new applications involving human-robot physical

interactions in unknown environments. For those, an ef�cient
dynamics controller, force or torque controller, is of crucial
importance [1]. Dynamics controllers are often based on the
dynamics model of the robot. To perform correctly, such
controllers require an accurate estimate of segments inertial
parameters (SIP). SIP refer to the mass, the 3D center of
mass (CoM) and the six elements of the inertia matrix of
each segment of a mechanical structure. In robotics, SIP are
usually extracted from CAD data. However, CAD data do
not take into account cabling, covers, glued components, or
the several, sometimes daily, modi�cations of the end-effector
of a multipurpose manipulator. This is why during the last
decades, several groups have developed methods to identify
the dynamics of all kinds of robots [2]�[10]. There are several
ways to estimate the SIP of a manipulator. Least squares
methods and maximum likelihood estimation methods are still
the most popular approaches [11], [12]. Even if state observer
[13] or adaptive �lters [9], [14] can be used to estimate

SIP online, it is preferable to use specially designed optimal
exciting motion to improve the accuracy of an identi�cation
process [6], [8], [10], [12], [15], [16]. The last 20 years
have seen the development of numerous approach aiming
at facilitating the identi�cation process of a robot by using
exciting motions generated using constrained optimization pro-
cesses. This allow to improve the quality of the identi�cation
process while minimizing the overall required time [15]. The
literature studies use optimization to �nd the joint trajectories
that minimize a criterion related to the condition number, the
logfdet(�)g or even the Hadamard’s inequality [10]. However,
it is not clear which cost function should be used to minimize
the time required to perform an identi�cation process. This
is of importance since multi-tasks and recon�gurable robots,
that need to be identi�ed often, are more and more popular.
Once the SIP are identi�ed, advanced inverse dynamics control
[18] can be used to control the interactions forces with the
environment for example. Interactions forces are present in
numerous industrial tasks and in the presence of uncertainties
force control has a clear advantage over traditional position
based controllers since more adaptable. Indeed, in the case of
a position based approach, if the assignment or the robot end-
effector tool is changed, costly new software implementation
and/or a new layout of the robot surroundings are required.
Thus, a force controlled approach could be more cost-effective
in the long run. A force controller is usually based on a
force sensor. The main drawbacks with using a force sensor
is that it is expensive, fragile, it often requires calibration, and
that it limits the robot’s maximal payload. An alternative of
using a force sensor would be to estimate the external forces
applied to the robot based on sensing already available in the
robot. Usually this includes joint position sensors and torques
exerted by the motors. Methods for external forces estimation
are also available in commercial industrial robot systems,
such as provided by ABB [17]. The functioning principle of
these systems are, unfortunately, often unknown and they are
designed to correctly predict only very large external forces.
Recently, several authors proposed to estimate external forces
trough a state observer [13], introducing delay, or black box
approaches [19], requiring a large amount of data. The latter
are speci�c to each robot and can be cumbersome to use
since the dynamics of the robot should be learned for different
types of motions as the generalization is not guaranteed. State
observers are also very sensitive to acceleration discontinuities
that can cause transient behavior in the estimates of the
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external forces [13]. Also, since the robot’s inertial parameters
are not separately identi�ed, learning approaches are not
convenient for simulation. An other common approach is to
consider the residue between the measured joint torques and
the estimated ones, from an identi�ed model, as being an
image of the external forces and moments [20]�[22]. However,
to the best of our knowledge such approaches have never been
validated in a real industrial dynamic contact task [21].
Consequently, in this paper, we proposed to use a model based
approach since we believe that there is still possibilities for
improvement. Mainly the identi�cation could be performed
more accurately and ef�ciently, in terms of required time, us-
ing speci�cally designed trajectories. Because the joint torques
residue requires the robot’s Jacobian matrix, the accuracy of
external forces is also directly related to the accuracy of the
kinematics. Wilson et al. [11] have proposed an interesting
approach to estimate the kinematics, i.e the length, of a
pendulum like tool from the inertial parameters estimation
of the center of mass. However, this study was limited to a
one degree-of-freedom model and to a unconstrained trajectory
generation task.

A. Paper contribution

In this context, the paper proposes a practical study to
determine very accurately the SIP of a serial manipulator in a
short time (a few seconds). The goodness of the identi�cation
is demonstrated with a force control framework allowing to es-
timate external forces without force sensor, rather using solely
an identi�ed model, joint angles and joint torque sensors. Our
approach is demonstrated with the popular KUKA LWR robot
(KLWR) performing a painting task with a roller. Together
with this paper is submitted to the community [23] the optimal
exciting motion to be played onto the KLWR, the KLWR
identi�cation pipeline, the identi�ed inertial parameters and
the corresponding V-REP dynamics simulation. Beside that,
the contributions of this paper are in order of importance:

� a comparison of different cost functions used to generate
the best optimal exciting motion in the minimum amount
of time,

� a new method to estimate the inertial and geometric
parameters of an end-effector in industrial context,

� an improved method to estimate the external forces
without force sensor based on dynamics identi�cation
results.

An overview of the framework is represented on Fig.1.
The paper is organized following �gure 1. In section II.A
the KLWR geometric, dynamics and identi�cation models
are described. Section III presents the generation of optimal
exciting motion and compares different optimality criterion.
Section IV and V present the painting trajectory generation and
its tracking with a classical position and force controller based
on the identi�ed models. Section VI presents the experimental
results obtained with the KLWR and two types of rollers.
Finally, the paper ends by discussing the advantages and
limitations of the proposed framework.

II. KUKA LWR MODEL

A. DH table

The forward kinematics model of the KLWR was calculated
from the modi�ed Denavit-Hartenberg table (Table I). The
KLWR is composed of NL=8 rigid segments articulated by
NJ=7 DoF (Fig. 2). The segment lengths L1; L2; L3 were set
using available CAD data [24], [25].

TABLE I
MODIFIED DH PARAMETERS OF THE KUKA LWR

i ai �i �i �i di �i ri
1 0 1 0 0 0 �1 L1
2 1 1 0 �=2 0 �2 0
3 2 1 0 ��=2 0 �3 L2
4 3 1 0 ��=2 0 �4 0
5 4 1 0 �=2 0 �5 L3
6 5 1 0 �=2 0 �6 0
7 6 1 0 ��=2 0 �7 0

B. Inverse geometric model

The calculation of the KLWR’s inverse geometric model
is not trivial since it has 7 DoF. This redundancy problem
can be solved classically using the pseudo-inverse Jacobian
matrix and its nullspace to avoid joint limitations, for example.
However, in industrial context it is preferable to use an analytic
and reliable solution. Consequently, the redundancy problem
was addressed by �xing the KLWR’s swivel angle, ’, similarly
to Tolani et al. [26] and subsequently using the classical Paul
method. With this approach, the elbow is still free to swivel
about a circular arc whose normal vector is parallel to the
axis de�ned from the shoulder to the wrist for any given end-
effector pose. In Fig. 3, Ps, Pe, Pw de�ne the position of
the robot’s shoulder, elbow and wrist, respectively. The origin
of the coordinate system Ps is coincident with the shoulder
location. To mathematically describe this circle, the normal
vector n̂ of the plane formed by the unit vector in the direction
from the shoulder to the wrist was de�ned. A local coordinate
system was then created from the two unit vectors û and v̂.
Note that û was arbitrarily set to be the projection of a user
de�ned vector b̂. The mathematical descriptions of û, v̂, and
n̂ vectors can be found in Tolani et al. [26]. The equation of
the position of the elbow joint can be obtained from trivial
trigonometry relations [26]:

cos(�) =
L2

2 +D2
sw � L2

3
2L2Dsw

c = cos(�)L2n̂
R = sin(�)L2

Pe(’) = c +R(cos(’)û + sin(’)v̂)

(1)

Finally, from the elbow position Pe and from the desired
end-effector pose the recursive classical Paul method was used
to solve the inverse geometric problem.
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Fig. 1. Overview of the proposed framework. Optimal exciting motions are generated (�rst block) to excite the inertial parameters. Using the resultant
trajectories, the inertial and geometric parameters are identi�ed (second block). A painting trajectory is generated based on the updated models (third block)
and tracked with a position and force controller able to estimate the external forces without force sensor.

Fig. 2. Description of the KUKA LWR robot. Frames and segment de�nition
used in the modi�ed Denavit-Hartenberg description Table I.

C. Dynamics models

The inverse dynamics model of the KLWR was calculated
from Newton-Euler equations to obtain the joint torques vector

Fig. 3. The elbow joint is free to move on a circle for any pose of the
end-effector.

� (NJ � 1) [27].

� = M(q)�q + C(q; _q) + G(q) + �f + �ext
�f = diag( _q)Fv + diag(sign( _q))Fc

(2)
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where q, _q and �q are the NJ � 1 vectors of joint angles,
velocities and accelerations, M(q) (NJ � NJ) is the robot
inertia matrix, C(q; _q) (NJ � 1) is the vector of Coriolis
and centrifugal terms, and G(q) (NJ � 1) is the vector
of the gravitational terms. �ext is the joint torques vector
representing the in�uence of the external forces. �f is the
NJ � 1 vector of joint torques due to coulomb and vis-
cous friction effects. FC = [FC1:::FCNJ ]T (NJ � 1) is
the vector containing the Coulomb’s friction coef�cients and
FV = [FV1:::FVNJ ]T (NJ � 1) is the vector containing the
viscous friction coef�cients.

The equations of motion are linear with respect to the
inertial parameters expressed in the joint frames [2]. Thanks
to this property the observation matrix, also called regressor
matrix, can be built and (2) then rewritten as:

W(q; _q; �q)� = � (3)

where W (NJ � (10NL + 2NJ )) is the regressor of the
chains and � ((10NL + 2NJ) � 1) is the vector of stan-
dard inertial parameters and friction parameters to be iden-
ti�ed, � = [�T

1 :::�T
NL

FCT FVT ]T . For each segment i,
10 inertial parameters can be expressed in the joint frame
�i =

�
Mi MSTi TITi

� T , where Mi is the mass, MSi =
�
MSXi MSYi MSZi

� T is the 3-dimension vector of the
�rst moment of inertia, and the 6-dimension vector TIi =�
XXi Y Yi ZZi XYi XZi Y Zi

� T that gathers the
components of the 3� 3 tensor of inertia.

D. Inertial parameters identi�cation
1) Base parameters identi�cation: Eq. (3) can be used

to identify �, the vector containing the standard inertial
parameters. However, since W is not a full column rank
matrix, a direct least squares approach is not suitable for its
solution. This equation can be rewritten using the so-called
base parameters (BP) as de�ned in [3] in a way that the
regressor is of full column rank. Note that unless there is some
coupling between joints, the friction parameters are always
independent. Consequently, vector �b (NB�1) is the minimal
identi�able set of inertial parameters required to describe the
dynamics of the system. Since the BP are intrinsically related
to the kinematic structure of the system they can be computed
numerically [3]. Their computation consists in �nding the
equivalent regressor Wb (NJ �NB) that is a full rank matrix
by combining the linearly dependent columns. This results in
the elimination and regrouping of the SIP into the vector �b,
and eq. (3) can be written as (see [3], [2]):

W� = Wb�b = � (4)

Sampling (4) over a given motion, the identi�cation problem
for Ns time-samples becomes:

2

6
4

Wb(1)
...

Wb(NS)

3

7
5 �b =

2

6
4

�(1)
...

�(NS)

3

7
5

�Wb�b = ��

(5)

It can be solved by using a weighted Moore-Penrose pseudo-
inverse matrix:

��b = ( �WT
b P �Wb)�1P �WT

b
�� (6)

where P is a weight matrix based on the calculation of the
relative standard deviation of the identi�ed parameters [4].
The choice of an of�ine least-square identi�cation process
over an adaptive �lter [9] to identify the inertial parameters
has been made since it allows to obtain physically consistent
inertial parameters. Moreover, adaptive �lter convergence time
to a stable estimate of an inertial parameters will be directly
linked to the excitation motion resulting in the same overall
estimation time [9] .

E. End-effector identi�cation
The end-effector tool of a manipulator robot is more likely

prone to modi�cation. This will create dynamics but also
geometric changes. In human, it has been shown that the shape
of an handled object can be retrieved from the knowledge of
its inertial parameter only [28]. Similarly, this paper proposes
a novel method allowing to update the end-effector tool geo-
metric parameters from its identi�ed SIP using proprioceptive
information.

1) Dynamics identi�cation: A speci�c identi�cation model
was built to identify only the end-effector inertial parameters.
It is based on two sets of grouped equations representing the
trajectories without and with end-effector [29].

� ��u
��l

�
=

� �Wu
b 0

�Wl
b

�Wl
L

� �
�b
�L

�
(7)

where upper and lower equations represent the trajectory
without and with end-effector, respectively. ��u, ��l, �Wu

b and
�Wu
L are the measured joint torques vectors and BP regressor

matrices corresponding to the end-effector inertial parameters
when the KLWR is unloaded and loaded, respectively. Note
that for the last link the SIP and BP are equal. The link
parameters �b and the end-effector inertial parameter �L are
estimated by solving eq. (7) similarly to eq. (6).

2) Geometrical identi�cation: The identi�cation of the end-
effector geometric parameters is based on the relation between
inertial and geometric parameters. For example, a large size
object will have large inertial parameters and a sharp shaped
one will have moments of inertia around two axes larger than
the moment of inertia about the remaining axis. Using this
principle, it is possible to recognize the length and the width of
a paint roller from a priori set look-up table. This look-up table
contains the corresponding inertial and geometric parameters
for each investigated painting tool.

From this look-up table, the smallest differences between
identi�ed and known parameters allow to determine which is
the corresponding painting tool.

However, considering that several tools might be included
in the look-up table, it is better to reduce the dimension of
the vector containing the variables required to discriminate
one tool among others. Therefore, the norm of the error of a
lower dimensional space, created using a principal component
analysis (PCA), of the inertial parameters was used. The
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PCA was set by considering a set of NT different tools. The
SIP parameters (robot + tool) corresponding to the different
tools are noted in the look-up table as �1; � � ��NT . The
corresponding transformation matrices for converting to the
N -dimensional PCA space are denoted as Up 2 R10�N .
The reduced set of inertial parameters, i.e. in PCA space,
�pca
j 2 RN of the j th tool can be expressed by the following

equations:

�pca
j = UT

p �

=
�
U1 U2 � � � UN

� T �j

with j = 1; � � � ; NT
�� =

�
�1 �2 � � � �NT

�

= USVT

=
�
Up UN+1 � � � U10

�
SVT

(8)

where U is the unitary matrix from a singular value decom-
position of �� composed of all end-effector’s SIP.
Thus, the error norm between the tool being identi�ed �pca

Id
and one from the look-up table can be calculated by jj
�pca
j � �pca

Id jj and j = 1; � � � ; NT . Consequently, the tool
with the smallest norm error in the PCA space will be selected.

III. OPTIMAL EXCITING MOTIONS

A. B-spline trajectory parameterization
To solve the problem of generating exciting motions with

an optimization, several approaches have been proposed to
represent joint trajectories [6], [8], [10], [12], [15], [16]. The
objective is to reduce the number of search variables, the
computation time while having a complex trajectory and an
accurate estimation of �rst and second order kinematics differ-
entiation. In this paper, B-splines were retained to interpolate
joint trajectories [8]. The principle of the joint parametrization
is shown in Fig. 4. The joint trajectory lasts for a time TF (with
TF being an integer in seconds) and is created from NP way
points which are equally spaced every 1 s. In the optimization,
the joint angles (q(kTS) k = 0; � � � ; NS � 1), velocities
( _q(kTS)) and accelerations (�q(kTS)) were interpolated at 100
Hz (TS = 0:01 s). Also the trajectories were forced to have
initial and �nal velocity and acceleration being zero thus �fth
order B-splines were used. Finally, all joints trajectories were
set to start and �nish their motion at the same time.

B. Excitation criterion
As proposed by Jin et al. [10], three cost functions (condi-

tion number, Log determinant, and Hadamar inequality) were
investigated to generate the optimal exciting motion [10]:

Jc = cond( �Wb )
Jd = �log(det( �WT

b
�Wb ))

Jh = �log(
NbY

g=1

NJ NsX

k=1

Wb
2
kg)

(9)

where cond(Wb ) is the condition number of the BP regressor
matrix, Wb kg is the kth element of the gth column of the
regressor matrix Wb and Nb is the number of BP.

C. Optimization process
The optimization problem that generates the constrained

exciting motion can be formulated as:

Find �q� 2 min
�q2RN J � N s

J#

subject to
q�j � �qj � q+

j

_q�j � _�qj � _q+
j

�q�j � ��qj � �q+
j

_qj(0) = _qj(Tf ) = 0
�qj(0) = �qj(Tf ) = 0
j �j j� �+

j

with j = 1; � � � ; NJ
zground � �ze; �zw
0 � �dvertex

(10)

where J# is the cost function and # = c; d; h. Joint angles,
velocities, accelerations and torques must be within their
physical limitations. q�j , q+

j , _q�j , _q+
j , �q�j , _q+

j , and �+
j are

the lower and upper joint angle, velocity, acceleration and
maximal torque limitations, respectively. Additionally in order
to avoid auto-collision and collision with the environment, two
kinematics constraints were added: the elbow and wrist frames
must not collide with the ground and self-collisions must be
avoided:

zground � �ze; �zw
0 � �dvertex

(11)

where �ze, �zw and zground are position of elbow and wrist
frame along Gz axis and a virtual �oor created to avoid
collision with the actual ground. The constraints for auto-
collision were simply de�ned using spheres attached to each
link of the KLWR and by imposing the Euclidean distance
�dvertex 2 R12�NS , between two spheres to be always positive.

D. Determination of optimal motion duration time
The optimal exciting motion can be obtained by solving

the problem de�ned in eq.10. However, there is no consensus
in the literature on which cost function should be used to
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reach the best exciting motion in the shortest duration time.
In order to determine the best duration time, the values of
each criterion in function of the duration time TF varying
from 1 to 15 s were analyzed as represented in Fig. 5. On
the right side of this �gure, the differences of cost function
values between two consecutive duration time are presented.
From this �gure, it is clear that no signi�cant minimization
of cost function values can be observed after 10 s. Also, we
chose to have the same value for all three cost functions for
comparison purpose. Consequently, the best trade-off between
cost function minimization and time duration was set to 10 s.

E. Results of the dynamics identi�cation of the KLWR
The performances of the three optimal trajectories were

assessed experimentally. First, each of the three 10 s optimal
exciting motions were played onto a KLWR and joint angles
and torques were collected at 1 kHz. All data were low-pass
�ltered with a zero-phase lag �lter (10 Hz , Butterworth 5th
order) and joint velocities and accelerations were obtained
using a �rst order centred �nite difference. Subsequently, BP
were obtained for each of the three cost functions by solving
eq. 6 with the corresponding experimental data. To assess
the accuracy of the three identi�ed models, the same cross
validation motion of 20 s, visible in the accompanying video,
was used for all three cases. The retained cross validation
motion is of large amplitude, high dynamics and was not
used in the identi�cation process. Root Mean Square (RMS)
and Normalized RMS (NRMS) differences between measured
and estimated joint torques were calculated with this cross
validation motion. The result of this analysis is shown in
Fig. 6 for each joint. The average RMS difference between
measured and estimated joint torques were: for Jc= 0.69 Nm,
for Jd= 0.42 Nm and Jh= 0.45 Nm. Consequently, the exciting
motions generated by the log determinant function Jd was

Fig. 6. (a) The root mean square errors and (b) normalized root mean square
errors for estimated and measured joint torques for each 3 cost functions.

retained to identify the BP. As represented in Fig. 6(b) the
highest NRMS was observed for the 6 th joint. This is expected
since this joint does not carry a heavy load. Also a comparison
between the identi�ed, CAD data [24] and the BPs identi�ed
by Jubien et al. [5] is presented in table II. From this table the
identi�ed BP are in accordance to the ones proposed by Jubien
et al.. As expected, differences can be observed since different
robots were used. However, the reported standard deviation
is lower in our case than in Jubien’s paper. This shows the
excellence of the proposed identi�cation method.

IV. MOTION PLANNING

A. Cartesian trajectory generation

The Cartesian painting trajectory of the roller was obtained
via a constrained optimization process. This optimization
process aimed at generating a smooth painting trajectory,
by minimizing the joint jerk, while handling KLWR’s
redundancy and taking into account the newly identi�ed
robot and end-effector inertial and geometric parameters to
fully cover a designated surface. Moreover, this optimization
aimed at minimizing the trajectory duration time TC .

The Cartesian 6 DoF painting trajectory PC =
[ �PX �PY �PZ ��X ��Y ��Z ]T was described by �PX;Y;Z
and by ��X;Y;Z , the end-effector 3D positions and orientations



7

TABLE II
COMPARISON RESULTS BETWEEN THE IDENTIFIED BASE PARAMETERS

IDENTIFIED, THE ONES PROPOSED BY JUBIEN ET AL. [5] AND THE ONES
OBTAINED FROM CAD DATA.

CAD Identi�ed Jubien’s
Par. � %�� r � %�� r � %�� r
XX2R 1.32 - 1.35 0.30 1.30 1.5
ZZ2R 1.32 - 1.36 0.34 1.28 1.6
MSY2R 3.60 - 3.43 0.05 3.45 0.18
XX4R 0.46 - 0.44 0.18 0.44 0.91
ZZ4R 0.47 - 0.43 0.20 0.44 1.0
MSY4R -1.45 - -1.34 0.05 -1.35 0.18
MSY5R 0.036 - 0.047 0.86 0.040 3.6
MSY6R 0.0104 - 0.034 0.50 0.035 6.4
MSY7 0.0 - 0.001 13.3 0.006 14
FC1 - - 0.28 4.8 0.39 6.1
FC2 - - 0.43 4.1 0.52 5.5
FC3 - - 0.05 1.6 0.45 2.8
FC4 - - 0.16 5.8 0.32 3.7
FC5 - - 0.34 1.2 0.86 3.0
FC7 - - 0.20 1.2 0.08 6.0

!

" #

" $

%& ' %

%

"

!"##$%

&'()*"+,-.

Fig. 7. Overview of the parameterization of Cartesian painting path

represented with Euler angles, respectively. The shape of the
desired planar painting trajectory is described in Fig. 7, where
Zu and Zl are the roller upper and lower extreme positions
along the vertical axis, respectively. Y0 is the initial horizontal
roller position and �Y is the horizontal distance travelled by
the roller at each painting cycle. At each way point, de�ned
by Zu, Zl, Y0 and �Y , both Cartesian speed and acceleration
were de�ned to be null. The roller was also constrained to
be perpendicular to the plane de�ned by the roller trajectory.
To realize the desired Cartesian trajectory, the swivel angle ’,
required in the calculation of the inverse geometric model (see
section II.B), must be carefully selected. Indeed, its tuning
is not unique and can lead to a discontinuous solution at
some speci�c points along the trajectory. For these reasons, it
was included as a search variable in the optimization process.
Once the way points de�ned, the Cartesian trajectory was
interpolated for each sample of time using a 5th order B-
splines. Finally, the path planning optimization problem boils
down to �nd xopt = [TC ’ Zu Zl Y0 �Y ] 2 R6 that solves
the following problem:

Find x�opt 2 min
x opt 2R6

TC +
NJX

j=1

NSX

k=1

...q igmjk
2

+
1

(Zu � Zl)�Y

subject to
q�j � �qigmj � q+

j

_q�j � _�qigmj � _q+
j

�q�j � ��qigmj � �q+
j

j �j j= �+
j

with j = 1; � � � ; NJ
Z� � Zu; Zl � Z+

Zl � Zu
Y � � Y0 � Y +

Y � � Y0 +Nr�Y � Y +

�T � wL
(12)

where �qigm is the joint trajectory calculated from the inverse
geometric model, Z�, Z+, Y � and Y + are the upper and
lower roller position along the vertical and horizontal axes,
respectively. wL is the paint roller width coming from the
identi�cation process, and Nr is the number of times the
roller returns to the maximum vertical position Zu. The last
constraint ensure that there are no unpainted parts.

To summarize, this optimization problem minimizes an hy-
brid cost function composed of the duration time, the norm of
the joint jerks and maximize the painting area while ensuring
dynamics and kinematics feasibility.

V. POSITION AND FORCE CONTROL LAW

To follow the optimally designed Cartesian trajectory the
position and force Cartesian controller, presented in Fig, 8
was implemented.
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Fig. 8. Position and force control scheme retained for the investigated painting
task.

A. Joint controller
A classical joint space PD controller with gravity compen-

sation was implemented [30]. Since the dynamics models of
the robot and of the painting tool were already identi�ed, the
PD control can be expressed as:

�d = Kp(qd � q) + Kd( _qd � _q) + Ĝ(q) (13)
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where Kp and Kd are (NJ � NJ) diagonal matrices for
proportional and derivative gains tuned experimentally. qd
(NJ � 1) and q (NJ � 1) are the vectors of desired and
measured joint angles, respectively. _qd and _q are obtained by
�rst order backward difference with respect to qd and q. Ĝ(q)
(NJ � 1) is the vector of gravitational terms computed from
the identi�ed inertial parameters.

B. External force estimation
Thanks to the excellent identi�cation of the KWLR and of

its end-effector, the external forces can be estimated from the
measured joint torques and the following equations [21]:

� = M̂(q)�q + Ĉ(q; _q) + Ĝ(q) + �ext
= �dyn + �f + �ext

Fest = (JT )+�ext
= (JT )+(�� �dyn)

(14)

where J is (6�NJ) robot Jacobian matrix. M̂(q) (NJ �NJ)
is the identi�ed robot inertia matrix, Ĉ(q; _q) (NJ � 1) is the
vector containing the identi�ed Coriolis and centrifugal terms.
� and �dyn are the measured and estimated joint torques,
respectively. Fest (6�1) is the estimated vector of the external
forces in Cartesian space.

C. Force control
The proposed control scheme is composed of two embedded

control loops [31]. The outer loop controls the external forces
and the inner one controls the Cartesian end-effector’s pose
(Fig. 8). The additional displacement due to the force control
to the desired Cartesian 3D position is given by:

�Pc = Kf
p(Fd � Fest) + Kf

i

Z T

T0

(Fd � Fest) (15)

where �Pc is the additional displacement reference signal in
Cartesian space, Fd is desired external force and Kf

p , Kf
i are

the proportional and the integral gains, respectively.

VI. EXPERIMENTAL VALIDATION

In order to validate the proposed approach, a large and a
small paint rollers were used. The length, width and weight
of the large one were 0.35 m, 0.2 m and 0.2 kg respectively.
The length and width of the small one were 0.33 m and
0.10 m. Its weight was 0.1 kg. In order to feed the paint
roller look-up tables, dynamics identi�cation experiments with
both tools were performed. The corresponding geometric and
inertial parameters of each tool were associated.

A. Paint roller identi�cation result
Table III presents the values of identi�ed inertial parameters

for both paint rollers. It can be seen that the two identi�ed
masses are closed to their reference values. Fig. 10 shows a
comparison of the measured and estimated joint torques during
a trajectory used for the identi�cation of the large roller. T The
sixth �rst joint torques were very well estimated while the last

Fig. 9. Optimal exciting motion of 10 s used to identify the inertial BP. the
trajectory was generated by minimizing the log determinant criterion. The
complete trajectory is visible in the accompanying video and provided in
supplementary material.

one displays more difference. This is due to the fact that the
tool CoM is very close on the z-axis of the joint 7 and that the
torque due to the inertial parameters is much smaller than the
one due to friction. Nevertheless, the amplitude of this signal
was very small, inferior to 0.5 Nm.

TABLE III
IDENTIFIED INERTIAL PARAMETERS FOR BOTH PAINT ROLLERS.

Large roller Small roller
Par. � %��r � %��r

M [kg] 2.37�10� 1 0.5 9.73e-2 1.3
MSX [kgm] -3.93�10� 3 8.1 4.54�10� 5 28.4
MSY [kgm] -1.53�10� 5 21.0 7.17�10� 5 25.4
MSZ [kgm] 6.50�10� 2 0.6 2.44�10� 2 1.4
XX [kgm2] 1.98�10� 2 1.9 7.36�10� 3 4.4
Y Y [kgm2] 2.10�10� 2 2.0 7.12�10� 3 5.1
ZZ [kgm2] 2.08�10� 3 14.9 1.55�10� 4 31.0
XY [kgm2] 5.57�10� 4 56.6 2.01�10� 4 102.8
XZ [kgm2] 6.27�10� 4 41.5 -4.25�10� 4 54.7
Y Z [kgm2] 8.25�10� 5 49.9 2.06�10� 4 47.5

The lengths and widths of both paint rollers were deter-
mined by sorting the norm errors between identi�ed inertial
parameters in the PCA space and the results contained in
the look-up table. The PCA was able to reduce the search
space from 10 variables to a 4 dimensions problem. This is
encouraging for future use of this method with more paint
rollers.

B. Position and Force control experiment

The position and force control experiment was performed
using the proposed controller and identi�ed models. Fig. 11
presents the experimental environment. On a custom painting
wall (height: 0.8 m, width: 0.6 m), a global coordinate system
made to coincide the x-axis with the robot’s push, i.e. normal,
direction, the y-axis with the horizontal direction and the z-
axis with the vertical direction. The center of the wall was
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Fig. 10. Comparison of the measured and estimated joint torques from
identi�cation

located at x:-0.8 m, y:0.3 m and z:0.4 m. A six axes force
sensor (ATI, Mini45), used to measure reference forces data,
was located in the center of the wall. The desired external
forces were set to Fd = (�30; 0; 0) N.

Fig. 11. Snapshot showing the experimental setup and the painting experi-
ment. The complete experimentation is visible in the accompanying video.

Fig. 12 presents the desired painting trajectory generated by
the optimization process 12 and using the identi�ed models in
both roller cases. The duration time of each trajectory were
50 s and 46 s for large roller and for small roller cases,

respectively.

Calculated by FKM from
measured joint angle

Desired
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Fig. 12. Comparison between the desired and actual experimental planar
trajectories performed in contact with the wall.
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Fig. 13. Representative results showing the desired normal external force, the
estimation from the proposed method and the one measured by an external
force sensor.

Fig. 13 presents the desired, estimated and measured ex-
ternal forces between end-effector and the painting wall in
the case of the large paint roller. Two cases are displayed. In
Fig. 13a, the estimated external force is used in the control
feedback. In Fig. 13b the force sensor measurements are used
in the control feedback. The corresponding RMS and NRMS
differences are given in the Table IV. From these results, it
can be stated that the proposed control system can accurately
estimate and control the external forces.

TABLE IV
ACCURACY ASSESSMENT OF THE NORMAL EXTERNAL FORCE ESTIMATE.

Large roller Small roller
RMS NRMS RMS NRMS

Estimated/Measured 2.9 N 9.8 % 2.0 6.8 %
Estimated/Desired 0.2 N 0.7 % 0.2 0.7 %
Measured/Desired 2.9 N 10.5 % 2.0 7.0 %

VII. CONCLUSION

In this paper, a novel method for the fast identi�cation of
inertial parameters, of end-effector geometrics parameters and
a force control framework applied to the popular KLWR have
been developed. This paper shows the bene�t of identifying a
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serial robot with a real dynamic application. During a roller
painting task, using a classical model based approach [20],
[21] and thanks to the excellent model identi�cation it was
possible to estimate the external forces without a force sensor
mounted at the end-effector. The results are in line with the
relevant literature [14], [21] even if the investigated task are
of different nature. To perform the identi�cation data collected
over an exciting motion of 10 s were used. It was generated by
an optimization process minimizing logfdet(�)g cost function,
and by chosing the best trade-off between duration time and
excitation level. Other �elds [35] have proposed other cost
functions such as the log(cond()) that could be investigated in
the future. The use of Log is of a great interest to normalize
the condition number for badly conditioned system. Also
the proposed framework is able to recognize the geometric
parameters from identi�ed BSIP using a PCA and a look-
up table. The current experiment includes only two types of
end-effectors, but the use of PCA reduction space is very
interesting for real industrial applications involving numerous
type of painting tools. Moreover, the PCA could be used to
interpolate geometric parameters in a reduced space in the case
of unknown tool. Future works will consist in extending this
method to much more painting tools including length variables
rollers and brushes. By identifying both dynamic and geomet-
ric models, similarly to Wilson et al. [11], a painting trajectory
satisfying dynamic robot limitations could be generated from
the updated models. Because the current end-effectors were
of small weights the painting trajectories were very similar.
However, the use of the proposed method will be crucial in
case of a heavy payload. Nevertheless, the painting trajec-
tory was executed using a classical position/force controller
presented in Fig 8. In the future, we plan to improve the
proposed identi�cation method by providing statistical bounds
to estimated parameters. It could be bene�cial to more advance
inverse dynamics controllers [18] by reducing the conservatism
in the design and improving the overall ef�ciency of the
controller. From the results shown in Fig. 13, it was found
that this controller can control the estimated external force
satisfactorily using the feedback of external forces estimated
without force sensor (RMS error inferior to 3 N).
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