
HAL Id: lirmm-02015563
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02015563

Submitted on 12 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

HIL Simulator for AUV with ContrACT
Silvain Louis, David Andreu, Karen Godary-Dejean, Lionel Lapierre

To cite this version:
Silvain Louis, David Andreu, Karen Godary-Dejean, Lionel Lapierre. HIL Simulator for AUV with
ContrACT. CAR: Control Architectures of Robots, Jun 2015, Lyon, France. �lirmm-02015563�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02015563
https://hal.archives-ouvertes.fr


CAR, 2015
Control Architectures of Robots

HIL Simulator for AUV with ContrACT
Silvain LOUIS1,2,3, David ANDREU1, Karen GODARY-DEJEAN1, Lionel LAPIERRE1

Abstract
Le processus de conception d’un système est composé de différentes étapes de validation. La validation est
d’autant plus importante dans le contexte de systèmes embarqués critiques, et donc soumis à des contraintes
temporelles strictes, comme c’est le cas pour la robotique sous-marine en milieu naturel. Notre méthodologie
de conception démarre par l’étude théorique et finit bien sûr par les essais sur le terrain, mais le passage par
la simulation est obligatoire afin de valider les concepts au plus tôt. De par l’augmentation de la complexité
des missions et la difficulté qu’apporte l’expérimentation dans le milieu subaquatique, la simulation Hardware-
in-the-Loop (HIL) est un outil très précieux. Nous avons donc conçu un simulateur HIL de notre robot, qui
est utilisé pour la validation de nos missions dans le cadre de l’étude de la biodiversité marine du lagon de
Mayotte. Il est basé sur le middleware ContrACT, lui-même installé sur le système d’exploitation temps réel Linux
Xenomai. Notre simulateur se veut le plus transparent possible afin de minimiser son impact sur le contrôle,
mais également le plus précis possible dans les modèles et la gestion du temps afin de rendre la validation la
plus réaliste.

Keywords
Real time — Validation — HIL

1Department of Robotics, LIRMM, Montpellier, France
2Mayotte University Center, Mayotte, France
3Marine biodiversity and usages, MARBEC, Montpellier, France

Introduction
Nowadays mobile robotic systems are more and more com-
plex and, as a consequence, their validation is difficult. This
is particularly true for underwater robotics missions, where
the robots have to fulfill specific task in dynamic, unknown
and hard environment. The design process of such systems
and missions starts with the theoretical study and finishs with
on-the-field trials. The simulation stage is necessary to vali-
date concepts earlier. Due to increase of mission complexity
and difficulty of experiments in the underwater environment,
the Hardware-in-The-Loop (HIL) simulation, close to reality,
is a very useful tool. The HIL simulation replaces only the
sensors and actuators by the simulator and keeps the robot’s
control architecture within the test loop.
At LIRMM1 in collaboration with the research center MAR-
BEC2 and the CUFR3 Mayotte, we are developing the robot
JACK4 for multiple missions, like fishes observation or coral
study. We also developed KARST exploration missions. To
validate the control architecture and the missions, we devel-
oped a HIL simulator for the JACK robot. The main feature
of this simulator is its architecture. This one allows modular
decomposition, accurate timing control and a controlled mode
switching.

1Laboratoire d’Informatique, de Robotique et de Microélectronique de
Montpellier, France

2MARine Biodiversity, Exploitation and Conservation
3Centre Universitaire de Formation et de Recherche
4http://ciscrea.net/produit/details/Mini+ROV+JACK+100+et+300+m

At first, this document presents the applicative, robotics
and architectural context of the HIL JACK simulator. The
place of the HIL simulator in the flow of our design process
is explained. Then, it follows with the overall presentation
of the HIL JACK simulator and its integration with the robot
control architecture. And last, the JACK simulator architecture
and particularly its real-time features are presented.

1. Context
1.1 The Environment: Lagoon of Mayotte
The main mission of CUFR Mayotte is environment obser-
vation of the Mayotte lagoon. For that, biologists use divers
specialized in the fish counting, to get pertinent data on the
population of different submarine ecosystems. This method
is dangerous, difficult and expensive. Thus, the method de-
veloped by CUFR Mayotte, MARBEC and LIRMM is to use a
robot to carry sensors related to their experiments.

We are focusing on 3 missions : The transect, the punctual
observation and the species tracking. The transect is the
basis of most of the marine biologist work when they need to
take a census of species population (fishes in our cases). It
consists on following a straight line and recording the fishes
population along it. In this case, the robot is autonomously
controlled to follow a dedicated feature (straight oriented line,
or environmental feature). The punctual observation allows
to observe a static element of the environment with different
angles, while the robot is controlled to remain on the geodesic



HIL Simulator for AUV with ContrACT — 2/6

sphere centered on the observed element. The species tracking
objective is to follow a dynamic element (e.g. animal) in the
environment at a fixed distance, and to observe it under an
angle chosen by the user.

This applicative context has an impact on the control ar-
chitecture of the robot because of missions complexities, espe-
cially if we are interested in ensuring reliability at the architec-
tural level. For example, during an experiment, the user can
at any time change the mission. These unpredictable changes
and especially the transient effects of these changes have a
great importance on the architecture. Furthermore, in real
missions, the robot could move closed to some fragile envi-
ronment, which might be unknown and dynamic. To simulate
this type of missions, this proximity requires a great precision
in the JACK simulator and thus imposes constraints on the
simulator architecture.

1.2 The Robot : JACK
To perform these missions, we choose to use the robot JACK as
a basis. The EXPLORE team modified the robot [1] to enable
high flexibility in electronics, mechanics and software. The
mechanics and electronics flexibility of JACK consists mainly
in the possibility of plugging multiple sensors (depending on
the mission) without heavy modification. Software flexibil-
ity is underlying many aspects as modularity in the control
architecture but also in the JACK simulator.

1.3 The middleware : ContrACT
The control architecture of JACK is based on the middleware
ContrACT [2] which provides primitives and real-time mech-
anisms. This middleware runs on a real-time Linux patched
with Xenomai. ContrACT is composed with 3 levels (Figure
1) : the decisional layer with Supervisors, the executive layer
with operational Modules and between these two layers the
Scheduler which manages the Modules execution depending
on the Supervisors decisions.

Figure 1. 3-layer ContrACT based architecture

The operational modules are the elementary blocks of the
architecture that contain the basic functionalities. Modules
are assembled into schemes. All modules of a given scheme
run at the same frequency. The Scheduler triggers the exe-
cution of the modules at the frequency of the corresponding
scheme, according to precedence constraints. Supervisors

drive scheme selection and activation/deactivation, and have
an event-triggered execution.

ContrACT modules are real-time Xenomai tasks, each
of them with an execution period and a defined maximum
duration. They communicate each other according to the
publishers/subscribers mechanisms.

1.4 Notation
Let {U} be the universal coordinate frame and {B} be the
body frame. In the sequel, ηU expresses the system state in
{U}, νB is the system velocities in {B} and ν̇B is the system
acceleration as stated on Equation 1 and illustrated at Figure
2.

ηU = [x,y,z,Φ,θ ,Ψ]T

= [XU ,AU ]
T

νB = [u,v,w, p,q,r]T

= [VB,ωB]
T

ν̇B = [u̇, v̇, ẇ, ṗ, q̇, ṙ]T

=
[
V̇B, ω̇B

]T

(1)

Figure 2. Definition of universal and body frame, for JACK

2. Methodology of validation

Our validation methodology consists of 4 steps (Figure 3).
Like all design processes, we start by a theoretical analysis

to find the appropriate equations of the control. The first step
is dedicated to the validation of the robotic functionalities, in
terms of control performances (e.g. stability analysis). This
can be done with, for example, the Matlab software, verifying
the algorithms on some specific data inputs, coming from
the JACK simulator. In this case, Matlab simulates the JACK
hardware.



HIL Simulator for AUV with ContrACT — 3/6

Figure 3. Validation methodology

The next and very important step is the HIL validation.
This step validates the implementation of the algorithms /
equations into ContrACT modules and their robotic function-
alities [3] with external environment (Simulator). This step
is necessary to verify the respect of the time constraints of
processes (period and duration) within the simulated environ-
ment.

Finally, the last step is the validation in real environmental
conditions. This last step is also important because simulators
(even HIL) remain an approximation (more or less complete
and accurate) of reality. The on-the-field experiments are
useful to test the system with real constraints: reaction of
algorithms to noise (even if also taken into account within
the simulator), robustness to model uncertainties, disturbance
rejection (sea current, ..) and behavior in case of failures.

In the sequel, we focus on the third step: the HIL valida-
tion. The next section is dedicated to the presentation of the
JACK simulator.

3. Hardware in the Loop validation
Hardware In the Loop validation allows to consider the ef-
fective control architecture (its implementation on the target)
within the simulation loop [4]. It also allows to take into ac-
count the hardware of the robot, except for the elements phys-
ically interacting on the environment. Sensors and actuators
are replaced by virtual devices that simulate the perception
and action on the simulated environment.

3.1 Simulation platform architecture
The simulation set-up (see Figure 4) relies on 3 entities: the
robot with its embedded control architecture (hardware and
software), the HMI operator dedicated computer and the sim-
ulation computer in charge of simulating the environment as
well as interactions between the robot and the environment.
The JACK robot (the hardware and the control algorithms of
the embedded architecture) and the HMI operator computer
are exactly the same than during the real missions.

The communication of the simulation platform relies on an
Ethernet network, with communications based on the UDP/IP

Figure 4. JACK HIL simulation platform

stack. UDP messages contain all the variables from and to
the simulator (actuators and sensors values). Real-time con-
straints are taken into account both from hardware and soft-
ware points of view. Two distinct domains of collision are
used to connect the robot embedded controller to the simulator
and to the HMI operator. This avoid having to face medium ac-
cess management on Ethernet which is a probabilistic network.
The robot controller exploits one communication module for
each link, favouring modularity as well.

Both logical links ensure temporal decoupling of associ-
ated processes, e.g. the simulation process runs asynchronously
with the control one. This is essential since any temporal cou-
pling between simulation and control would mask the lack
of reactivity, the potential unstability, etc ... On the robot
controller side, the two communication modules respectively
run in a periodic way regarding simulation and in an aperi-
odic way regarding HMI operator. Indeed, communication
with the simulation takes care of controlling robot entities
(sensors ans actuators being in the simulator) at a fixed and
given frequency. Regarding the simulator, it sends sensors
data to the robot controller as soon as they are available, since
some sensors, like sonar ones, do not have a fixed acquisition
time (acoustic wave propagation depends on the distance to
the environment elements). On the other side, communication
with the HMI operator controller is event-based, ie the robot
controller is waiting for messages which are sent only when
the operator (on the HMI controller) reacts.

3.2 Switching between simulation and reality
To switch between simulation and reality contexts, only sen-
sors and actuators dedicated modules have to be changed in
the control architecture (by switching between experimenta-
tion configuration and simulation configuration), ie without
modifying the control scheme. In both cases, data to be ex-
changed are the same, as well as inter modules communication
mechanisms.

The communication scheme for the real mission (Figure
6) instantiates communication drivers with hardware mod-
ules (reading sensors, actuators update). The communication



HIL Simulator for AUV with ContrACT — 4/6

Figure 5. Simulation architecture

Figure 6. Real experiment architecture

scheme for the simulation (Figure 5) uses virtual peripherals
according to which data are exchanged with the simulator.

4. The simulator
4.1 A two-part architecture
The Jack simulator architecture consists of two parts:

• A set of processes dedicated to all the computations
related to simulation (integration, physical models (of
the robot or the environment), sensors, actuators ...)

• The display rendering 3D (3D Obj models [5], light,
camera simulation, visualization (robotlike or Godlike)
[6]).

The first part is implemented using ContrACT, dealing
with real time constraints. This allows to obtain good integra-
tion frequency and a desired precision in the scheme execution
periods. The second part is implemented with QT5 and uses
OpenGL for 3D display (Figure 7) [7].

This splitting of the simulator architecture allows to change
the 3D generator without changing the physical simulator. It
could be possible for example to use an underwater environ-
ment design with CryEngine5 (Figure 8).

5http://cryengine.com/

Figure 7. Graphic display of the simulator

Figure 8. Underwater environment CryEngine

This also allows for a remote display of the JACK simu-
lator. Indeed, it is possible to separately deploy simulation
processes on a dedicated computer [8] with sufficient per-
formances to obtain accurate simulation results, and graphic
display on another computer. The decoupling between the
simulation part (high and precise frequency), and the display
part (low frequency and event-based) allows greater precision
of execution of the simulation part, which is the most impor-
tant for the validation objective, since it avoids overloading
the processor and/or delaying simulation processes.

Table 1 shows the mean and deviation of the actual scheme
integration execution period which has a period order of 1ms
with and without 3D display integration. We observe that
without the 3D display, the execution is regular with an av-
erage of 0.9993ms (1ms required period) and only 2.75% of
deviation.

The influence of the display rendering on the execution
period is also shown Figure 9. We can see on this Figure the
irregularity period of the scheme integration with 3D display.
This happened because of the 3D display priority over that
of integration scheme priority. This priority is dynamically
defined by ContrACT scheduler (earliest deadline first algo-
rithm) and so this phenomenon is not mastered. In this case,
there is a significant impact because the 3D display process is
potentially long.



HIL Simulator for AUV with ContrACT — 5/6

Figure 9. Effective period of scheme execution with and
without 3D display

Table 1. Effective period of scheme execution

Mean (ms) Deviation (%)
With 3D display 1.0926 13.42
Without 3D display 0.9993 2.75

4.2 Real time simulation
Taking into account real time constraints in a simulator is
critical [9] because the accuracy of the simulation is dependent
on the integration period (dt) (Equation 2 and Figure 10).
Except [10], few authors explicitly mention this constraint
and its respect. For the following results, we use the same
method of integration (Euler) (Equation 2) and we compare
the results (drift position after 5s of simulation) in case of
perturbations like the perturbations we mentioned regarding
3D display.

VB =VB +(V̇B ·dt)

VU = MU
B ·VB

XU = XU +(V̇U ·dt)

(2)

We have considered that the robot follows a straight line
with null orientation angles (MU

B =1) and we apply an acceler-
ation in the body frame, with the form V̇B = cos(t)+0.2m/s2.
This acceleration is first integrated in the body frame, trans-
formed in the universal frame, and integrated again to get the
position of the robot. The integration is performed according
to two parameters: the period (1ms or 100ms) and the error
period : 0%, 2.75% or 13.42% (in accordance with the pre-
vious test). With a dual integration, the position equation is
XB =−cos(t)+ 0.2·t2

2 +c. Here are the positions (Table 2) and
errors (Table 3) compared to the theoretical value, after 20s
of simulation. Figure 10 shows the position error evolution
with different period errors.

We observe a strong dependence between the quality of
the simulation and the frequency parameter (period and pe-
riodicity error). This confirms the need to use a tool that

Figure 10. Simulated position with error on the periodicity

Table 2. Position (m) after 5s

Theoretical E=0% E=2.75% E=13.42%
P=1ms 40.59 40.58 38.97
P=100ms 39.39 37.83 29.82

provides high and accurate execution frequency (particularly
for the integration scheme, ie a realtime based tool).

4.3 Software architecture of the simulator
To obtain a high and accurate execution frequency of the
schemes of the simulator (particularly integration scheme),
we use the middleware ContrACT.

Figure 11. Simulator software architecture

ContrACT allows to manage schemes with different pe-
riods, like for instance the high frequency execution scheme
containing models integration, the low frequency execution
scheme corresponding to communications, and the aperiodic
scheme dedicated to specific sensors as acoustic camera (fre-
quency of which is sensor dependent). There are 3 type of
simulation sensor schemes.



HIL Simulator for AUV with ContrACT — 6/6

Table 3. Position error (%) during the first 5s

E=0% E=2.75% E=13.42%
P=1ms 0.029 3.99
P=100ms 2.96 6.80 26.55

The first type is the periodic scheme with the same period
than the sensor. Each execution of the scheme, all the sensor
modules simulate the corresponding phenomena and generate
sensor data. For example, this is the case for temperature or
depth sensors.

If the sensor algorithm is too complex and it can be cut in
parts, there is the second type of scheme. The second type is
the periodic scheme with a higher period than the sensor. Each
execution cycle of the scheme, the module calculate a part of
the data. For example, for a sensor like profilometric sonar,
each parts corresponds to a distance measurement for a fixed
angle. Then at each distance (ie for each angle), computed
data is sent to the controller. For other sensors, like DVL,
the data are sent to the controller only when all the parts are
computed.

The third type is the aperiodic scheme. When the sen-
sor measurement time is not constant, the period can not be
fixed.This is the case for the acoustic camera. The distance
measurement is dependent of the flying time, and so of the
environment. To match this phenomenon, we also simulate
the flight time in the simulator.

All these kind of schemes are taken into account, and of
course the simulation dedicated omputer must be powerful
enough.

5. Conclusion
This article briefly presents an HIL simulator of the underwa-
ter robot JACK. The HIL validation is a useful step (and tool)
in the context of underwater robotics because of the complex-
ity of on-the-field experiments. This is particularly true in
our context where some of the experiments have to be done
at Mayotte. This simulator can now be used by the develop-
ment team before every on-the-field experiment to previously
validate the desired behavior. It offers accurate and real time
simulation. Thanks to its modularity, the HIL simulator can
be improved modifying model’s precision, adding new phe-
nomena like currents of water, etc. It is also possible to add
other robots to deal with flotilla for more complex missions,
taking into account the model of acoustic communication.

Acknowledgments

Thanks to Robin PASSAMA for his ContrACT explanations,
Sebastien VILLEGER3 and Thomas CLAVERIE2 for their PhD
supervision and their collaboration on this subject. Thanks to
Ecole doctorale de Montpellier and CUFR for grants.

References
[1] S LOUIS. Rapport de stage industriel de fin d’études.

Technical report, 2014.
[2] R Passama. Environnement de développement : Con-

trACT.
[3] C.J Cannell, D.J Stilwell, and J.A Austin. A simula-

tion tool to support the development of adaptive sam-
pling algorithms for multiple autonomous underwater
vehicles. Autonomous Underwater Vehicles, pages 127 –
133, 2004.

[4] O Parodi. Simulation hybride pour la coordination de
véhicules hétérogènes au sein d’une flottille. PhD thesis,
Université de Montpellier, 2008.

[5] D.M Lane, G.J Falconer, G.W Randall, N.D Duffy, J.T
Herd, P Chernett, J Hunter, M Colley, J Standeven,
V Callaghan, J Smith, J Evans, A Woods, J Penrose, G.A
Whittaker, D Smith, and I Edwards. Mixing simulations
and real subsystems for subsea robot development speci-
fication and development of the core simulation engine.
In OCEANS ’98, pages 1382 – 1386, 1998.

[6] T Bielohlawek. An autonomous underwater vehicle sim-
ulation system. 2006.

[7] A Göllü. A simulation environment for the coordinated
operation of multiple autonomous underwater vehicles.
Proceeding of the 29th conference on Winter simulation,
pages 1169 – 1175.

[8] P Ridao, J Battle, J Amat, and M Carreras. A distributed
environment for virtual and/or real experiments for un-
derwater robots. In IEEE International Conference on
Intelligent Robots and Systems, pages 3250–3255, 2001.

[9] O Parodi, L Lapierre, and B Jouvencel. A real-time multi-
vehicules hybrid simulator for heterogeneous vehicules.
In International Conference on Intelligent Robots and
Systems (IROS), 2008.

[10] R Bono, M Caccia, and G Veruggio. Simulation and con-
trol of an unmanned underwater vehicle. In International
Conference on Intelligent Robots and Systems (IEEE),
pages 1573–1578, 1995.


	Introduction
	Context
	The Environment: Lagoon of Mayotte
	The Robot : Jack
	The middleware : ContrACT
	Notation

	Methodology of validation
	Hardware in the Loop validation
	Simulation platform architecture
	Switching between simulation and reality

	The simulator
	A two-part architecture
	Real time simulation
	Software architecture of the simulator

	Conclusion
	Acknowledgments
	References

