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Abstract In this work we study min max robust scheduling problems assum-
ing that the processing times can take any value in the budgeted uncertainty
set introduced by Bertsimas and Sim (2003, 2004). We consider problems on a
single machine that minimize the (weighted and unweighted) sum of comple-
tion times and problems that minimize the makespan on parallel and unrelated
machines. We provide approximation algorithms: constant factor, average non-
constant factor, (fully or not) polynomial time approximation schemes. In ad-
dition, we prove that the robust version of minimizing the weighted completion
time on a single machine is NP-hard in the strong sense.

Keywords approximation algorithms, robust optimization, scheduling

1 Introduction

Scheduling is a very wide topic in combinatorial optimization with applica-
tions ranging from production and manufacturing systems to transportation
and logistics systems. Stated generally, the objective of scheduling is to allo-
cate optimally scarce resources to activities over time. The practical relevance
and the difficulty of solving the general scheduling problem have motivated an
intense research activity in a large variety of scheduling environments. Schedul-
ing problems are usually defined in the following way: given a set of n jobs
represented by J , a set ofm machines represented byM, and processing times
represented by the tuple p, we look for a schedule σ of the jobs on the machines
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that satisfies the side constraints, represented by the set S of feasible schedules,
and minimize objective function f(σ, p). Formally, this amounts to solve opti-
mization problem minσ∈S f(σ, p). These problems has been intensively studied
in the past decades, see [6,18] among many others.

Various sources of uncertainty affect real scheduling problems, among which
machine breakdowns, working environment changes, worker performance in-
stabilities, tool quality variations and unavailability. Ignoring these uncer-
tainties usually yields schedules that perform poorly under real conditions.
Hence, researchers have introduced frameworks where the uncertainty is di-
rectly taken into account either by considering random variables as input or
in a worst-case approach where the uncertainty parameters are constrained
in a set. These frameworks are respectively denoted by Stochastic Program-
ming and Robust Optimization (RO). We disregard the former in this paper
because of its requirement for a probabilistic distribution of the random in-
puts, which is very difficult to obtain in practice. We focus instead on Robust
Scheduling, which models the uncertainty on the processing times by a finite
set U ⊂ Nn. 1 In the robust problem, the maximum value of f(σ, p) over
all p ∈ U should be minimized. Formally, this amounts to solve optimiza-
tion problem minσ∈S maxp∈U f(σ, p), or equivalently, minσ∈S F (σ, U) where
F (σ, U) = maxp∈U f(σ, p) represents the robust objective function. We say
that a schedule σ∗ ∈ S is robust if it solves the associated scheduling problem
minσ∈S F (σ, U).

Robust schedules are desirable from a practical perspective because they
hedge against adverse conditions of the system. In spite of its practical rele-
vance, robust scheduling has hardly become a practical tool since differents
papers [2,7,27] have shown that very simple scheduling problems become
NP-hard as soon as U contains more than one scenario. This is the case,
for instance, for minimizing the sum of completion times on a single machine,
which is polynomially solvable in the deterministic context but does not admit
a Polynomial Time Approximation Scheme (PTAS) in the robust context, un-
less P = NP (see [19]). These negative results are not surprising since [16] had
proved that robust combinatorial optimization problems are, more often than
not, harder than their deterministic counterpart, even if U contains only two
scenarios. In view of these negative results, researchers willing to provide solu-
tions to robust scheduling address them with heuristics or linear programming
approaches, see for instance [20,15], rather than using purely combinatorial
algorithms.

In this context, the positive results of Bertsimas and Sim [4] opened a new
avenue of research in combinatorial robust optimization. Given two positive
vectors p and p̂, that respectively represent the nominal value of and the
deviation of p, and a positive integer Γ , they define the following uncertainty

1 For the sake of clarity, we consider that p is a n-uple. One readily extends the definition
to more complex problems, such as those defined on unrelated machines where p is instead
a nm-uple.
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set:

UΓ ≡

p ∈ Rn : pj = pj + δj p̂j , j ∈ {1, . . . , n}, δj ∈ {0, 1}, j ∈ {1, . . . , n},
n∑
j=1

δj ≤ Γ

 .2

As the previous set is more structured than an arbitrary uncertainty set U , one
could expect better positive results. Bertsimas and Sim proved indeed that, for
a large class of combinatorial optimization problems, the robust counterparts
defined through UΓ (denoted UΓ -robust for short) belong to the complexity
classes of their deterministic versions:

Theorem 1 (Bertsimas and Sim [4]) Let X ⊆ {0, 1}n and p ∈ Rn char-
acterize the combinatorial optimization problem minx∈X

∑
i pixi. The optimal

solution to the robust problem minx∈X maxp∈UΓ p
Tx can be obtained by solving

problem minx∈X
∑
i p
`
ixi for each ` = 1, . . . , n + 1 and taking the minimum,

where p`j = pj + max(p̂j − p̂`, 0) for each ` = 1, . . . , n+ 1 and p̂n+1 = 0.

They provided a similar result for the approximation ratio of robust combi-
natorial optimization problems and [9] have extended these positive results
to larger classes of UΓ -robust combinatorial optimization problems, many of
them relying on dynamic programming algorithms, see [1,14,24]. The impact
of Theorem 1 is such that, prior to this paper, there was no known example of
polynomial combinatorial optimization problem having a NP-hard UΓ -robust
counterpart; only an example of a weakly NP-hard problem turning strongly
NP-hard in the UΓ -robust case has been exhibited [21]. In addition to its
theoretical tractability, UΓ -robust problems can often be solved numerically
by applying the classical dualization approach to robust optimization [3]. This
approach holds because set UΓ can be described as the extreme points of a
polytope described by a linear number of inequalities. Hence, there are some
papers solving numerically UΓ -robust scheduling problems, e.g. [8]. The in-
terest for set UΓ is also motivated by its link with probabilistic constraints
studied in [5,23]. In the context of combinatorial optimization problems with
cost uncertainty, the results from [5,23] imply that minx∈X maxp∈UΓ p

Tx pro-
vides a conservative approximation of minimizing the value-at-risk over X , see
also [24]. In spite of the tremendous success of set UΓ in the robust combi-
natorial optimization literature, we are not aware of previous work studying
the theoretical complexity of UΓ -robust scheduling problems, apart from [26],
which was carried out in parallel with the present work. Therein the authors
study some one-machine scheduling problems with uncertainty set UΓ and
two other variants, however, assuming that there exists a constant K > 0 such
that p̂j = Kpj for each j ∈ J .

Recall the three-field notation α|β|γ from [10] where α describes the ma-
chine environment, β the job characteristics, and γ the objective function. In
this first work on UΓ -robust scheduling, we focus on the following classical

2 Notice that [4] originally considers both upwards and downwards deviations. However,
the latter are irrelevant for the class of problems studied in this manuscript.
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scheduling problems. Let Cj(σ, p) denote the completion time of task j for
schedule σ and processing times represented by p. The first type of problems
studied herein concerns the minimization of the weighted sum of completion
times on a single machine (1||

∑
j wjCj), defined by letting S contain all orders

for the n tasks and setting f(σ, p) =
∑
j∈J wjCj(σ, p). We pay a particular

attention to the case where wj = 1 for each j ∈ J , which is denoted 1||
∑
j Cj .

The second type of problems studied herein considers a set of m machines,
which can be identical (P ), uniform (Q) or unrelated (R), and minimize the
makespan f(σ, p) = Cmax(σ, p) = maxj∈J C(σ, p). In the first case, processing
job j on machine i is given by pj . In the second case, the processing time is
given by pij = pj/si where si is the speed of machine i. In the last case, the
processing times are given by an arbitrary matrix p ∈ Nm×n. The resulting
problems are denoted by P ||Cmax, Q||Cmax, and R||Cmax, respectively. We
also consider the special case Rm||Cmax where the number of machines m is
not considered part of the instance.

Contributions and structure of the paper Let us extend Graham’s notation to
α|β|UΓp |γ to specify that the cost of any feasible schedule is obtained for the
worst processing times in UΓ . We refer the reader to the next paragraphs which
provide two examples of robust scheduling problems. In Section 2 we consider
one machine problems minimizing the sum of completion times. We prove that
1||UΓp |

∑
Cj is polynomial by extending Theorem 1, thus complementing the

polynomial algorithm provided in [26] for the case where p̂j = Kpj for each j ∈
J . Comparing with [2,7,27], the result illustrates how UΓ -robust scheduling
can lead to more tractable problems than robust scheduling with arbitrary
uncertainty sets. We show then that 1||UΓp |

∑
wjCj is weakly NP-hard if

Γ = 1 and strongly NP-hard if Γ > 1. To our knowledge, this is the first
example of a polynomial scheduling problem having a NP-hard UΓ -robust
counterpart. Our hardness proof is inspired on the classical reduction from
the 3-partition problem to the decision version of 1||

∑
wjTj [22] where the

jobs can be divided into partition jobs, that represent the 3-partition elements,
and separation jobs, that have fixed positions in any valid certificate. In the
case of 1||UΓp |

∑
wjCj , to force the separating jobs to have fixed positions, we

use a third class of jobs whose processing time deviations impose the same
increase to the overall scheduling cost. The remaining deviations are then
designed in such a way that a separating job has its processing time deviated
in the worst case scenario if and only if it is scheduled before its fixed position,
which allows to prove that these fixed positions lead to a strictly minimum
overall cost. In Section 3 we show that P ||UΓp |Cmax is 3-approximable and
admits a PTAS if Γ is constant. Section 4 is dedicated to R||UΓp |Cmax. We
first show how the classical FPTAS of [12] for Rm||Cmax can be adapted for
Rm||UΓp |Cmax. We then focus on the general case and provide an average
O(logm)-approximation based on an extended formulation of the problem.
The formulation is solved in polynomial time by combining column generation
with an approximately feasible solution for the pricing problem. Finally, a
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classical randomized rounding is applied, which is carefully analyzed to provide
the required approximation factor.

Example for 1||UΓp |
∑
Cj Let us consider the following instance of 1||UΓp |

∑
Cj

with n = 3 jobs and Γ = 1. Let p1 = 3, p2 = 1, p3 = 2, p̂1 = 1, p̂2 = 10, p̂3 = 5.
By definition we have UΓp = {(3, 1, 2), (4, 1, 2), (3, 11, 2), (3, 1, 7)}. Notice that
a schedule is completely characterized by a permutation of the job. For σ =
(2, 1, 3), we have f(σ, (3, 1, 2)) = 11, f(σ, (4, 1, 2)) = 13, f(σ, (3, 11, 2)) = 41,
f(σ, (3, 1, 7)) = 16, and thus F (σ) = 41.

Example for P ||UΓp |Cmax Let us now consider the following instance of P ||UΓp |Cmax
with n = 4 jobs, m = 2 machines and Γ = 1. Let p1 = 5, p2 = 3, p3 =
2, p4 = 2, p̂1 = 1, p̂2 = 2, p̂3 = 12, p̂4 = 8. By definition we have UΓp =
{(5, 3, 2, 2), (6, 3, 2, 2),(5, 5, 2, 2), (5, 3, 14, 2),(5, 3, 2, 10)}. Notice that a sched-
ule is completely characterized by the set of jobs scheduled on each machine.
For σ that schedules jobs {1, 2} on machine 1, and jobs {3, 4} on machine
2, we have f(σ, (5, 3, 2, 2)) = 8, f(σ, (6, 3, 2, 2)) = 9, f(σ, (5, 5, 2, 2)) = 10,
f(σ, (5, 3, 14, 2)) = 16, f(σ, (5, 3, 2, 10))) = 12, and thus F (σ) = 16.

Notations used throughout the paper A schedule is denoted by σ and σi ⊆ J
denotes a schedule restricted to machine i. An optimal schedule is denoted by
σ∗ and its value is denoted by opt. For any integer n, [n] = {0, . . . , n} and
[n]∗ = [n] \ {0}.

2 Minimizing sum of completion times

2.1 Unitary weights

This is one of the simplest scheduling problems, yet it is NP-hard in the weak
sense for arbitrary uncertainty sets U , even for two scenarios [27]. In contrast,
we show below that the UΓ -robust version of the problem can be solved in
polynomial time.

Let xij be equal to 1 iff job j is scheduled in position i. Problem 1||UΓp |
∑
Cj

can be cast asmin
x

max
p∈UΓ

∑
(i,j)∈[n]∗×J

pj(n+ 1− i)xij :
∑
i∈[n]∗

xij = 1, j ∈ J ,
∑
j∈J

xij = 1, i ∈ [n]∗

 .

(1)

Observation 1 Theorem 1 cannot be applied to problem (1) because its cost
function is defined by a product of parameters pj(n+1− i) where only p ∈ UΓ .
Hence, the change of pi from the scenario set affects the coefficients for several
decision variables.
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We provide below a straightforward extension of Theorem 1, which encom-
passes problem (1). Its proof, following essentially the lines of the proof of
Theorem 1 from [4], is deferred to the appendix.

Proposition 1 Let X ⊆
{
{0, 1}I×J :

∑I
i=1 xij = 1, j = 1, . . . , J

}
and let q ∈

RI and p ∈ UΓ be cost vectors. The optimal solution to problem

min
x∈X

max
p∈UΓ

∑
i,j

pjqixij (2)

can be obtained by solving the problems minx∈X
∑
i,j(pj + p̂j)qixij and

Γ p̂lqk + min
x∈X

∑
i,j

(
pj + p̃klij

)
qixij ,

for each k ∈ I, l ∈ J and taking the minimum, where p̃klij = max(0, p̂j − p̂lqk
qi

).

Applying Proposition 1 to (1) by setting qi = n + 1 − i, we obtain that
1||UΓp |

∑
Cj can be solved by solving O(n2) assignment problems. We point

out that, although the robust problem can be solved in polynomial time, the
modified cost coefficients pj + p̃klij break the structure of 1||UΓp |

∑
Cj , i.e., the

deterministic problems with cost vector p+ p̃kl are not instances of 1||
∑
Cj .

2.2 General weights

It is well known that problem 1||
∑
wjCj can be solved in polynomial time by

applying Smith’s rule [25] (i.e., scheduling jobs by non-decreasing pj
wj

). How-
ever, it does not seem easy to extend that simple rule to the robust problem
1||UΓp |

∑
wjCj . In fact, we show that the problem is NP-hard in the weak

sense for Γ = 1 and strongly NP-hard for arbitrary Γ . For that, we need the
following two lemmas characterizing the structure of an optimal solution. First
we show that for any pair of consecutive jobs j, `, if wjpj <

w`
p`+p̂`

, then j must
be scheduled after `.

Lemma 1 Given X ⊂ J such that wj
pj

< w`
p`+p̂`

, ∀j ∈ X, and ` ∈ J \X, in

any optimal solution for 1||UΓp |
∑
wjCj the jobs in X are the last |X| in the

schedule.

Proof We prove the proposition by contradiction. Assume that there is an
optimal solution σ∗ for 1||UΓp |

∑
wjCj where two consecutive jobs j and `

have

wj
pj

<
w`

p` + p̂`
. (3)

Let c∗(p) denote the solution cost for the specific vector p ∈ UΓ and c∗ be the
solution cost for worst deviations; that is, c∗ = maxp∈UΓ c

∗(p). By swapping j



Robust scheduling with budgeted uncertainty 7

and ` in σ∗, we obtain an alternative schedule σ′ with cost denoted c′, which
satisfies

c′ = max
p∈UΓ

(c∗(p) + p`wj − pjw`)

≤ max
p∈UΓ

c∗(p) + max
p∈UΓ

(p`wj − pjw`)

≤ c∗ + (p` + p̂`)wj − pjw`. (4)

This swap operation is illustrated by Figure 1, where rectangles depict jobs,
with widths proportional to the corresponding processing times. From (3) and
(4), we obtain that c′ < c∗, which contradicts the optimality of σ∗. ut

pj p`

σ∗ j `

p` pj

σ′ ` j

Fig. 1 Swap between jobs j and ` applied in Lemma 1.

Now we show that if two jobs only differ by their value of p̂j , then the one
having the smallest value must be scheduled first.

Lemma 2 There exists an optimal solution for 1||UΓp |
∑
wjCj where, for any

two jobs j and ` with pj = p`, wj = w`, and p̂j < p̂`, j is scheduled before `.

Proof Let j and ` be two jobs satisfying the conditions of this proposition
such that ` precedes j in an optimal solution σ∗. We show that swapping
` and j does not increase the robust cost c∗ of σ∗. Let σ′ be the resulting
schedule. Let also Wk be the sum of weights of all jobs that do not precede k
in σ∗, for all k ∈ J . Clearly Wj < W`. Moreover, the total cost due to mean
processing times is the same for σ∗ and σ′, and the total cost due to deviations
is calculated by selecting the Γ jobs with maximum p̂kWk among all k ∈ J ,
and summing up these values. After the swap, p̂jWj and p̂`W` are replaced by
p̂`Wj and p̂jW`, and the remaining values are kept unchanged. SinceWj < W`

and p̂j < p̂`, we have that p̂`Wj + p̂jW` < p̂jWj + p̂`W`. As a result, the total
cost due to deviations cannot increase after the swap. ut

For the hardness proof, we define the k-PARTITION problem.

Definition 1 Given kN positive numbers a1, . . . , akN satisfying
∑kN
j=1 aj =

NA, k-PARTITION asks if there exists a partition of {a1, . . . , akN} into N
subsets S1, . . . , SN such that

∑
j∈Si aj = A, for i = 1, . . . , N .
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The decision version of 1||UΓp |
∑
wjCj , denoted by (1||UΓp |

∑
wjCj ,K)dec,

asks for a schedule whose robust cost is not greater than a given integer K.

Theorem 2 There is a polynomial reduction from k-PARTITION to
(1||UΓp |

∑
wjCj ,K)dec with Γ = N − 1.

Proof First, we describe a reduction allowing that p̂ is a vector of rational
numbers. Later, we show how the proposed reduction can be modified to use
only integer numbers, and still satisfy the conditions of this theorem. We
create three types of jobs. For j = 1, . . . , kN , job j, referred to as a partition
job, has wj = pj = aj , and p̂j = 0; for j = kN + 1, . . . , (k + 1)N − 1, job
j, referred to as a tail job, has wj = 1, pj = 2N , and p̂j = 4NA

(k+1)N−j ; for
j = (k + 1)N, . . . , (k + 2)N − 2 = n, job j, referred to as a separating job,
has wj = 2, pj = 1, and p̂j = 4NA

Wj+β(j)A
, where β(j) = j − (k + 1)N + 1, and

Wj = N − 1 + 2β(j). Moreover, Γ = N − 1.
We restrict our analysis to schedules that satisfy Lemma 1 and 2 since

they necessarily include an optimal solution to the optimization version of
the problem. Thus, we can conclude that the last N − 1 scheduled jobs are
exactly the tail jobs, which are sorted in an increasing order by their indices,
and that the separating jobs are sorted in a decreasing order by their indices.
In the following, we construct a schedule σ for the proposed instance which
is feasible if and only if the corresponding k-PARTITION instance is feasible.
The schedule is illustrated by Figure 2, following the same convention of Figure
1 but representing only the mean processing times. In this figure, partition, tail
and separating jobs are colored in white, light gray and dark gray, respectively.
For the sake of easy notation, we consider only the special case where the
partition jobs are sorted by their indices in the figure.

a1 ak 1 1 a(k−1)N+1 akN 2N 2N

1 · · · k

(k + 1)N

· · ·

(k + 2)N − 2

(k − 1)N + 1

· · · kN kN + 1 · · · (k + 1)N − 1

Fig. 2 Schedule σ constructed in Theorem 2 for the special case where partition jobs are
sorted by their indices.

For a given schedule σ, let σ(`) denote the `-th job to be executed, for
` = 1, . . . , kN , and define σ−1(j) such that σ(σ−1(j)) = j for each j ∈ J .
Define also pσ as the worst vector p ∈ UΓ for the schedule σ. In the objective
function

∑
j∈J

∑n
`=σ−1(j) p

σ
jwσ(`), the term pσjwσ(`) is referred to as the cost

from job j to job σ(`). Let also σ∆(`) denote the `-th partition job to be
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executed according to σ, and define (σ∆)−1 analogously to σ−1. Finally, let

Aσj =

kN∑
`=1

σ−1(`)≥σ−1(j)

a`

be the sum of the weights of the partitions jobs scheduled after job j (and
including the weight of job j if it is a partition job).

We divide the cost of a schedule σ for the created instance of (1||UΓp |
∑
wjCj ,K)dec

into six terms:

– the cost from partition jobs to partition jobs, given by

c1 =

kN∑
j=1

kN∑
`=(σ∆)−1(j)

pjwσ∆(`) =

kN∑
j=1

kN∑
`=1

aja`;

– the cost from partition jobs to tail jobs, given by

c2 =

kN∑
j=1

(k+1)N−1∑
`=kN+1

pjw` = NA(N − 1);

– the cost from tail jobs excluding deviations, given by

c3 =

(k+1)N−1∑
j=kN+1

(k+1)N−1∑
`=j

pjwσ(`) = N2(N − 1);

– the cost from partition jobs to separating jobs, given by

c4 =

kN∑
j=1

(k+2)N−2∑
`=(k+1)N

σ−1(`)>σ−1(j)

pjw` = 2NA(N − 1)− 2

(k+2)N−2∑
j=(k+1)N

Aσj ;

– the cost from separating jobs excluding deviations, given by

c5 =

(k+2)N−2∑
j=(k+1)N

(k+2)N−2∑
`=1

σ−1(`)>σ−1(j)

pjw` = N(N − 1) + (N − 1)2 +

(k+2)N−2∑
j=(k+1)N

Aσj ;

– the cost due to deviations from both the separating jobs and the tail jobs,
given by

c6 =

(k+2)N−2∑
j=kN+1

(k+2)N−2∑
`=1

σ−1(`)>σ−1(j)

(pσj − pj)w`

=

(k+2)N−2∑
j=(k+1)N

max

4NA,

(k+2)N−2∑
`=1

σ−1(`)>σ−1(j)

p̂jw`





10 Marin Bougeret et al.

=

(k+2)N−2∑
j=(k+1)N

max

{
4NA,

4NA

Wj + β(j)A
(Wj +Aσj )

}
where the second equality holds because for each tail job, the cost due to
its deviation is equal to 4NA.

The total cost is given by c1 + c2 + c3 + c4 + c5 + c6. Note that only c6,
the third term of c5 and the second term of c4 depend on the schedule σ. All
remaining terms are constant. Summing up the non-constant terms, we obtain

c̃(σ) =

(k+2)N−2∑
j=(k+1)N

max

{
4NA−Aσj ,

4NA

Wj + β(j)A
Wj +

(
4NA

Wj + β(j)A
− 1

)
Aσj

}
.

Now, let us consider the previous expression as a function c̃(Aσ) of the
vector Aσ whose components Aσj are relaxed to non-negative integer numbers.
Assuming that A > 3, we have that 4NA

Wj+β(j)A
> 2. Hence, the value of c̃(Aσ)

is minimized (and thus c̃(σ) and the total cost) when Aσj = β(j)A, for j =
(k + 1)N, . . . , (k + 2)N − 2. This only occurs when each sum of processing
times of partition jobs scheduled between two consecutive separating jobs is
exactly A. Otherwise, by the coefficients to Aσj in the two arguments of the
maximum function, c̃(σ) increases by at least one unit. Thus, setting K =
c1 + c2 + c3 + N(N − 1) + (N − 1)2 + 5.5NA(N − 1) + 0.5, we have that a
positive answer to k-PARTITION yields a schedule of cost K − 0.5, and that
any schedule costs at least K + 0.5 otherwise.

To ensure that the constructed instance contains only integer numbers on
the input, we multiply all processing times and K by 2(N − 1)

∑
j∈J wj . This

yields a solution of cost K − (N − 1)
∑
j∈J wj in the case of a positive answer

to k-PARTITION, and no solution of cost less than K + (N − 1)
∑
j∈J wj

otherwise. By rounding up the values of p̂j , for j = kN + 1, . . . , (k+ 2)N − 2,
the cost of each solution may increase by at most (N − 1)

∑
j∈J wj , still

allowing to answer k-PARTITION. Moreover, if A is polynomially bounded
for the k-PARTITION, so are all input data for the constructed instance. ut

The next corollary proves the desired hardness results.

Corollary 1 (1||UΓp |
∑
wjCj ,K)dec is NP-complete in the weak sense for

Γ = 1 and strongly NP-complete when Γ is part of the input.

Proof ForN = 2 and arbitrary k, k-PARTITION corresponds to PARTITION,
which is weakly NP-complete, and, for k = 3 and arbitrary N , k-PARTITION
generalizes 3-PARTITION, which is NP-complete in the strong sense. Hence,
the corollary follows directly from the reduction given by Theorem 2. ut
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3 Minimizing makespan on identical machines

We introduce the following notations. For any set of jobs X ⊆ J , we use
p(X) =

∑
j∈X pj and p̂(X) =

∑
j∈X p̂j . We let Γ (X) contain the Γ jobs from

X with highest deviations, p̂Γ (X) = p̂(Γ (X)), and p̂Γ (σ) =
∑
i∈M p̂Γ (σi).

We also use C(J ) = p(J ) + p̂Γ (J ) and C(σ) = maxi∈M C(σi). Remark that
F (σ, UΓ ) = C(σ), which can be computed in polynomial time.

We say that an algorithm A is a ρ-dual approximation if for any ω and
instance I, either A(I, ω) builds a schedule σ such that C(σ) ≤ ρω or fails,
which implies then that ω < opt. Notice that any ρ-dual approximation can
be converted to a ρ-approximation algorithm by performing a binary search
on ω to find the smallest ω that is not rejected.

3.1 General case: 3-approximation

Let us first review some simple approaches that do not work. First, applying
a PTAS on a classical instance of P ||Cmax where pj = pj + p̂j does not help
as the gap between optimal values of the new instance and the original one
(for the robust problem) can be large. Defining only pj = pj (i.e. ignoring
deviations) and applying a PTAS would lead to a 2(1 + ε) ratio if p̂j ≤ pj , but
does not work in the general case. Finally, it seems also tempting to apply a
PTAS on a first instance where pj = pj to get a schedule σ1, apply a PTAS
on a second instance where pj = p̂j to get a schedule σ2, and try to merge σ1
and σ2 to get a 2(1 + ε) algorithm, but again finding such a merge does not
seem straightforward.

Let us now design an algorithm A for P ||UΓp |Cmax, and prove the following
theorem.

Theorem 3 For any ε > 0, if for any j ∈ J , pj ≤ εω and p̂j ≤ εω, then A is
a min(2 + 2ε, 3) dual approximation algorithm for P ||UΓp |Cmax. This implies
that P ||UΓp |Cmax admits a 3-approximation in the general case.

Before presenting algorithm A, we point out an important obstacle faced
when designing dual algorithms for the problem. As usual, fixing the value of ω
is suitable as it defines the size of bins in which we can schedule the jobs. Thus,
a natural way to design a dual approximation algorithm would be to take the
jobs in an arbitrary order and schedule as many of them as possible into each
machine, moving to the next machine whenever C(σi) > ω, and rejecting ω
if there remain some jobs after filling m machines. If (as in Theorem 3) for
any j ∈ J , pj ≤ εω and p̂j ≤ εω, this algorithm would not exceed (1 + 2ε)ω,
thus improving over Theorem 3. However, this algorithm is not correct, as
the existence of a σ with C(σi) > ω for any i does not imply that ω < opt,
even if the algorithm selects jobs by non-increasing p̂j . Indeed, consider the
input where m = Γ = 2, ω = 15 and p1 = (0, 10), p2 = p3 = p4 = (0, 6),
p5 = (5, 0), p6 = (3, 0) (where pj = (pj , p̂j)). The previous algorithm woud
create σ1 = {1, 2}, σ2 = {3, 4, 5} and rejects as C(σi) > ω for any i and not all
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jobs are scheduled, whereas there exists a schedule σ∗1 = {1, 5}, σ∗2 = {2, 3, 4, 6}
that fits in ω. This explains the design of Algorithm 1. The validity of the
algorithm is shown in the rest of this section.

Algorithm 1 Algorithm A
// Given a set of jobs J , A(J ) either schedules J on m machines, or fails.
i = 1
while J 6= ∅ AND i ≤ m do
σi ← ∅
while J 6= ∅ AND p(σi) ≤ ω AND p̂Γ (σi) ≤ ω do

assign to σi the largest job (in term of p̂j) of J ;
end while
i← i+ 1;

end while
if J 6= ∅ then

fails
end if

Observation 2 For any σ, C(σ) ≤ ω ⇒ p̂Γ (σ) + p(J ) ≤ mω.

Lemma 3 If for any j ∈ J , pj ≤ εω and p̂j ≤ εω, then for any i, C(σi) ≤
min((2 + 2ε)ω, 3ω)

Proof In the worst case, before adding the last job j in the interior while loop
we had p(X) = ω and p̂Γ (X) = ω, and thus C(σi) ≤ 2ω + pj + p̂j with
pj + p̂j ≤ min(2εω, ω) (if there is a job with pj + p̂j > ω, we can immediatly
reject ω). ut

Lemma 4 If A fails, then opt > ω.

Proof Let us suppose that A fails and suppose by contradiction that opt ≤ ω.
We say that machine i is of type 1 iff p̂Γ (σi) > ω, and is of type 2 otherwise.
Notice that a schedule on a machine of type 1 contains at most Γ jobs (as
jobs are added by non-increasing p̂j), and a schedule σi on a machine of type
2 verifies p(σi) > ω. Let M1 be the set of machines of type 1, and let J1 be
the set of jobs scheduled by A in machinesM1. LetM2 and J2 be defined in
the same way. We have

– p(J2) > |M2|ω by definition of type 2
– p̂(J1) > |M1|ω by definition of type 1
– p̂(σ∗) ≥ p̂(J1)

Let us prove the last item. Notice first that for any schedule σ′ of J1 on m
machines such that C(σ′) ≤ ω, p̂(σ′) = p̂(J1). Indeed, let i be the last machine
in M1 and let x = |σi|. Notice that as we select the jobs by non-increasing
order of p̂j in the interior while loop, σi contains the x smallest jobs (in terms
of p̂j) of J1. As i is type 1 we get p̂Γ (σi) > ω, and we deduce that in any
schedule of J1 that fits in ω, there is at most x ≤ Γ jobs on every machine.
Thus, all jobs deviate in σ′, and p̂(σ′) = p̂(J1).
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Then, notice that p̂(σ∗) ≥ p̂(σ∗|J1|) where σ
∗
|J1| is the schedule we obtain by

starting from σ∗ and only keeping jobs of J1 on each machine (and removing
idle time). Thus, as opt|J1| is a schedule of J1 on m machines that fits in ω,
we know that p̂(σ∗|J1|) = p̂(J1), concluding the proof of the last item.

Thus, we get p(J ) + p̂(σ∗) ≥ p(J2) + p̂(J1) > mω, and thus according to
Observation 2 we deduce opt > ω, a contradiction. ut

Lemmas 3 and 4 directly imply Theorem 3.

3.2 Fixed Γ : PTAS

Let ε > 0. Our objective is to design an (1 + ε)-dual approximation algorithm
A. Let I be an instance of P ||UΓp |Cmax with m machines and a job set J . Let
ω be the current value of the guess. Consider a small positive number δ whose
value will be specified later according to Γ and ε .

The key observations leading to the algorithm can be summarized as fol-
lows. Small deviations (p̂j ≤ δw) lead to an additive error of Γδw, which can
be neglected when Γ is constant (see Observation 5 below). Large deviations
(p̂j > δw) must be addressed carefully as the number of jobs with large devi-
ations on a machine may not be constant, which we handle by using partial
profiles (see Definition 2 below).

Let us partition J into J = B̂∪B∪B̂∪S, where B̂ = {j|p̂j > δω and pj >
δω}, B = {j|p̂j ≤ δω and pj > δω}, B̂ = {j|p̂j > δω and pj ≤ δω}, and
S = {j|p̂j ≤ δω and pj ≤ δω}. Call a job j small if j ∈ S, and big otherwise.

Let us define I ′ where we geometrically round down the size of all big jobs.
More formally, let k = dlog1+δ

1
δ e. For any j, if pj ∈]ωδ(1 + δ)r, ωδ(1 + δ)r+1]

for some r ∈ [k] then p′j = ωδ(1 + δ)r (otherwise we define p′j = pj), and if
p̂j ∈]ωδ(1 + δ)r, ωδ(1 + δ)r+1] for some r ∈ [k] then p̂′j = ωδ(1 + δ)r (otherwise

we define p̂′j = p̂j). Notice that a job j in B̂ has been rounded twice (i.e., p̂j
and pj have been rounded), whereas a job j in B or B̂ has been rounded only
once. Then, we define I ′′ from I ′ by setting to zero any small deviation: for
any j, if p̂′j ≤ δω we define p̂′′j = 0, and otherwise we define p̂′′j = p̂′j .

Observation 3 opt(I ′′) ≤ opt(I ′) ≤ opt(I).

Observation 4 From any schedule σ′ of I ′, we can deduce a schedule σ of I
(by simply defining σ = σ′) such that C(σ) ≤ (1 + δ)C(σ′).

Observation 5 From any schedule σ′′ of I ′′, we can deduce a schedule σ′ of
I ′ (by simply defining σ′ = σ′′) such that C(σ′) ≤ C(σ′′) + Γδω.

The idea behind I ′′ is that neglecting the small deviation is possible as the
extra additive factor Γδω can be set to a negligeable amount by setting δ
sufficiently small (≈ ε

Γ ) as Γ is constant. We will show next how to solve I ′′
approximately. We partition the jobs of I ′′ using the same partition as in I
(i.e., according to threshold δω) obtaining four subsets of jobs B̂

′′
, B
′′
, B̂′′,

and S′′. Notice that:
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– for any job j ∈ B̂
′′
, p′′j and p̂′′j can take at most k different values;

– for any job j ∈ B′′, p′′j can take at most k different values, and p̂′′j = 0;
– for any job j ∈ B̂′′, p′′j can take arbitrary values (but below δω), and p̂′′j

can take at most k different values;
– for any job j ∈ S′′, p′′j can take arbitrary values (but below δω), and p̂′′j = 0.

Theorem 4 There exists a polynomial (1+Γδ)-dual approximation algorithm
for I ′′.

The key elements of the algorithm used to prove Theorem 4 follow.

Definition 2 Given a schedule σ′′i of a machine i in I ′′, let us define σ̃′′i , the
partial profile associated to σ′′i as follows. For any r1, r2 ∈ [k], let n̂

r1,r2
i = |{j ∈

σ′′i ∩B̂
′′
|p′′j = wδ(1+δ)r1 and p̂′′j = wδ(1+δ)r2}|, let nr1i = |{j ∈ σ′′i ∩B

′′|p′′j =

wδ(1 + δ)r1}|, and let n̂r1i = |{j ∈ Γ (σ′′i ) ∩ B̂′′|p̂′′j = wδ(1 + δ)r1}|. We define
σ̃′′i = (t1i , t

2
i , t

3
i ), where t1i = (n̂

r1,r2
i , r1 ∈ [k], r2 ∈ [k]), t2i = (nr1i , r1 ∈ [k]), and

t3i = (n̂r1i , r1 ∈ [k]).

Informally, the partial profile gives us the exact size all jobs of B̂
′′
and B

′′
and

only the value p̂′′j for the jobs in B̂′′ that deviate (which are the Γ jobs with
largest value p̂′′j ). We extend the notion to σ̃′′ = {σ̃′′i , i ∈ [m]}.

Observation 6 The number of possible partial profiles on a machine is bounded
by a constant k′. Indeed, notice that n̂

r1,r2
i ≤ 1

δ and nr1i ≤ 1
δ (as all these jobs

have p′′j > δw), and n̂r1i ≤ Γ (as we only keep the deviating jobs to define n̂r1i ).

Thus, we can take for example k′ = 1
δ

k2 1
δ

k
Γ k.

Let us define a polynomial algorithm A that either schedules I ′′ in (1+Γδ)ω
or fails, implying that ω < opt(I ′′). Let σ∗ be an optimal solution of I ′′. For
each l ∈ [k′]∗, where k′ is defined in Observation 6, we enumerate on how
many machines have a partial schedule of type l. Thus, we will run A on the
O(mk′) possible σ̃, and we now assume that A takes σ̃∗ as an input. For any
machine, let p̂∗i be the size of the smallest deviating job on machine i. More
formally, using rmini = min{r|(∃r1 such that n̂

r1,r

i 6= 0) or n̂ri 6= 0}, we define
p̂∗i = wδ(1+ δ)r

min
i . Let us assume w.l.o.g. that p̂∗i ≤ p̂∗i+1. In Algorithm 2, we

explain in details how A creates a schedule σ′′ of jobs of I ′′ given this partial
profile. We recall that for any integer x, [x]∗ = [x] \ {0} = {1, . . . , x}.

Observation 7 p̂Γ (σ′′) = p̂Γ (σ∗). Indeed, if two schedules σ(′′,1) and σ(′′,2)

of I ′′ have the same partial profile, then p̂Γ (σ(′′,1)) = p̂Γ (σ(′′,2)).

For any i, let σ∗i|big = σ∗i \ S′′. Let us also define M1 ∪ · · · ∪Mm′ as the
partition of [m]∗ of minimal cardinality m′ such that p̂∗i = p̂∗j for each pair
i, j ∈Mg and each g ∈ [m′]∗ (for example withm = 4 if p̂∗1 = 10, p̂∗2 = 15, p̂∗3 =
15 and p̂∗4 = 20, we have M1 = {1},M2 = {2, 3} and M3 = {4}). For any
g ∈ [m′]∗, let us also denote by xg the value of p̂∗i for any i ∈Mg.
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Algorithm 2 A(I ′′, σ̃∗, ω)

Phase 1 A schedules jobs in X1 = B̂
′′
∪B′′ by scheduling all jobs of B̂

′′
and B′′ according

to σ̃∗. Notice that we have |X1| =
∑
i∈[m]∗,r1∈[k],r2∈[k] n̂

r1,r2
i +

∑
i∈[m]∗,r∈[k] n

r
i

Phase 2 A schedules jobs in X2 ⊆ B̂′′ (X2 are the deviating jobs of B̂′′) as follows. For
i from 1 to m, for any r, A schedules the n̂ri remaining job j ∈ B̂′′ with p̂′′j = wδ(1 + δ)r

having the largest pj , and schedules them on machine i. Notice that we have |X2| =∑
i∈[m]∗,r∈[k] n̂

r
i .

Phase 3 A schedules jobs in X3 = B̂′′ \ X2 as follows. Let Âi = {j ∈ B̂′′ \
X2 such that p̂′′j ≤ p̂∗i } be the set of remaining jobs of B̂′′ that are authorized on i.
For i from 1 to m, while Âi 6= ∅ and C(σ′′i ) ≤ ω, A schedules arbitrary jobs of Âi on i .At
the end of Phase 3, if there remains some unscheduled jobs in B̂′′, then A fails, otherwise
it goes to Phase 4.
Phase 4 A schedules jobs of X4 = S′′ by picking any j ∈ X4 and any i such that
C(σ′′i ) ≤ ω and scheduling j on i. At the end of Phase 4, if there remains some unscheduled
jobs in S′′, then A fails.

Lemma 5 If C(σ∗) ≤ ω, then during Phase 3, for any g ≤ m′, after schedul-
ing the last machine ofMg we have p(

⋃
i∈M1∪...∪Mg

σ∗i|big) ≤ p(
⋃
i∈M1∪...∪Mg

σ′′i ).
Informally, the total (non-deviating) processing time scheduled by A on ma-
chines fromM1 ∪ ... ∪Mg is greater than the one scheduled in σ∗ \ S′′.

Proof Let us suppose this is true for g−1 and prove it for g. Let us first consider
the case where there exists i ∈ Mg such that A schedules all jobs of Âi on
i. This implies that at the end of Phase 3, A did not schedule any other job
from X3 on machines {(i+1), . . . , imax} where imax is the last machine ofMg.

Let us partition Z∗ =
⋃
l∈M1∪...∪Mg

σ∗l|big into Ẑ
∗

= Z∗ ∩ B̂
′′
, Z
∗

= Z∗ ∩ B′′

and Ẑ∗ = Z∗ ∩ B̂′′, and define the same partition for Z =
⋃
l∈M1∪...∪Mg

σ′′l .

Notice that Phase 1 garantees that Ẑ
∗
∪ Z∗ = Ẑ ∪ Z. Thus, it remains to

prove that p(Ẑ∗) ≤ p(Ẑ). Let J>p̂∗i = {j ∈ I ′′ \ S′′ with p̂j > p̂∗i = xg} and
J≤p̂∗i = {j ∈ I ′′ \ S′′ with p̂j ≤ p̂∗i = xg}. Notice that all jobs of Ẑ ∩ J>p̂∗i
deviate, and thus have been scheduled in Phase 2. Thus, as Phase 2 chooses
at each step the largest remaining pj we get p(Ẑ∗ ∩ J>p̂∗i ) ≤ p(Ẑ ∩ J>p̂∗i ).
Now, we will prove that Ẑ∗ ∩ J≤p̂∗i ⊆ Ẑ ∩ J≤p̂∗i (which together with the
previous inequality implies the desired result p(Ẑ∗) ≤ p(Ẑ)). To prove this,
it is sufficient to remark that any j ∈ Ẑ∗ ∩ J≤p̂∗i is either in Âi (implying
immediately the claim) or in X2 (implying that j was scheduled in Phase 2).
In the last case, observe that whenever Phase 2 schedules j on a machine i′,
then p̂′′j ≥ p̂∗i′ , and thus j must have been scheduled by Phase 2 on a machine
i′ ≤ imax, and thus j ∈ Ẑ ∩ J≤p̂∗i .

It remains to analyse the case where for any i ∈ Mg, A stops filling i as
C(σ′′i ) > ω. As p̂Γ (σ′′i ) = p̂Γ (σ∗i ), we have p(σ′′i ) > ω− p̂Γ (σ′′i ) ≥ p(σ∗i|big), and
using the induction hypothesis the result is immediate. ut

Corollary 1 (of Lemma 5) If A fails after Phase 3, then ω < C(σ∗).
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Proof Suppose C(σ∗) ≤ ω. Applying Lemma 5 to the last groupMm′ , we get
p(I ′′ \ S′′) = p(

⋃
i∈M1∪...∪Mm′

σ∗i|big) ≤ p(
⋃
i∈M1∪...∪Mm′

σ′′i ) = p(X1 ∪X2 ∪
X3). If A fails after Phase 3, it means that X1 ∪X2 ∪X3 ⊂ I ′′ \ S′′, and we
get p(I ′′ \ S′′) > p(X1 ∪X2 ∪X3), a contradiction. ut

Lemma 6 If A fails after Phase 4, then ω < C(σ∗).

Proof According to Observation 7 we have p̂Γ (σ′′) = p̂Γ (σ∗). If A fails after
Phase 4, we have C(σ′′i ) > ω for any i, and thus p(I ′′) > mw − p̂Γ (σ′′) =
mw − p̂Γ (σ∗), implying that ω < C(σ∗). ut

Lemma 7 If A does not fail and produces σ′′, then C(σ′′) ≤ (1 + Γδ)ω.

Proof In Phase 1, A does not exceed ω by construction. At the end of Phase 2
we have C(σ′′) ≤ (1 + Γδ)ω as in the worse case t3i refers to Γ jobs, and each
of these jobs has p′′j = δω. As jobs in Phase 3 cannot deviate, scheduling a job
j ∈ B̂′′ \X2 on a machine i having C(σ′′i ) < ω can increase C to most (1+δ)ω.
As the bound is also (1 + δ)ω for Phase 4, we get the desired result. ut

Lemma 6 and 7 together prove Theorem 4.

Corollary 2 P ||UΓp |Cmax admits a PTAS.

Proof Given ε > 0, and I an instance of P ||UΓp |Cmax we provide a (1+ε)-dual
approximation algorithm in the following way. Let ω be the current guess of
opt(I). We define I ′′ as previously, and run the (polynomial time) algorithm
A(I ′′, σ̃∗, ω) from Theorem 4. If A fails, then we also fail on I according
to Observation 3. Otherwise, according to Theorem 4, Observation 4, and
Observation 5 we get a schedule σ of I with C(σ) ≤ (1+ δ)((1+Γδ)ω+Γδω),
and thus we set δ such that (1 + δ)(1 + 2Γδ) = 1 + ε. ut

4 Minimizing makespan on unrelated machines

In this section, we denote by p̄ij and p̂ij respectively the mean and deviating
processing times for job j ∈ J = {1, . . . , n} on machine i ∈M = {1, . . . ,m}.

4.1 Constant number of machines

We provide below a pseudopolynomial dynamic programing algorithm for
Rm||UΓp |Cmax. Deducing an FPTAS will be straightforward by following the
same approach as in [12]. Observe that the main difficulty here is to keep track
of the deviating jobs, especially when Γ is not constant. For Qm||UΓp |Cmax,
this difficulty can be handled by ordering the jobs in non-increasing order
of p̂j . Namely, given two m-dimensional vectors l and x, and an integer j, we
write a dynamic programming algorithm DP (l, x, j) that keeps track for every
machine of its current total load li (including deviations) and of the number of
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deviating jobs xi ∈ [Γ ], and computes the optimal makespan when scheduling
jobs {j′ ≥ j}. Let si be the speed of machine i. Due to the ordering of the
jobs, the potential contribution of job j to machine i is pj

si
if xi = Γ , and pj+p̂j

si
otherwise.

We show below how to extend the approach to Rm||UΓp |Cmax for which we
cannot define such an ordering of the jobs. Let u be an upper bound on opt.
Without loss of generality, we add enough dummy jobs (with p̂ij = pij = 0) so
that we can suppose that there are at least Γ jobs on each machine. Thus, we
add in the problem the extra constraint that there must be exactly Γ deviating
jobs on each machine.

We first guess for each machine machine what is the size p̂∗i of the smallest
deviating job in an optimal solution σ∗. This means that for any i and any
job j scheduled on i in σ∗, j ∈ Γ (σ∗i ) implies p̂ij ≥ p̂∗i . Then, we consider the
algorithm DP (l, x, j) that remembers for any machine i the total load li ∈ [u]
(including deviations), the number of already deviating jobs xi ∈ [Γ ], and
computes the optimal makespan when scheduling jobs {j′ ≥ j}. More formally,
given (l, x, j), we define the two following notions. The subinstance Ij is the
subinstance containing the m machines and jobs {j′ ≥ j}. For any schedule
σ = {σi} of Ij we define Ci(σi) = p(σi)+p̂

Γ−xi(σi)+li (we denote by p̂Γ−xi(σi)
the sum of the p̂ of the Γ − xi largest jobs of σi, and thus Ci represents the
total makespan including the Γ deviating jobs), and C ′(σ) = maxi C

i(σi). Our
objective is now to define DP (l, x, j) that computes a σ minimizing C ′.

To that end, DP (l, x, j) branches m times to decide where j is scheduled,
and calls DP (l′, x′, j + 1). If j is scheduled on i, then

– if p̂ij < p̂∗i then (li, xi) becomes (li + pij , xi),
– if p̂ij > p̂∗i and xi = Γ then (li, xi) becomes (∞, xi) (j cannot be scheduled

on i),
– if p̂ij > p̂∗i and xi < Γ then (li, xi) becomes (li + pij + p̂ij , xi + 1),
– if p̂ij = p̂∗i and xi = Γ then (li, xi) becomes (li + pij , xi) (there are already
Γ deviating jobs and job j must not deviate on machine i),

– if p̂ij = p̂∗i and xi < Γ then (li, xi) becomes either (li + pij , xi) or (li +
pij + p̂ij , xi + 1) (the algorithm branches to choose if j deviates or not).

Notice that the two last items are necessary when for example σ∗i = {j1, j2, j3, j4}
with p̂ij1 > p̂ij2 = p̂ij3 > p̂ij4 and Γ = 2: only one of the two jobs of process-
ing time p̂∗i = p̂ij2 deviates. Finally, when j = n + 1 (i.e., all the jobs are
scheduled), if one of the xi is strictly lower than Γ then DP (l, x, j) returns
+∞ (remember that we impose that there are exactly Γ deviating jobs on
each machine), otherwise it returns maxi(li). This concludes the description
of DP . Once the {p̂∗i } are fixed, DP runs in O((u(Γ + 1))mnm), and thus the
overall running time is in O((nu(Γ + 1))mnm).

We can deduce an FPTAS from this pseudopolynomial DP by using the
same arguments as in [12]. Let l be a lower bound, and d an integer. We round
each p̂ij ∈]qd, (q + 1)d] to p̂′ij = (q + 1)d (and similarly for the {pij}), and get
a new instance I ′ with opt(I ′) ≤ opt(I) + 2nd. We solve I ′ with the previous
DP in O((nu′(Γ + 1))mnm) where u′ = u

d . Thus, as we need 2nd ≤ εl, we
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take d = εl
2n and get an FPTAS as we can find u and l with u

l = n with for
example any trivial n-approximation algorithm.

4.2 The number of machines belongs to the input

Let us start with a simple result showing that for small values of Γ we can
simply re-use any existing approximation algorithm.

Lemma 8 From any polynomial-time ρ-approximation A for R||Cmax we can
deduce a polynomial (ρ+ Γ )-dual approximation AΓ for R||UΓp |Cmax. In par-
ticular, [17] gives a 2 + Γ dual approximation.

Proof Let I be an instance of R||UΓp |Cmax. Let ω be the current value of the
guess. Without loss of generality, for any i and j we can suppose that either
((p̂ij ≤ ω) and (pij ≤ ω)), or ((p̂ij > ω) and (pij > ω)). Indeed, if (pij > ω)
and (p̂ij ≤ ω), then j cannot be processed on i, and thus we can set p̂ij = ω+1.
If (pij ≤ ω) and (p̂ij > ω) then again j cannot be processed on i (as either
j or a job j′ with p̂ij′ ≥ p̂ij will deviate), and we set pij = ω + 1. Then, we
define I ′ as the corresponding instance of R||Cmax without deviation (I ′ has
m machines, and p′ij = pij), and we compute A(I ′). If A(I ′) > ρω, then we
reject as it implies that opt(I ′) > ω (and opt(I ′) ≤ opt(I)). Otherwise, we
keep the schedule σ as computed by A(I ′), and as for any job j scheduled on
a machine i we have p̂ij ≤ ω, we have C(σ) ≤ ρω + Γω. ut

We provide a more refined algorithm that yields an average O(logm) ap-
proximation factor. Notice that the straightforward generalization of the for-
mulation from [17] is not useful in the robust context because its fractional
solution may contain up to nm fractional variables. Hence, we must use a
different approach, based on the extended formulation described next.

Define, for each i ∈M and each ν ⊆ J , λiν = 1 if the set of jobs executed
on machine i is precisely ν, and zero otherwise. Let µ(j, ν) = 1 if j ∈ ν, and zero
otherwise, and α(i, ν) be the robust completion time of machine i when it exe-
cutes the jobs in ν, formally α(i, ν) = max

{∑
j∈ν(p̄ij + ξj p̂ij)|ξ ∈ {0, 1}n,

∑
j∈J ξj ≤ Γ

}
.

The formulation follows:

Min ω

S.t.
∑
i∈M

∑
ν⊆J

µ(j, ν)λiν = 1, ∀j ∈ J

ω ≥
∑
ν⊆J

α(i, ν)λiν , ∀i ∈M

∑
ν⊆J

λiν = 1, ∀i ∈M

λiν ∈ {0, 1}, ∀(i, ν) ∈M× 2J
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As with the formulation from [17], the value of the lower bound improves if
we drop the objective function and remove all variables λiν such that α(i, ν) is
greater than a given target makespan value ω. Namely, we consider the lower
bound for R||UΓ |Cmax defined as follows

LB = {minω : FP (ω) is feasible}, (5)

where FP (ω) is defined by the following linear constraints:∑
i∈M

∑
ν⊆J

α(i,ν)≤ω

µ(j, ν)λiν = 1, ∀j ∈ J (6)

∑
ν⊆J

α(i,ν)≤ω

λiν = 1, ∀i ∈M (7)

λiν ≥ 0, ∀(i, ν) ∈M× 2J (8)

We show below how we can assert in polynomial time whether FP (ω) is in-
feasible or prove its feasibility for 2ω. This algorithm can be further combined
with a binary search on the minimum value ω for which FP (ω) is feasible,
yielding the following result.

Theorem 5 We can compute in polynomial time a 2-approximate solution for
LB.

Proof We solve problem (5) using a dual-approximation algorithm. Namely,
for each value of ω, either we show that FP (2w) is feasible or that FP (ω)
is infeasible. Then, the minimum value of ω for which FP (ω) is feasible that
leads to zero objective value can be found through a binary search.

Let ω be the current value of the guess. We can check the feasibility of
FP (ω) by adding artificial variables sj that allow penalized infeasibilities,
leading to the following linear program.

Min
∑
j∈J

sj (9)

S.t.
∑
i∈M

∑
ν⊆J

α(i,ν)≤ω

µ(j, ν)λiν + sj = 1, ∀j ∈ J

(10)∑
ν⊆J

α(i,ν)≤ω

λiν = 1, ∀i ∈M

(11)

λiν ≥ 0, ∀(i, ν) ∈M× 2J , α(i, ν) ≤ ω
(12)

sj ≥ 0, ∀j ∈ J
(13)



20 Marin Bougeret et al.

The continuous relaxation of the previous formulation can be solved in poly-
nomial time, using for instance the Ellipsoid method [13], if the problem of
pricing the λ variables is also polynomially solvable [11]. Such a pricing prob-
lem can be stated as follows. Let πj , and θi be dual variables associated to
constraints (10), and (11), respectively. The reduced cost of the variable λiν ,
denoted by c̄(λiν), is equal to −

∑
j∈ν πj − θi.

Then, for each i ∈ M, we want to find ν ∈ J that maximizes
∑
j∈ν πj

subject to α(i, ν) ≤ ω. This problem is the robust binary knapsack problem,
which is an NP-hard problem. Hence, suppose that we can compute in poly-
nomial time a solution ν∗ with reduced cost c̄∗ such that α(i, ν) ≤ 2ω and
such that no solution with a smaller reduced cost exists where α(i, ν) ≤ ω. We
obtain a relaxed primal solution that may use variables λiν with α(i, ν) up to
2ω, and whose objective value is not greater than the optimal value of a linear
program where all variables λiν have α(i, ν) ≤ ω. As a result, a positive value
on the objective function ensures that FP (ω) is infeasible while a null value
provides a fractional feasible solution for FP (2ω).

It remains to show how to find the solution ν∗. Remark that if p̂ = 0 (the
problem is deterministic), such a solution ν∗ can be found by using the greedy
algorithm for the knapsack problem and rounding up the unique fractional
variable. Then, one readily verifies that the deterministic approach can be
extended to the robust context by solving n + 1 deterministic problems in
the spirit of Theorem 1 and its extension to robust constraints, as studied in
[9]. ut

In the remainder of the section, we let ω be the solution returned by The-
orem 5 and λ∗ be the corresponding fractional vector. Our objective is to use
randomized rounding to obtain an integer solution to R||UΓ |Cmax. We first
present a straightforward analysis showing that the approximation ratio of the
solution is at most O(log(n))ω. Then, we present a more elaborate analysis by
considering the probability that a job is already scheduled when scheduling it
again. The latter abalysis leads to a ratio of O(log(m))ω. Since ω/2 is a lower
bound for opt, this will lead to an average O(log(m))-approximation ratio for
R||UΓ |Cmax (see Theorem 7).

The proposed rounding procedure iteratively adds schedules to all machines
until every job is assigned to one of the machines. At each iteration, one addi-
tional schedule is selected for each machine and added to the current solution,
allowing that the same schedule is added more than once to a given machine.
The procedure maintains a variable yij for each machine i and each job j rep-
resenting the number of times that job j belongs to a scheduled that is added
to machine i. These variables are used only to prove the approximation bound
on the obtained makespan. The integer solution consists of simply assigning
each job j to the machine that receives the first schedule that contains j.

The pseudocode for this rounding procedure is given in Algorithm 3. Let
Cmax be the random variable corresponding to the makespan of the schedule
computed by Algorithm 3. Let t be the number of iterations performed by the
while loop of this algorithm. Since every schedule ν associated to a variable



Robust scheduling with budgeted uncertainty 21

Algorithm 3 Randomized rounding (input: a feasible solution (λ∗) of FP (ω))
y ← 0;
while there exists a job j ∈ J not assigned to any machine do

for i← 1, . . . ,m do
Randomly select a schedule ν∗ for machine i with probability λ∗iν of selecting each
schedule ν;
for each j ∈ ν∗ do
yij ← yij + 1;
if job j is not assigned to any machine then

Assign job j to machine i;
end if

end for
end for

end while

λiν has a total processing time of at most ω, it is clear that Cmax ≤ ωt. Thus,
it remains to give an upper bound on the expected value of t. For that, we
use the well-known Chernoff bound that can be described as follows. Given
K independent random variables X1, . . . , XK , each one taking the value 1
with certain probability and zero otherwise, such that the expected value of
X =

∑K
k=1Xk is equal to µ, the probability that X < (1− δ)µ, for any δ > 0,

is smaller than e−µδ
2/2. The next Theorem uses this bound to limit the value

of t.

Theorem 6 The probability that t > d4 ln(2n)e is less than 1/2.

Proof Let t∗ = d4 ln(2n)e. For a given job j, machine i and iteration q ≤ t∗

of the while loop, let Xj
q,i = 1 if the value of yij is increased during this

iteration, and zero otherwise (if the algorithm stopped after t < t∗ iterations
of the while loop then all the Xj

q,i with t < q ≤ t∗ are set to 0). Clearly,
the random variables Xj

q,i are independent. Moreover, the constraints (10)
ensure that E(

∑
iX

j
q,i) = 1 for any j and q, and thus the expected value of

Xj =
∑
q∈[t∗]∗,i∈[m]∗ X

j
q,i is equal to t∗. Now, applying the Chernoff bound

with δ = 1− 1/t∗, and assuming that t∗ ≥ 4, we obtain that

Pr[Xj < 1] < e−
(t∗−1)2

2t∗ < e−t
∗/4 ≤ 1

2n
. (14)

Note that Pr[Xj < 1] is the probability that the job j is not scheduled after
t∗ iterations, and that the random variables X1, . . . , Xn are not necessarily
independent. Let X = 1 if every job is scheduled after t∗ iterations, and zero
if at least one job is not scheduled. Note that X = 0 is equivalent to state that
the Algorithm 3 does not finish after t∗ iterations, i.e., t > t∗. Moreover, we
have that

Pr[X = 0] = Pr[
n∑
j=1

Xj < n] ≤
n∑
j=1

Pr[Xj < 1] < 1/2, (15)

which completes our proof. ut
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Corollary 2 E(Cmax) = O(log(n))ω.

Proof An immediate consequence of Theorem 6 is that for any integer c ≥ 1,
the probability that t > c × d4 ln(2n)e is less than 1/2c (indeed, 1/2c upper
bounds the probabilty that none of c parallel execution of Algorithm 3 sched-
ules all the jobs, where each run only performs d4 ln(2n)e iterations of the
while loop). As a result, the expected value of t is smaller than 2×d4 ln(2n)e.

ut

We present below a tighter analysis of the approximation ratio of Algo-
rithm 3.

Lemma 9 E(Cmax) = O(log(m))ω.

Proof For each value λ∗iν > 0 considered by Algorithm 3, let αj(i, ν) be the
contribution of the job j to the value of α(i, ν), defined as follows.

αj(i, ν) =

 p̄j + p̂j , if j ∈ Γ (ν),
p̄j , if j ∈ ν \ Γ (ν),
0, if j 6∈ ν.

(16)

Clearly, α(i, ν) =
∑
j∈J αj(i, ν). Note that the makespan of the solution

computed by Algorithm 3 can be bounded by

Cmax ≤ max
i∈M


t∑
`=1

∑
j∈J

αj(i, νi,`)

 , (17)

where νi,` is the schedule selected for machine i in the `th iteration. Note that
νi,` is a random variable, and so is α(i, νi,`).

If order to improve the upper bound given by (17), we consider a new
upper bound on E(Cmax) where the probability that j is already scheduled
when adding each term αj(i, νi,`) is taken into account. Let β(i, `) be the
increase on makespan of the current schedule for the machine i at the `th
iteration, which is defined as follows.

β(i, `) =

{
α(i, νi,`), if ` = 1,
α(i, ν′i,`)− α(i, ν′i,`−1), if ` > 1,

where ν′i,` =
⋃̀
k=1

νi,k. We also define βj(i, `) as the contribution of job j to

β(i, `), given by

βj(i, `) =

{
αj(i, νi,`), if ` = 1,
αj(i, ν

′
i,`)− αj(i, ν′i,`−1), if ` > 1.

(18)

Note that βj(i, `) can be strictly positive only if j is not scheduled before
the `th iteration.

Let qj` be the probability that the job j is not scheduled on any machine
during the `−1 first iterations. Since each iteration corresponds to an indepen-
dent and identical random try, we have that qj` = (qj2)`−1. Moreover, since
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the schedule selections on different machines are independent and the sum of
the probabilities of scheduling a given job j for all machines is equal to 1, we
have that

qj2 =
∏
i∈M

(1− Pr[job j is scheduled on machine i]) (19)

≤ (1− 1/m)
m
< 1/e

The first inequality is true because setting all probabilities equal to 1/m
maximizes the right-hand side of (19) subject to the constraint that the sum
of all probabilities is one. Hence, we have that qj` < 1/e`−1. Then, we obtain
that

E(Cmax) = E

(
max
i∈M

{
t∑
`=1

β(i, `)

})

≤ E

max
i∈M


dlnme∑
`=1

α(i, νi,`)

+ max
i∈M


t∑

`=dlnme+1

β(i, `)


 (20)

≤
dlnme∑
`=1

ω +
∑
i∈M

E

 t∑
`=dlnme+1

∑
j∈J

βj(i, `)

 (21)

≤
dlnme∑
`=1

ω +
∑
i∈M

t∑
`=dlnme+1

∑
j∈J

qj`
∑
ν⊆J

λ∗i,ναj(i, ν) (22)

< ωdlnme+
∑
i∈M

t∑
`=dlnme+1

∑
j∈J

1

e`−1

∑
ν⊆J

λ∗i,ναj(i, ν)

= ωdlnme+
∑
i∈M

t∑
`=dlnme+1

1

e`−1

∑
ν⊆J

λ∗i,ν
∑
j∈J

αj(i, ν)

≤ ωdlnme+
∑
i∈M

t∑
`=dlnme+1

1

e`−1
ω

< ωdlnme+m
e

m(e− 1)
ω

=

(
dlnme+

e

e− 1

)
ω.

Inequality (20) follows from β(i, `, ) ≤ α(i, νi,`), inequality (21) follows from
E(α(i, νi,`)) ≤ ω, which holds because of the definition of FP (ω), inequality
(22) follows from the definition of βj(i, `) in (18), and the other inequalities
are obtained similarly.

ut
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We obtain easily the following result.

Theorem 7 There is a O(log(m))-approximation in expectation for R||UΓ |Cmax.

Proof Let us define a randomized O(logm)-dual approximation that given a
threshold ω either creates a schedule with E(Cmax) ≤ O(logm)ω, or fails, im-
plying that ω < opt (where opt is the optimal solution cost of the R||UΓ |Cmax

input). Given ω, we apply Theorem 5 to either compute a fractional solution
of cost 2ω of LB, or fail (implying ω < opt(LB) ≤ opt). If the algorithm does
not fail, we applying Lemma 9 to round this solution to an integer solution
with expected makespan E(Cmax) ≤ O(logm)2ω. ut
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A Proof of Proposition 1

Let us detail the inner maximization of (2) as∑
i,j

pjqixij + max
∑
i,j

δj p̂jqixij

s.t.
∑
j

δj ≤ Γ,

δj ∈ {0, 1}, j = 1, . . . , J.

Removing the binary conditions on δ in the definition of UΓ , one obtains a polytope whose
extreme points are exactly the elements of UΓ . Hence, we can consider the linear program-
ming relaxation of the above problem, which is equal to the solution cost of its dual

min Γθ +
∑
j

yj

s.t. θ + yj ≥
∑
i

p̂jqixij , j = 1, . . . , J

θ, y ≥ 0.



26 Marin Bougeret et al.

Substituting yj by max(0,
∑
i p̂jqixij − θ), we can further reformulate (2) as

min
x∈X ,θ≥0

Γθ +
∑
i,j

pjqixij +
∑
j

max(0,
∑
i

p̂jqixij − θ). (23)

The only step of our proof that differs from Theorem 1 is that, because the constraint∑I
i=1 xij = 1 holds for each j = 1, . . . , J , we can further reformulate (23) as

min
x∈X ,θ≥0

Γθ +
∑
i,j

pjqixij +
∑
j

∑
i

xij max(0, p̂jqi − θ). (24)

Let us denote by fx(θ) the objective function of (24). Then, observe that for any x ∈ X ,
fx(θ) is a piece-wise linear convex function that reaches its minimum at one of its kink
points. The result then follows by observing that, for any x ∈ X , the set of kink points of
fx(θ) is included into the set {p̂lqk : k ∈ I, l ∈ J}.


