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Introduction

Let G be a graph. A decycling set or feedback vertex set S of G is a subset of the vertices of G such that removing the vertices of S from G yields an acyclic graph. Thus S is a decycling set of G if and only if the graph induced by V (G)\S in G is an induced forest of G. The feedback vertex set decision problem (which consists of, given a graph G and an integer k, deciding whether there is a decycling set of G of size k) is known to be NP-complete, even restricted to the case of planar graphs, bipartite graphs or perfect graphs [START_REF] Karp | Reducibility among combinatorial problems[END_REF]. It is thus legitimate to seek bounds for the size of a decycling set or for the order of an induced forest. The smallest size of a decycling set of G is called the decycling number of G, and the highest order of an induced forest of G is called the forest number of G, denoted respectively by φ(G) and a(G). Note that the sum of the decycling number and the forest number of G is equal to the order of G (i.e.

|V (G)| = a(G) + φ(G)).

Mainly, the community focuses on the following challenging conjecture due to Albertson and Berman [START_REF] Albertson | A conjecture on planar graphs[END_REF]: Conjecture 1, if true, would be tight (for n ≥ 3 multiple of 4) because of the disjoint union of complete graphs on four vertices (Akiyama and Watanabe [START_REF] Akiyama | Maximum induced forests of planar graphs[END_REF] gave examples where the conjecture differs from the optimal by at most one half for all n), and would imply that every planar graph has an independent set on at least a quarter of its vertices, the only known proof of which relies on the Four-Color Theorem.

The best known lower bound to date for the forest number of a planar graph is due to Borodin and is a consequence of the acyclic 5-colorability of planar graphs [START_REF] Borodin | A proof of Grünbaum's conjecture on the acyclic 5colorability of planar graphs (russian)[END_REF]. We recall that an acyclic coloring is a proper vertex coloring such that the graph induced by the vertices of any two color classes is a forest. From this result we obtain the following theorem: Theorem 2 (Borodin [START_REF] Borodin | A proof of Grünbaum's conjecture on the acyclic 5colorability of planar graphs (russian)[END_REF]). Every planar graph of order n admits an induced forest of order at least 2n 5 . As a consequence of the acyclic 3-colorability of outerplanar graphs, Hosono [START_REF] Hosono | Induced forests in trees and outerplanar graphs[END_REF] showed the following theorem which is best possible.

Theorem 3 (Hosono [START_REF] Hosono | Induced forests in trees and outerplanar graphs[END_REF]). Every outerplanar graph of order n admits an induced forest of order at least 2n 3 . The tightness of Theorem 3 is shown by the example in Figure 1. Lower and upper bounds on forest number of planar graphs with girth 5 and 7 has also been deduced from results on acyclic coloring by Fertin et al. [START_REF] Fertin | Minimum feedback vertex set and acyclic coloring[END_REF].

Theorem 4 (Fertin et al. [START_REF] Fertin | Minimum feedback vertex set and acyclic coloring[END_REF]).

(1) Every planar graph of order n and girth at least 5 admits an induced forest of order at least n 2 . Moreover, for n ≡ 0( mod 20), there exist planar graphs of order n and girth 5 having forest number 7n 10 (disjoint copies of the dodecahedron, see Figure 2a).

(2) Every planar graph of order n and girth at least 7 admits an induced forest of order at least 2n 3 . Moreover, for n ≡ 0( mod 12), there exist planar graphs of order n and girth 7 having forest number 5n 6 (disjoint copies of the graph depicted in Figure 2b). Theorem 6 (Kelly and Liu [START_REF] Kelly | Minimum size of feedback vertex sets of planar graphs of girth at least five[END_REF], Shi and Xu [START_REF] Shi | Large induced forests in graphs[END_REF]). Every connected planar graph of girth at least 5, order n, and size m has an induced forest of order at least 8n-2m-2

7

. Using Euler's formula, that implies that every connected planar graph with girth at least 5 and order n has an induced forest of order at least (2n+2) 3 ≈ 7n 10.5

(recall that 7n 10 is conjectured).

Akiyama and Watanabe [START_REF] Akiyama | Maximum induced forests of planar graphs[END_REF], and Albertson and Haas [START_REF] Albertson | A problem raised at the DIMACS Graph Coloring Week[END_REF] independently raised the following conjecture: Conjecture 7 (Akiyama and Watanabe [START_REF] Akiyama | Maximum induced forests of planar graphs[END_REF], and Albertson and Haas [START_REF] Albertson | A problem raised at the DIMACS Graph Coloring Week[END_REF]). Every bipartite planar graph of order n admits an induced forest of order at least 5n 8 . This conjecture, if true, would be tight for n multiple of 8: for example if G is the disjoint union of k cubes, then we have a(G) = 5k and G has order 8k (see Figure 3). Motivated by Conjecture 7, Alon [START_REF] Alon | Problems and results in extremal combinatorics-I[END_REF] proved the following theorem using probabilistic methods: Theorem 8 (Alon [START_REF] Alon | Problems and results in extremal combinatorics-I[END_REF]). There exist some b > 0 and b > 0 such that:

• For every bipartite graph G with n vertices and average degree at most d (≥ 1), a(G) ≥ ( 1 2 + e -bd 2 )n.

• For every d ≥ 1 and all sufficiently large n there exists a bipartite graph with n vertices and average degree at most d such that a(G)

≤ ( 1 2 + e -b √ d )n.
The lower bound was later improved by Colon et al. [START_REF] Conlon | Short proofs of some extremal results[END_REF] to a(G) ≥ (1/2 + e -b d )n for some constant b .

Conjecture 7 also led to some research for lower bounds of the forest number of triangle-free planar graphs (as a superclass of bipartite planar graphs). Alon et al. [START_REF] Alon | Large induced forests in sparse graphs[END_REF] proved the following theorem and corollary: Theorem 9 (Alon et al. [START_REF] Alon | Large induced forests in sparse graphs[END_REF]). Every triangle-free graph of order n and size m admits an induced forest of order at least n -m 4 . Corollary 10 (Alon et al. [START_REF] Alon | Large induced forests in sparse graphs[END_REF]). Every triangle-free cubic graph of order n admits an induced forest of order at least 5n 8 . Theorem 9 is tight because of the union of cycles of length 4. In a planar graph with girth at least g, order n, and size m with at least a cycle, the number of faces is at most 2m g (since all the faces' boundaries have length at least g). Then, by Euler's formula, 2m g ≥ m -n + 2, and thus m ≤ g g-2 (n -2). In particular, triangle-free planar graphs of order n ≥ 3 have size at most 2n -4.

As a consequence of Theorem 9, for every triangle-free planar graph G of order n, we have a(G) ≥ n/2. That lower bound was improved for n ≥ 1 by Salavatipour [START_REF] Salavatipour | Large induced forests in triangle-free planar graphs[END_REF].

Theorem 11 (Salavatipour [13]). Every triangle-free planar graph of order n and size m admits an induced forest of order at least 29n-6m 32 and thus at least 17n+24 32 ≈ 5n 9.41 . In 2010, Kowalik et al. [START_REF] Kowalik | An improved bound on the largest induced forests for triangle-free planar graphs[END_REF] proposed that for every triangle-free planar graph G of order n and size m, a(G) ≥ 119n-24m-24 128 ≥ 71n+72 128 . However, the proof contains a flaw (contrarily to what the authors claim, the minimum counterexample is not necessarily connected). In Section 2, we give an infinite family of counter-examples for a(G) ≥ 119n-24m-24 128 and we propose an improvement of Theorem 11, which thus leads to the best known lower bound to our knowledge: Theorem 12. Every triangle-free planar graph of order n and size m admits an induced forest of order at least max{ 38n-7m 44 , n -m 4 }. We note that Theorem 12 improves Theorem 9 when m > 3n 2 . Hence by Euler's formula the following corollary holds: Corollary 13. Every triangle-free planar graph of order n ≥ 1 admits an induced forest of order at least 6n+7 11 ≈ 5n 9.17 .

Proof of Theorem 12

We first give a counter-example to the bound of Kowalik et al. [START_REF] Kowalik | An improved bound on the largest induced forests for triangle-free planar graphs[END_REF]: we consider the disjoint union of k cubes. There are 8k vertices and 12k edges, hence Kowalik et al.'s lower bound tells us that there is an induced forest of size at least 119(8k)-24(12k)-24 128 = 5k + (k -1) 3 16 . However there cannot be an induced forest of more than 5 vertices in a cube (see Figure 3), and thus the biggest induced forest in our graph contains 5k vertices, which contradicts the lower bound. Furthermore, by increasing k, one can see that the biggest induced forest can be arbitrarily smaller than the supposed lower bound.

The proof of Theorem 12 consists in looking for a minimal counter-example G, proving some structural properties on G, and concluding that it cannot verify Euler's formula, which is contradictory.

Consider G = (V, E). For a set S ⊂ V , let G -S be the graph constructed from G by removing the vertices of S and all the edges incident to some vertex of S. If x ∈ V , then we denote G -{x} by G -x. For a set S of vertices such that S ∩ V = ∅, let G + S be the graph constructed from G by adding the vertices of S. If x / ∈ V , then we denote G + {x} by G + x. For a set F of pairs of vertices of G such that F ∩ E = ∅, let G + F be the graph constructed from G by adding the edges of F . If e is a pair of vertices of G and e / ∈ E, we denote G + {e} by G + e. For a set W ⊂ V , we denote by G[W ] the subgraph of G induced by W .

We call a vertex of degree d, at least d, and at most d, a d-vertex, a d +vertex, and a d --vertex respectively. Similarly, we call a cycle of length l, at least l, and at most l an l-cycle, an l + -cycle, and an l --cycle respectively, and by extension a face of length l, at least l, and at most l an l-face, an l + -face, and an l --face respectively.

Let P 4 be the class of triangle-free planar graphs.We will prove of the following more general statement than Theorem 12:

0 ≤ a ≤ 1 (1) 0 ≤ b (2) a -6b ≤ 0 (3) 3a -10b ≤ 1 (4) 8a -12b ≤ 5 (5) 
Theorem 14. If a and b are positive constants such that equations ( 1)-( 5) are verified, then a(G) ≥ an -bm for all G ∈ P 4 .

That series of inequalities defines a polygon represented in Figure 4, and for a triangle-free planar graph of given order n and size m, the highest lower bound will be given by maximizing an -bm for a and b in this polygon. This maximum will be achieved at a vertex of the polygon. Moreover, by Euler's formula, every triangle-free planar graph of order n ≥ 3 and size m satisfies 0 ≤ m ≤ 2n -4. Therefore for n ≥ 3 the maximum will always be achieved at the intersection of either 3a -10b = 1 and 8a -12b = 5, or 8a -12b = 5 and a = 1. The corresponding intersections are (b, a) = ( 744 , 38 44 ) and (b, a) = ( 1 4 , 1), represented in Figure 4.

Let us show that any of the two lower bounds can be higher than the other, for graphs of arbitrarily high order.

For the disjoint union of k cubes (which is a graph of order 8k and size 12k), the two lower bounds are equal to 5k.

We consider now a graph composed of k disjoint cubes, where we remove an edge from each cube. This graph has 8k vertices and 11k edges. In this case we have n - ( 1 4 , 1) We now consider a graph composed of k disjoint cubes, where we add an edge from each cube to the next one and an edge from the last one to the first one. This graph has 8k vertices and 13k edges. In this case, we have

( 7 44 , 8 44 ) ( 1 8 , 3 4 ) a = 6b 3a -10b = 1 8a -12b =
n -m 4 = 19 4 k < 38n-7m

44

= 213 44 k. Also observe that for a quadrangulation on n vertices and 2n -4 edges (i.e. a planar graph on n vertices that has only

4-faces), n -m 4 = n 2 + 1 < 38n-7m 44 = 6n+7 11 .
Let us now proceed to the proof of Theorem 14. For this proof we mainly adapt the methods of Kowalik et al. [START_REF] Kowalik | An improved bound on the largest induced forests for triangle-free planar graphs[END_REF]. Let G = (V, E) be a plane embedding of a counter-example to Theorem 14 with the minimum order. Let n = |V | and m = |E|. We will use the scheme presented in Observation 15 for most of our lemmas.

Observation 15. Let α, β, γ be integers satisfying α ≥ 1, β ≥ 0, γ ≥ 0 and aα-bβ ≤ γ. Let H * ∈ P 4 be a graph with

|V (H * )| = n-α and |E(H * )| ≤ m-β.
By minimality of G, H * admits an induced forest F * of order at least a(nα) -b(m -β). If there is an induced forest F of G of order at least |V (F * )| + γ, then we get a contradiction: as aα -bβ ≤ γ, we have |V (F )| ≥ an -bm.

Table 1 contains the values of (α, β, γ) that will be used throughout this section. For each one, the inequality aα -bβ ≤ γ is a consequence of the constraints (1)- [START_REF] Alon | Large induced forests in sparse graphs[END_REF]. For instance, by adding ( 1) and ( 4), we get a + (3a -10b) ≤ 1 + 1, i.e. 4a -10b ≤ 2. Simplifying by two yields the inequality 2a -5b ≤ 1, which is the second line of Table 1.

We will now prove a series of lemmas on the structure of G. 

Lemma 16. Graph G is 2-edge-connected. Proof. By contradiction, suppose V (G) is partitioned into two partite sets V 1 and V 2 such that there is at most one edge between vertices of V 1 and V 2 . Consider graph G[V i ] induced by the vertices of V i (for i = 1, 2) with n i = |V i | vertices and m i = |E(G[V i ])| edges. By minimality of G, G[V i ]
least an 1 -bm 1 + an 2 -bm 2 = a(n 1 + n 2 ) -b(m 1 + m 2 ) ≥ an -bm vertices as m ≥ m 1 + m 2 . A contradiction.
In particular, Lemma 16 implies that there is no 1 --vertex in G.

Lemma 17. Every vertex in G has degree at most 5. Therefore, by Lemmas 16 and 19, every 2-vertex has only neighbors of degree 2. As G is connected (Lemma 16), either G does not have any 2-vertex or it is 2-regular. If G is 2-regular, then G is a n-cycle and thus m = n. Since G ∈ P 4 , we have n ≥ 4. It is clear that G has an induced forest of size n -1. Recall that 8a -12b ≤ 5 and a ≤ 1; this gives that 4(a -b) ≤ 3. Since n ≥ 4, we can deduce that an -bm = (a -b)n ≤ n -1. This contradicts the fact that G is a counter-example. Therefore, G has minimum degree at least 3. This completes the proof.

Lemma 22. There is no 4-cycle in G with • at least one 4 + -vertex and two opposite 3-vertices, or

• one 3-vertex opposite to a 4-vertex that has an edge going to the interior of the cycle and one going to the exterior of it.

In particular there is no 4-cycle with exactly three 3-vertices in G.

Proof.

• Let C = v 0 v 1 v 2 v 3 be a cycle such that v 0 and v 2 have degree 3 and

v 3 is a 4 + -vertex. Suppose v 1 is a 4 + -vertex. Let H * = G -C.
Graph H * has n -4 vertices and m ≤ m -10 edges. Let F be any induced forest of H * . Adding v 0 and v 2 to F leads to an induced forest of G. Observation 15 applied to (α, β, γ) = (4, 10, 2) leads to a contradiction. Therefore v 1 has degree 3.

Let u 0 , u 1 and u 2 be the third neighbors of v 0 , v 1 and v 2 , respectively. Suppose

u 0 = u 2 . Let H * = G -{v 0 , v 1 , v 2 , v 3 , u 0 }. Graph H * has n -5
vertices and m ≤ m-9 edges. Let F be any induced forest of H * . Adding v 0 , v 1 and v 2 to F leads to an induced forest of G. Observation 15 applied to (α, β, γ) = (5, 9, 3) leads to a contradiction. So u 0 and u 2 are distinct.

By Lemma 18, u 0 u 1 ∈ E and u 1 u 2 ∈ E. Assume u 0 (or u 2 ) has at most one neighbor w / ∈ {v 0 , v 1 , v 2 , v 3 , u 0 , u 1 , u 2 }. Let H * = G-{v 0 , v 1 , v 2 , v 3 , u 0 , u 1 , u 2 }.
Graph H * has n-7 vertices and m ≤ m-13 edges. Let F be any induced forest of H * . Adding v 0 , v 1 , v 2 and u 0 to H * leads to an induced forest of G. Observation 15 applied to (α, β, γ) = (7, 13, 4) leads to a contradiction. Thus both of the vertices u 0 and u 2 have at least two neighbors that are not in {v

0 , v 1 , v 2 , v 3 , u 0 , u 1 , u 2 }. Let H * = G -{v 0 , v 1 , v 2 , v 3 , u 0 , u 2 }.
Graph H * has n -6 vertices and m ≤ m -14 edges. Let F be any induced forest of H * . Adding the vertices v 0 , v 1 and v 2 to F leads to an induced forest of G. Observation 15 applied to (α, β, γ) = (6, 14, 3) leads to a contradiction. Lemma 23. There is no 4-face with four 3-vertices in G.

• Let C = v 0 v 1 v 2 v 3 be a cycle such that v 0 is a 3-vertex
Proof. Suppose that there is such a 4-face C = v 0 v 1 v 2 v 3 , and let u i be the third neighbor of v i for i = 0..3. In the following, we consider the indices of the u i and v i modulo 4. If for some i 0 ∈ {0, 1, 2, 3}, u i0 = u i0+1 , then we have a triangle. Suppose now that u i0 = u i0+2 for some i 0 ∈ {0, 1, 2, 3}, w.l.o.g. say i 0 = 0.

In the cycle v 0 v 1 v 2 u 0 , the vertices v 0 and v 2 are two opposite 3-vertices. By Lemma 22, u 0 is a 3-vertex. Observe that u 1 v 1 and u 3 v 3 are separated by the cycle v 0 v 1 v 2 u 0 . Hence one of them is a bridge, contradicting Lemma 16.

Therefore all the u i are distinct. We now consider the question of the presence or not of the edges u i u i+1 . Consider the case u i u i+1 / ∈ E and u i+1 u i+2 / ∈ E for some i ∈ {0, 1, 2, 3}, w.l.o.g. say i = 0. If u 0 u 2 ∈ E, then either u 2 u 3 / ∈ E or u 0 u 3 / ∈ E (otherwise G has a triangle), and u 1 u 3 / ∈ E by planarity of G. Therefore up to the permutation of the indices,

u 0 u 1 / ∈ E, u 1 u 2 / ∈ E and u 0 u 2 / ∈ E. We then define H * = G + x + {xu 0 , xu 1 , xu 2 } -{v 0 , v 1 , v 2 , v 3 }.
Graph H * has n -3 vertices and m = m -5 edges and belongs to P 4 as u 0 u 1 , u 0 u 2 and u 1 u 2 are not in E. Let F be any induced forest of H * . Let F be the subgraph of G induced by V (F )\{x} plus v 0 , v 1 and v 2 if x ∈ F or plus v 0 and v 2 if x / ∈ F . Subgraph F is an induced forest of G. Hence, Observation 15 applied to (α, β, γ) = (3, 5, 2) leads to a contradiction. Therefore there must be an i such that u i u i+1 ∈ E and u i+2 u i+3 ∈ E, w.l.o.g. u 0 u 1 ∈ E and u 2 u 3 ∈ E.

Let G = G -C. Graph G has n -4 vertices and m -8 edges. Let us now count, for each of the u i 's, the number of the neighbors of u i that are not in A = {v 0 , v 1 , v 2 , v 3 , u 0 , u 1 , u 2 , u 3 }. The edges that are known in G[A] are represented in Figure 5. • Suppose w.l.o.g. u 0 has at most one neighbor not in A, and all the other u i have each at least one neighbor not in A. Vertex u 0 is not adjacent both to u 2 and u 3 since G has girth at least 4. Let i 0 be such that i 0 = 0 and u 0 u i0 / ∈ E (either i 0 = 2 or i 0 = 3). Let H * = G -{u i0+1 , u i0+2 , u i0+3 } (we remove all the vertices of A except u i0 ). Graph H * has n -7 vertices. Let us count the number of edges in G that have an endvertex in {u i0+1 , u i0+2 , u i0+3 }. If i 0 = 2, then there are at least two edges for the neighbors of u 1 and u 3 that are not in A, plus the edges u 0 u 1 and u 2 u 3 , plus one edge since u 0 has degree at least 3, thus at least 5 edges of H * have an endvertex in {u i0+1 , u i0+2 , u i0+3 }. If i 0 = 3, then there are at least two edges for the neighbors of u 1 and u 2 that are not in A, plus the edges u 0 u 1 and u 2 u 3 , plus one edge since u 0 has degree at least 3, thus at least 5 edges of H * have an endvertex in {u i0+1 , u i0+2 , u i0+3 }. In both cases, H * has m ≤ m -13 edges. Let F be any induced forest of H * . Adding the vertices u 0 , v 1 , v 2 and v 3 to F leads to an induced forest of G, since there is no path between u 0 and

u i0 in G[{v 1 , v 2 , v 3 , u 0 , u i0 }].
Observation 15 applied to (α, β, γ) = (7, 13, 4) leads to a contradiction.

• So all the u i have at least two neighbors not in A.

Let H * = G - {v 0 , v 1 , v 2 , v 3 , u 0 , u 2 }.
Graph H * has n -6 vertices and m ≤ m -14 edges, and if F is any induced forest in H * , then adding the vertices v 0 , v 1 and v 2 to F leads to an induced forest of G. Observation 15 applied to (α, β, γ) = (6, 14, 3) leads to a contradiction and completes the proof.

Lemma 24. There is no separating 4-cycle with four 3-vertices in G. Lemma 25. There is no 3-vertex adjacent to a 5-vertex in G.

Proof. Let C = v 0 v 1 v 2 v 3 be
Proof. Let v be a 3-vertex adjacent to a 5-vertex u. Let w and x be the two other neighbors of v.

We first assume that w or x, w without loss of generality, is a 4 + -vertex. Let H * = G -{u, v, w}. Graph H * has n -3 vertices and m ≤ m -10 edges. Let F be any induced forest of H * . Adding v to F leads to an induced forest of G. Thus Observation 15 applied to (α, β, γ) = (3, 10, 1) leads to a contradiction.

Therefore w and x are 3-vertices. By Lemma 18, w and x have a common neighbor (distinct from v), which has degree 3 by Lemma 22. Finally Lemmas 23 and 24 lead to a contradiction, completing the proof.

Lemma 26. There is no separating 4-cycle with at least two 3-vertices in G.

Proof. Let C = v 0 v 1 v 2 v 3 be such a cycle. By Lemmas 22 and 24, C has exactly two 3-vertices. By Lemmas 21, 22 and 25, the two 3-vertices are adjacent, the two other vertices have degree 4 and none of the 4-vertices has a neighbor inside C and the other one outside C. W.l.o.g. the 3-vertices are v 0 and v 1 . Let u 0 and u 1 be the third neighbors of v 0 and v 1 respectively.

If u 0 v 2 ∈ E or u 1 v 3 ∈ E, say u 0 v 2 ∈ E w.l.o.g., then either v 0 v 1 v 2 u 0 or v 0 v 3 v 2 u 0 has a 3-vertex (v 0 ) opposite to a 4-vertex (v 2 ) with an edge going vertices and m ≤ m -19 edges. Let F be any induced forest of H * . Adding the vertices v 0 , v 1 , v 3 and u 0 to F leads to an induced forest of G. Hence Observation 15 applied to (α, β, γ) = [START_REF] Fertin | Minimum feedback vertex set and acyclic coloring[END_REF]19,[START_REF] Alon | Problems and results in extremal combinatorics-I[END_REF] leads to a contradiction. Thus C does not separate w 1 and w 3 but separates w 1 and w 0 . Let H * = G -{v 0 , v 1 , v 2 , v 3 , u 0 , u 1 , u 3 , w 3 }. Graph H * has n -8 vertices and m ≤ m -19 edges. Let F be any induced forest of H * . Adding the vertices v 0 , v 1 , v 3 and u 0 to F leads to an induced forest of G. Hence Observation 15 applied to (α, β, γ) = (8, 19, 4) leads to a contradiction. So w 0 v 2 / ∈ E, and similarly w 1 u 3 / ∈ E and w 3 u 1 / ∈ E. Thus the only edges that may or may not exist between the vertices we defined are w 0 w 1 , w 0 w 3 and w 1 w 3 . See Figure 7 for a reminder of the edges and vertices we know to this point. Vertex v 0 has degree 3, v 1 , v 3 and u 0 are 4-vertices and v 2 , u 1 and u 3 are 4 + -vertices. Vertices v 0 , v 1 , v 3 and u 0 have all their incident edges represented in Figure 7. Suppose w 0 w 1 / ∈ E, w 0 w 3 / ∈ E, and w 1 w 3 / ∈ E. Let H * = G + x + {xw 0 , xw 1 , xw 3 } -{v 0 , v 1 , v 2 , v 3 , u 0 , u 1 , u 3 }. Graph H * has n -6 vertices and m ≤ m -14 edges, and is in P 4 . Let F be any induced forest of H * . Either x ∈ F , then the graph induced by V (F ) ∪ {v 0 , v 1 , v 3 , u 0 }\{x} in G is a forest, or x / ∈ F , then adding v 1 , v 3 and u 0 to F leads to an induced forest of G. Observation 15 applied to (α, β, γ) = (6, 14, 3) leads to a contradiction. Thus there is at least one edge among w 0 w 1 , w 0 w 3 and w 1 w 3 . Moreover, since there is no triangle in G, there are no more than two of these edges. W.l.o.g. let us assume that w 0 w 1 / ∈ E and w 0 w 3 ∈ E. Let us now prove some claims that we will use later :

(a) Suppose that w 0 and w 1 are 4 + -vertices, or that one is a 3-vertex, the other a 4 + -vertex, and v 2 , u 1 or u 3 has degree 5.

Let H * = G-{v 0 , v 1 , v 2 , v 3 , u 0 , u 1 , u 3 , w 0 , w 1 }.
Graph H * has n -9 vertices and m ≤ m -24 edges, and adding v 0 , v 1 , v 3 and u 0 to any induced forest of H * leads to an induced forest of G.

Observation 15 applied to (α, β, γ) = (9, 24, 4) leads to a contradiction.

(b) Suppose w 0 or w 3 , say w i0 , is a 3-vertex and either one of the w i is a 4 +vertex, or 

w 1 w 3 / ∈ E. Let H * = G -{v 0 , v 1 , v 2 , v 3 , u 0 , u 1 , u 3 , w 0 , w 1 , w 3 }.
v 0 , v 1 , v 2 , v 3 , u 0 , u 1 , u 3 , w 0 , w 1 and w 3 .
Therefore w 0 and w 3 are 4 + -vertices (by (b)), thus w 1 has degree 3 (by (a)), and v 2 , u 1 and u 3 have degree 4 (by (a)) (see Figure 8). Let y 0 and y 1 the two neighbors of w 1 other than v 1 . By Lemma 18 they have a common neighbor other than w 1 , say t. So by Lemmas 25 and 28 in w 1 y 0 ty 1 , y 0 and y 1 have degree 4, and by Lemma 18 each one is adjacent either to v 2 or to u 1 . If they are both adjacent to the same one, say v 2 w.l.o.g., then either v 2 v 1 w 1 y 0 or v 2 v 1 w 1 y 1 is a 4-cycle with a 3-vertex (w 1 ) opposite to a 4-vertex (v 2 ) that has both an edge going outside and one going inside of it, which is impossible by Lemma 22. W.l.o.g., say y 0 is adjacent to v 2 and y 1 is adjacent to u 1 . At this point we know that v 0 , v 1 , v 2 , v 3 , u 0 , u 1 , w 1 , y 0 and y 1 are distinct and do not share an edge that we do not already know. See Figure 9 for a reminder of the edges and vertices we know to this point. Let z be the neighbor of v 2 different from v 1 , v 3 and y 0 . The only edges that may or not be among v 0 , v 1 , v 2 , v 3 , u 0 , u 1 , w 1 , y 0 , y 1 and z are zy 1 and zu 1 , and as G is triangle-free, there is at most one of those edges. Let H * = G -{v 0 , v 1 , v 2 , v 3 , u 0 , u 1 , w 1 , y 0 , y 1 , z}. Graph H * has n -10 vertices and m ≤ m -23 edges (recall that u 1 cannot be adjacent both to y 0 and y 1 , and thus is not adjacent to y 0 ). Adding to any induced forest of H * the vertices v 0 , v 1 , v 2 , u 1 and w 1 leads to an induced forest of G, so Observation 15 applied to (α, β, γ) = (10, 23, 5) leads to a contradiction, completing the proof.

Lemma 30. There is no 5-face with only 3-vertices in G.

Proof. Let C = v 0 v 1 v 2 v 3 v 4 be such a face, and u 0 , u 1 , u 2 , u 3 , and u 4 be the third neighbors of v 0 , v 1 , v 2 , v 3 and v 4 respectively. The u i are all distinct due to the girth assumption and Lemma 26. We will consider the indices of the u i and v i modulo 5. There is no edge u i u i+1 for any i due to Lemma 28. Let H * = G + x + y + {xu 0 , xu 1 , yu 2 , yu 3 , xy} -C. Graph H * has n -3 vertices and m -5 edges. Let F be any induced forest of H * . Let F be the subgraph of G induced by the vertices of V (F )\{x, y}, plus the vertices v 0 and v 3 , plus v 1 if x ∈ V (F ), and plus v 2 if y ∈ V (F ). Subgraph F is an induced forest of G. Thus Observation 15 applied to (α, β, γ) = (3, 5, 2) leads to a contradiction completing the proof.

Lemma 31. There is no 3-vertex adjacent to a 3-vertex and to a 4-vertex in G.

Proof. Let v be a 3-vertex adjacent to a 3-vertex u and to a 4-vertex w. Let x be the third neighbor of v. By Lemma 18, x and u have a common neighbor distinct from v which contradicts Lemma 28.

For every face f of G, let l(f ) be the length of f , and let c 4 + (f ) be the number of 4 + -vertices in f . For every vertex v, let d(v) be the degree of v. Let k be the number of faces of G, and for every 3 

Figure 1 :

 1 Figure 1: Example that proves the tightness of Theorem 3.

  (a) The dodecahedron is a planar graph of girth 5 with forest number 14.(b) This graph is a planar graph of girth 7 with forest number 10.

Figure 2 :

 2 Figure 2: Examples of Theorem 4.

Figure 3 :

 3 Figure 3: The cube has forest number 5.

m 4 =

 4 21 4 k > 38n-7m 44 = 227 44 k. More simply, for an independent set, n -m 4 = n > 38n-7m 44 = 38n 44 . a = 1

5 abFigure 4 :

 54 Figure 4: The top-left part of the polygon of the constraints on a and b.

Proof.

  By contradiction, suppose v ∈ V (G) is a 6 + -vertex. Observation 15 applied to H * = G -v with (α, β, γ) = (1, 6, 0) and F = F * completes the proof.Lemma 18. If v is a 3-vertex adjacent to a 4 + -vertex w in G, then the two other neighbors of v have a common neighbor different from v.Proof. Let x and y be the two neighbors of v different from w. Suppose that they do not have a common neighbor different from v. Let H * = G+xy-{w, v}. Graph H * has n -2 vertices and m ≤ m -5 edges. As x and y do not have a common neighbor in G other than v, the addition of the edge xy does not create any triangle in H * , thus H * ∈ P 4 . Let F be any induced forest of H * . Adding v to F (more formally, consider G[V (F ) ∪ {v}]) leads to an induced forest of G. Observation 15 applied to (α, β, γ) = (2, 5, 1) completes the proof.Lemma 19. There is no 2-vertex adjacent to a 4 + -vertex in G. Proof. Let v be a 2-vertex adjacent to a 4 + -vertex w and H * = G -{v, w}. Graph H * has n -2 vertices and m ≤ m -5 edges. Let F be any induced forest of H * . Adding v to F leads to an induced forest of G. Observation 15 applied to (α, β, γ) = (2, 5, 1) completes the proof. Lemma 20. There is no 3-vertex adjacent to two 2-vertices in G. Proof. Let v be a 3-vertex adjacent to two 2-vertices u and w and H * = G -{u, v, w}. Graph H * has n -3 vertices and m = m -5 edges. Let F be any induced forest of H * . Adding u and w to F leads to an induced forest of G. Observation 15 applied to (α, β, γ) = (3, 5, 2) completes the proof. Lemma 21. Every vertex in G has degree at least 3. Proof. Let v be a 2-vertex. Suppose that v has a neighbor u of degree 2 and a neighbor w of degree 3. Let H * = G -{u, v, w}. Graph H * has n -3 vertices and m = m -5 edges. Let F be any induced forest of H * . Adding u and v to F leads to an induced forest of G. Observation 15 applied to (α, β, γ) = (3, 5, 2) leads to a contradiction. Suppose that v has two neighbors of degree 3, say u and w. Consider three cases according to the number of neighbors u and w have in common. • Suppose u and w have only v in common. Let H * = G + uw -v. Graph H * has n -1 vertices and m = m -1 edges. Observe that H * ∈ P 4 . Let F be any induced forest of H * . Adding v to F (more formally, consider G[V (F ) ∪ {v}]) does not create any cycle (the edge uw is just subdivided in uv, vw). Observation 15 applied to (α, β, γ) = (1, 1, 1) leads to a contradiction. • Suppose u and w have two neighbors in common, say v and x. Let y be the last neighbor of u. By Lemma 20, both x and y have degree at least 3. Note that x and y are not adjacent because G has girth at least 4. Let H * = G -{u, v, w, x, y}. Graph H * has n -5 vertices and, since y and w are not adjacent (otherwise u and w have three common neighbors), m ≤ m -9 edges. Let F be any induced forest of H * . Adding u, v and w to F leads to an induced forest of G. Observation 15 applied to (α, β, γ) = (5, 9, 3) leads to a contradiction. • Suppose u and w have three neighbors in common. Let x and y be the ones that are not v. Suppose x is a 4 + -vertex and let H * = G -{u, v, w, x, y}. Graph H * has n -5 vertices and m ≤ m -9 edges (recall that y is a 3 + -vertex by Lemma 20). Let F be any induced forest of H * . Adding u, v and w to F leads to an induced forest of G. Observation 15 applied to (α, β, γ) = (5, 9, 3) leads to a contradiction. W.l.o.g. we assume that x and y are 3-vertices. Let z be the third neighbor of x. Let H * = G -{u, v, w, x, y, z}. Graph H * has n -6 vertices and m ≤ m -8 edges. Let F be any induced forest of H * . Adding u, v, x and y to F leads to an induced forest of G. Observation 15 applied to (α, β, γ) = (6, 8, 4) leads to a contradiction.

Figure 5 :

 5 Figure 5: The graph G[A] (only the edges that are known to be there are represented).

  such a cycle. We will consider the indices of the v i modulo 4 in what follows. Since G is 2-edge-connected (Lemma 16), two of the v i have their third neighbor in the interior of C, and the two other have theirs outside of it. There is a v i such that the third neighbors of v i+1 and v i+2 are separated by C, w.l.o.g. for i = 0. Then let u be the third neighbor of v 0 . Let H * = G -C -u. Graph H * has n -5 vertices, and m ≤ m -9 edges. Let F be any induced forest of H * . Adding the vertices v 0 , v 1 and v 2 to F leads to a forest of G, thus Observation 15 applied to (α, β, γ) = (5, 9, 3) leads to a contradiction.

Figure 7 :

 7 Figure 7: Vertices v 0 , v 1 , v 2 , v 3 , u 0 , u 1 , u 3 , w 0 , w 1 and w 3 .

Figure 8 :

 8 Figure 8: Vertices v 0 , v 1 , v 2 , v 3 , u 0 , u 1 , u 3 , w 0 , w 1 and w 3 .

Figure 9 :

 9 Figure 9: Vertices v 0 , v 1 , v 2 , v 3 , u 0 , u 1 , u 3 , w 0 , w 1 , w 3 , y 0 and y 1 .

2 v∈V≥ 2n 4 + 4n 5 -

 245 ≤ d ≤ 5 and every 4 ≤ l, let k l be the number of faces of length l and n d the number of d-vertices in G. Each 4-vertex is in the boundary of at most four faces, and each 5-vertex is in the boundary of at most five faces. Therefore the sum of the c 4 + (f ) over all the 4-faces and 5-faces is f,4≤l(f )≤5 c 4 + (f ) ≤ 4n 4 + 5n 5 . From Lemmas 25, 30 and 31 we can deduce that for each 5-face f we have c 4 + (f ) ≥ 2. Moreover, by Lemmas 28 and 29, for each 4-face f , c 4 + (f ) ≥ 4. Thus f,l(f )=4 c 4 + (f ) + f,l(f )=5 c 4 + (f ) ≥ 4k 4 + 2k 5 . Thus we have the following: 4n 4 + 5n 5 ≥ 4k 4 + 2k 5 By Euler's formula, we have: -12 = 6m -6n -6k = 2k 4 -k 5 ≥ 0

Table 1 :

 1 

	α	β	γ proof
	1	6	0 (3)
	2	5	1 ((1) + (4))/2
	3	5	2 (3(1) + (4))/2
	1	1	1 (1) + (2)
	5	9	3 ((1) + (3) + (5))/2
	6	8	4 ((1) + (5)) * 2/3
	4	10 2 (1) + (4)
	7	13 4 ((1) + 3(4) + 4(5))/6
	3	10 1 (4)
	8	12 5 (5)
	6	14 3 ((3) + (4) + (5))/2
	8	19 4 ((1) + (3) + 2(4) + (5))/2
	9	24 4 ((3) + 3(4) + (5))/2
	10 23 5 ((1) + 9(4) + 4(5))/6
	9	19 5 (3(1) + (3) + 2(4) + (5))/2

admits an induced forest, say F i , with at least an i -bm i vertices. Now the union of F 1 and F 2 (more formally, G[V (F 1 ) ∪ V (F 2 )]) is an induced forest of G having at The various triples (α,β,γ) and the combinations of inequalities which imply aα -bβ ≤ γ.

  Indeed, if adding v 2 creates a cycle, then there is a path from the interior to the exterior of C in H

and v 2 is a 4vertex with an edge going to the interior of the cycle and one going to the exterior of it. If v 1 and v 3 have degree 3, then we fall into the previous case. Therefore w.l.o.g. v 1 is a 4 + -vertex. Let H * = G -C. Graph H * has n -4 vertices and m ≤ m -10 edges. Let F be any induced forest of H * . Adding v 0 and v 2 to F leads to an induced forest of G. * , which is impossible. Observation 15 applied to (α, β, γ) = (4, 10, 2) completes the proof.

This is a contradiction, which ends the proof of Theorem 14.

inside and one going outside of it, contradicting Lemma 22. Therefore u 0 v 2 / ∈ E and u 1 v 3 / ∈ E. By Lemma 18, u 0 u 1 ∈ E; thus C does not separate u 0 and u 1 , say u 0 and u 1 are in the exterior of C up to changing the plane embedding. By Lemmas 21-25, u 0 and u 1 are 4-vertices. At least one of v 2 or v 3 , say v 2 , has two neighbors inside of C (otherwise the cycle is not separating). Let H * = G-{v 0 , v 1 , v 3 , u 1 }. Graph H * has n -4 vertices and m ≤ m -10 edges, and if F is any induced forest of H * , then adding v 0 and v 1 to F leads to an induced forest of G (since v 2 is only connected to the interior and u 0 to the exterior of C). Observation 15 applied to (α, β, γ) = (4, 10, 2) completes the proof.

Lemma 27. There is no 4-face with exactly two 3-vertices in G.

Proof. Let C = v 0 v 1 v 2 v 3 be such a face. By Lemmas 21 and 22 the two 3vertices are adjacent. W.l.o.g. v 0 and v 1 have degree 3, and v 2 and v 3 have degree 4 (by Lemmas 21 and 25). Let u 0 and u 1 be the third neighbors of v 0 and v 1 respectively. By Lemma 18 applied to v 0 and v 3 , and v 1 and v 2 , u 0 u 1 ∈ E. Then by Lemma 26, v 0 v 1 u 1 u 0 cannot be a separating cycle, and so it is the boundary of some 4-face. If both u 0 and u 1 have degree 3, we have a contradiction to Lemma 23. If one has degree 3 and the other has degree at least 4, we have a contradiction to Lemma 22. Finally, by Lemma 25, u 0 and u 1 are 4-vertices.

If v 2 is adjacent to u 0 , then u 0 v 0 v 1 v 2 is a separating 4-cycle, with two 3vertices, contradicting Lemma 26. Hence v 2 u 0 is not in E. Similarly, v 3 u 1 is not in E. Since G ∈ P 4 , either u 0 and v 2 do not have a common neighbor, or u 1 and v 3 do not have a common neighbor. By symmetry assume that u 0 and v 2 do not have a common neighbor. Let

Graph H * has n -4 vertices, m ≤ m -10 edges and belongs to P 4 . Let F be any induced forest of H * . Adding v 0 and v 1 to F leads to an induced forest of G (intuitively the edge u 0 v 2 is just subdivided). Observation 15 applied to (α, β, γ) = (4, 10, 2) completes the proof.

Lemma 28. There is no 4-cycle with at least two 3-vertices in G.

Proof. It follows from Lemmas 22, 23, 26 and 27.

Lemma 29. There is no 4-face with exactly one 3-vertex in G.

Proof. Let C = v 0 v 1 v 2 v 3 be such a face. W.l.o.g. v 0 is the 3-vertex and v 1 , v 2 and v 3 are 4 + -vertices. By Lemma 25, v 1 and v 3 are 4-vertices. Let u 0 be the third neighbor of v 0 . Vertex u 0 is different from v 2 and non-adjacent to v 1 and v 3 (G is triangle-free).

Let us first assume that u 0 v 2 ∈ E. By Lemmas 21, 25 and 28, u 0 is a 4vertex. Assume v 2 has degree 5. Let H * = G -{u 0 , v 0 , v 2 }. Graph H * has n -3 vertices and m -10 edges. Let F be any induced forest of H * . Adding the vertex v 0 to F leads to an induced forest of G (since u 0 v 0 v 1 v 2 separates the neighbours of v 1 that are not in C and the neighbours of v 3 that are not in C). Observation 15 applied to (α, β, γ) = (3, 10, 1) leads to a contradiction. Hence v 2 has degree 4. Then either v 0 v 1 v 2 u 0 or v 0 v 3 v 2 u 0 has a 3-vertex opposite to a 4vertex with a neighbor in the interior and one in the exterior of it, contradicting Lemma 22. Thus u 0 is non-adjacent to v 2 . By Lemma 18, v 1 and u 0 have a common neighbor other than v 0 , say u 1 . It is distinct from all the vertices we defined previously. By Lemma 28 applied to v 0 v 1 u 1 u 0 , u 0 and u 1 have degree at least 4. By Lemma 25, u 0 has degree exactly 4.

Suppose u 1 v 3 ∈ E. As C is a face, the last neighbor of v 1 ( = v 0 , v 2 , u 1 ), say w 1 , is not in the interior of C. The cycle v 0 v 1 u 1 v 3 separates u 0 and v 2 . Suppose first that v 0 v 1 u 1 v 3 does not separate u 0 and w 1 . Then v 0 v 1 u 1 u 0 separates v 3 and w 1 . Let H * = G -{v 0 , v 1 , v 2 , v 3 , u 0 , u 1 }. Graph G * has n -6 vertices and m ≤ m -14 edges. Let F be any induced forest of H * . Adding the vertices v 0 , v 1 and v 3 to F leads to an induced forest of G. Hence Observation 15 applied to (α, β, γ) = (6, 14, 3) leads to a contradiction. Therefore v 0 v 1 u 1 v 3 separates u 0 and w 1 . Assume u 1 has degree 5. Let H * = G -{u 1 , v 0 , v 3 }. Graph H * has n -3 vertices and m -10 edges. Let F be any induced forest of H * . Adding the vertex v 0 to F leads to an induced forest of G. Observation 15 applied to (α, β, γ) = (3, 10, 1) leads to a contradiction. Hence u 1 has degree 4. Then v 0 v 1 u 1 v 3 , v 0 u 0 u 1 v 3 or v 0 v 1 u 1 u 0 has a 3-vertex opposite to a 4-vertex with a neighbor in the interior and one in the exterior of it, contradicting Lemma 22.

So u 1 cannot be adjacent to v 3 . As u 1 v 3 / ∈ E and u 0 v 2 / ∈ E, by Lemma 18 v 3 and u 0 have a common neighbor distinct from v 0 , say u 3 . By what precedes and by symmetry, it is of degree at least 4 and non-adjacent to v 0 , v 1 , v 2 and u 1 (it has a role similar to that of u 1 , and is non-adjacent to u 1 because of the girth assumption). See Figure 6 for a reminder of the structure of G[{v 0 , v 1 , v 2 , v 3 , u 0 , u 1 , u 3 }]. Vertex v 0 has degree 3, v 1 , v 3 and u 0 are 4vertices, and v 2 , u 1 and u 3 are 4 + -vertices. Recall that 

Let w 0 , w 1 and w 3 be the fourth neighbors of u 0 , v 1 and v 3 respectively. In the following we will no longer use the fact that C is a face. By the girth assumption, w 0 is not adjacent to u 1 or u 3 . Suppose w 0 is adjacent to v 1 or to v 3 , say w 0 v 1 ∈ E. Then by the girth assumption, w 0 v 2 / ∈ E. By Lemma 28 applied to

Graph H * has n -8 vertices and m ≤ m -19 edges. Let F be any induced forest of H * . Adding the vertices v 0 , v 1 , v 3 and u 0 to F leads to an induced forest of G. Hence Observation 15 applied to (α, β, γ) = (8, 19, 4) leads to a contradiction. So w 0 is not adjacent to v 1 or v 3 . By symmetry, w 0 , w 1 and w 3 are distinct.

Suppose w 0 v 2 ∈ E. Assume that C separates w 1 and w 3 , or that it does not separate w 1 and w 3 nor w 0 and w 1 . Then either C or v 0 v 1 v 2 w 0 u 0 separates w 1 and w 3 . Let H * = G -{v 0 , v 1 , v 2 , v 3 , u 0 , u 1 , u 3 , w 0 }. Graph H * has n -8