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Abstract

We give a new lower bound on the order of a largest induced forest in
planar graphs with girth 4. We prove that a triangle-free planar graph
of order n admits an induced forest of order at least 6n+7

11
, improving the

lower bound of Salavatipour [M.R. Salavatipour. Large induced forests
in triangle-free planar graphs. Graphs and Combinatorics, 22:113–126,
2006].
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1 Introduction
Let G be a graph. A decycling set or feedback vertex set S of G is a subset of the
vertices of G such that removing the vertices of S from G yields an acyclic graph.
Thus S is a decycling set of G if and only if the graph induced by V (G)\S in
G is an induced forest of G. The feedback vertex set decision problem
(which consists of, given a graph G and an integer k, deciding whether there
is a decycling set of G of size k) is known to be NP-complete, even restricted
to the case of planar graphs, bipartite graphs or perfect graphs [10]. It is thus
legitimate to seek bounds for the size of a decycling set or for the order of an
induced forest. The smallest size of a decycling set of G is called the decycling
number of G, and the highest order of an induced forest of G is called the forest
number of G, denoted respectively by φ(G) and a(G). Note that the sum of the
decycling number and the forest number of G is equal to the order of G (i.e.
|V (G)| = a(G) + φ(G)).

Mainly, the community focuses on the following challenging conjecture due
to Albertson and Berman [3]:

Conjecture 1 (Albertson and Berman [3]). Every planar graph of order n
admits an induced forest of order at least n

2 .
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Conjecture 1, if true, would be tight (for n ≥ 3 multiple of 4) because of
the disjoint union of complete graphs on four vertices (Akiyama and Watanabe
[1] gave examples where the conjecture differs from the optimal by at most one
half for all n), and would imply that every planar graph has an independent set
on at least a quarter of its vertices, the only known proof of which relies on the
Four-Color Theorem.

The best known lower bound to date for the forest number of a planar graph
is due to Borodin and is a consequence of the acyclic 5-colorability of planar
graphs [6]. We recall that an acyclic coloring is a proper vertex coloring such
that the graph induced by the vertices of any two color classes is a forest. From
this result we obtain the following theorem:

Theorem 2 (Borodin [6]). Every planar graph of order n admits an induced
forest of order at least 2n

5 .

As a consequence of the acyclic 3-colorability of outerplanar graphs, Hosono
[9] showed the following theorem which is best possible.

Theorem 3 (Hosono [9]). Every outerplanar graph of order n admits an induced
forest of order at least 2n

3 .

The tightness of Theorem 3 is shown by the example in Figure 1.

Figure 1: Example that proves the tightness of Theorem 3.

Lower and upper bounds on forest number of planar graphs with girth 5
and 7 has also been deduced from results on acyclic coloring by Fertin et al. [8].

Theorem 4 (Fertin et al. [8]).

(1) Every planar graph of order n and girth at least 5 admits an induced forest
of order at least n

2 . Moreover, for n ≡ 0( mod 20), there exist planar
graphs of order n and girth 5 having forest number 7n

10 (disjoint copies of
the dodecahedron, see Figure 2a).

(2) Every planar graph of order n and girth at least 7 admits an induced forest
of order at least 2n

3 . Moreover, for n ≡ 0( mod 12), there exist planar
graphs of order n and girth 7 having forest number 5n

6 (disjoint copies of
the graph depicted in Figure 2b).

Kowalik et al. [12] made the following conjecture on planar graph of girth at
least 5:

Conjecture 5 (Kowalik et al. [12]). Every planar graph with girth at least 5
and order n admits an induced forest of order at least 7n

10 .

This conjecture, if true, would be tight due to Theorem 4. Very recently,
Kelly and Liu [11], and Shi and Xu [14], independently improved Theorem 4(1).
We note that Shi and Xu additionally characterize equality.
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(a) The dodecahedron is a planar graph
of girth 5 with forest number 14.

(b) This graph is a planar graph
of girth 7 with forest number 10.

Figure 2: Examples of Theorem 4.

Theorem 6 (Kelly and Liu [11], Shi and Xu [14]). Every connected planar
graph of girth at least 5, order n, and size m has an induced forest of order at
least 8n−2m−2

7 .

Using Euler’s formula, that implies that every connected planar graph with
girth at least 5 and order n has an induced forest of order at least (2n+2)

3 ≈ 7n
10.5

(recall that 7n
10 is conjectured).

Akiyama andWatanabe [1], and Albertson and Haas [2] independently raised
the following conjecture:

Conjecture 7 (Akiyama andWatanabe [1], and Albertson and Haas [2]). Every
bipartite planar graph of order n admits an induced forest of order at least 5n

8 .

This conjecture, if true, would be tight for n multiple of 8: for example if G
is the disjoint union of k cubes, then we have a(G) = 5k and G has order 8k (see
Figure 3). Motivated by Conjecture 7, Alon [4] proved the following theorem
using probabilistic methods:

Figure 3: The cube has forest number 5.

Theorem 8 (Alon [4]). There exist some b > 0 and b′ > 0 such that:

• For every bipartite graph G with n vertices and average degree at most d
(≥ 1), a(G) ≥ ( 12 + e−bd

2

)n.
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• For every d ≥ 1 and all sufficiently large n there exists a bipartite graph
with n vertices and average degree at most d such that a(G) ≤ ( 12 +

e−b
′√d)n.

The lower bound was later improved by Colon et al. [7] to a(G) ≥ (1/2 +
e−b

′′d)n for some constant b′′.
Conjecture 7 also led to some research for lower bounds of the forest number

of triangle-free planar graphs (as a superclass of bipartite planar graphs). Alon
et al. [5] proved the following theorem and corollary:

Theorem 9 (Alon et al. [5]). Every triangle-free graph of order n and size m
admits an induced forest of order at least n− m

4 .

Corollary 10 (Alon et al. [5]). Every triangle-free cubic graph of order n admits
an induced forest of order at least 5n

8 .

Theorem 9 is tight because of the union of cycles of length 4. In a planar
graph with girth at least g, order n, and size m with at least a cycle, the number
of faces is at most 2m

g (since all the faces’ boundaries have length at least g).
Then, by Euler’s formula, 2m

g ≥ m − n + 2, and thus m ≤ g
g−2 (n − 2). In

particular, triangle-free planar graphs of order n ≥ 3 have size at most 2n− 4.
As a consequence of Theorem 9, for every triangle-free planar graph G of

order n, we have a(G) ≥ n/2. That lower bound was improved for n ≥ 1 by
Salavatipour [13].

Theorem 11 (Salavatipour [13]). Every triangle-free planar graph of order n
and size m admits an induced forest of order at least 29n−6m

32 and thus at least
17n+24

32 ≈ 5n
9.41 .

In 2010, Kowalik et al. [12] proposed that for every triangle-free planar graph
G of order n and size m, a(G) ≥ 119n−24m−24

128 ≥ 71n+72
128 . However, the proof

contains a flaw (contrarily to what the authors claim, the minimum counter-
example is not necessarily connected). In Section 2, we give an infinite family of
counter-examples for a(G) ≥ 119n−24m−24

128 and we propose an improvement of
Theorem 11, which thus leads to the best known lower bound to our knowledge:

Theorem 12. Every triangle-free planar graph of order n and size m admits
an induced forest of order at least max{ 38n−7m44 , n− m

4 }.

We note that Theorem 12 improves Theorem 9 when m > 3n
2 . Hence by

Euler’s formula the following corollary holds:

Corollary 13. Every triangle-free planar graph of order n ≥ 1 admits an in-
duced forest of order at least 6n+7

11 ≈ 5n
9.17 .

2 Proof of Theorem 12
We first give a counter-example to the bound of Kowalik et al. [12]: we consider
the disjoint union of k cubes. There are 8k vertices and 12k edges, hence
Kowalik et al.’s lower bound tells us that there is an induced forest of size at
least 119(8k)−24(12k)−24

128 = 5k + (k − 1) 3
16 . However there cannot be an induced

forest of more than 5 vertices in a cube (see Figure 3), and thus the biggest
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induced forest in our graph contains 5k vertices, which contradicts the lower
bound. Furthermore, by increasing k, one can see that the biggest induced
forest can be arbitrarily smaller than the supposed lower bound.

The proof of Theorem 12 consists in looking for a minimal counter-example
G, proving some structural properties on G, and concluding that it cannot verify
Euler’s formula, which is contradictory.

Consider G = (V,E). For a set S ⊂ V , let G− S be the graph constructed
from G by removing the vertices of S and all the edges incident to some vertex
of S. If x ∈ V , then we denote G − {x} by G − x. For a set S of vertices
such that S ∩ V = ∅, let G+ S be the graph constructed from G by adding the
vertices of S. If x /∈ V , then we denote G+ {x} by G+ x. For a set F of pairs
of vertices of G such that F ∩ E = ∅, let G+ F be the graph constructed from
G by adding the edges of F . If e is a pair of vertices of G and e /∈ E, we denote
G + {e} by G + e. For a set W ⊂ V , we denote by G[W ] the subgraph of G
induced by W .

We call a vertex of degree d, at least d, and at most d, a d-vertex, a d+-
vertex, and a d−-vertex respectively. Similarly, we call a cycle of length l, at
least l, and at most l an l-cycle, an l+-cycle, and an l−-cycle respectively, and
by extension a face of length l, at least l, and at most l an l-face, an l+-face,
and an l−-face respectively.

Let P4 be the class of triangle-free planar graphs.We will prove of the fol-
lowing more general statement than Theorem 12:

0 ≤ a ≤ 1 (1)
0 ≤ b (2)

a− 6b ≤ 0 (3)
3a− 10b ≤ 1 (4)
8a− 12b ≤ 5 (5)

Theorem 14. If a and b are positive constants such that equations (1)–(5) are
verified, then a(G) ≥ an− bm for all G ∈ P4.

That series of inequalities defines a polygon represented in Figure 4, and
for a triangle-free planar graph of given order n and size m, the highest lower
bound will be given by maximizing an − bm for a and b in this polygon. This
maximum will be achieved at a vertex of the polygon. Moreover, by Euler’s
formula, every triangle-free planar graph of order n ≥ 3 and size m satisfies
0 ≤ m ≤ 2n− 4. Therefore for n ≥ 3 the maximum will always be achieved at
the intersection of either 3a − 10b = 1 and 8a − 12b = 5, or 8a − 12b = 5 and
a = 1. The corresponding intersections are (b, a) = ( 7

44 ,
38
44 ) and (b, a) = ( 14 , 1),

represented in Figure 4.
Let us show that any of the two lower bounds can be higher than the other,

for graphs of arbitrarily high order.
For the disjoint union of k cubes (which is a graph of order 8k and size 12k),

the two lower bounds are equal to 5k.
We consider now a graph composed of k disjoint cubes, where we remove an

edge from each cube. This graph has 8k vertices and 11k edges. In this case
we have n− m

4 = 21
4 k >

38n−7m
44 = 227

44 k. More simply, for an independent set,
n− m

4 = n > 38n−7m
44 = 38n

44 .
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a = 1

( 14 , 1)

( 7
44 ,

8
44 )

( 18 ,
3
4 )

a = 6b 3a − 10b = 1 8a − 12b = 5

a

b

Figure 4: The top-left part of the polygon of the constraints on a and b.

We now consider a graph composed of k disjoint cubes, where we add an
edge from each cube to the next one and an edge from the last one to the
first one. This graph has 8k vertices and 13k edges. In this case, we have
n − m

4 = 19
4 k <

38n−7m
44 = 213

44 k. Also observe that for a quadrangulation on
n vertices and 2n − 4 edges (i.e. a planar graph on n vertices that has only
4-faces), n− m

4 = n
2 + 1 < 38n−7m

44 = 6n+7
11 .

Let us now proceed to the proof of Theorem 14. For this proof we mainly
adapt the methods of Kowalik et al. [12]. Let G = (V,E) be a plane embedding
of a counter-example to Theorem 14 with the minimum order. Let n = |V | and
m = |E|. We will use the scheme presented in Observation 15 for most of our
lemmas.

Observation 15. Let α, β, γ be integers satisfying α ≥ 1, β ≥ 0, γ ≥ 0 and
aα−bβ ≤ γ. Let H∗ ∈ P4 be a graph with |V (H∗)| = n−α and |E(H∗)| ≤ m−β.

By minimality of G, H∗ admits an induced forest F ∗ of order at least a(n−
α)− b(m−β). If there is an induced forest F of G of order at least |V (F ∗)|+γ,
then we get a contradiction: as aα− bβ ≤ γ, we have |V (F )| ≥ an− bm.

Table 1 contains the values of (α, β, γ) that will be used throughout this
section. For each one, the inequality aα − bβ ≤ γ is a consequence of the
constraints (1)–(5). For instance, by adding (1) and (4), we get a+(3a−10b) ≤
1 + 1, i.e. 4a − 10b ≤ 2. Simplifying by two yields the inequality 2a − 5b ≤ 1,
which is the second line of Table 1.

We will now prove a series of lemmas on the structure of G.

Lemma 16. Graph G is 2-edge-connected.

Proof. By contradiction, suppose V (G) is partitioned into two partite sets V1
and V2 such that there is at most one edge between vertices of V1 and V2.
Consider graph G[Vi] induced by the vertices of Vi (for i = 1, 2) with ni = |Vi|
vertices and mi = |E(G[Vi])| edges. By minimality of G, G[Vi] admits an
induced forest, say Fi, with at least ani − bmi vertices. Now the union of F1

and F2 (more formally, G[V (F1) ∪ V (F2)]) is an induced forest of G having at
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α β γ proof
1 6 0 (3)
2 5 1 ((1) + (4))/2
3 5 2 (3(1) + (4))/2
1 1 1 (1) + (2)
5 9 3 ((1) + (3) + (5))/2
6 8 4 ((1) + (5)) ∗ 2/3
4 10 2 (1) + (4)
7 13 4 ((1) + 3(4) + 4(5))/6
3 10 1 (4)
8 12 5 (5)
6 14 3 ((3) + (4) + (5))/2
8 19 4 ((1) + (3) + 2(4) + (5))/2
9 24 4 ((3) + 3(4) + (5))/2
10 23 5 ((1) + 9(4) + 4(5))/6
9 19 5 (3(1) + (3) + 2(4) + (5))/2

Table 1: The various triples (α,β,γ) and the combinations of inequalities which
imply aα− bβ ≤ γ.

least an1 − bm1 + an2 − bm2 = a(n1 + n2)− b(m1 +m2) ≥ an− bm vertices as
m ≥ m1 +m2. A contradiction.

In particular, Lemma 16 implies that there is no 1−-vertex in G.

Lemma 17. Every vertex in G has degree at most 5.

Proof. By contradiction, suppose v ∈ V (G) is a 6+-vertex. Observation 15
applied to H∗ = G − v with (α, β, γ) = (1, 6, 0) and F = F ∗ completes the
proof.

Lemma 18. If v is a 3-vertex adjacent to a 4+-vertex w in G, then the two
other neighbors of v have a common neighbor different from v.

Proof. Let x and y be the two neighbors of v different from w. Suppose that
they do not have a common neighbor different from v. Let H∗ = G+xy−{w, v}.
Graph H∗ has n− 2 vertices and m′ ≤ m− 5 edges. As x and y do not have a
common neighbor in G other than v, the addition of the edge xy does not create
any triangle in H∗, thus H∗ ∈ P4. Let F ′ be any induced forest of H∗. Adding
v to F ′ (more formally, consider G[V (F ′) ∪ {v}]) leads to an induced forest of
G. Observation 15 applied to (α, β, γ) = (2, 5, 1) completes the proof.

Lemma 19. There is no 2-vertex adjacent to a 4+-vertex in G.

Proof. Let v be a 2-vertex adjacent to a 4+-vertex w and H∗ = G − {v, w}.
Graph H∗ has n − 2 vertices and m′ ≤ m − 5 edges. Let F ′ be any induced
forest of H∗. Adding v to F ′ leads to an induced forest of G. Observation 15
applied to (α, β, γ) = (2, 5, 1) completes the proof.

Lemma 20. There is no 3-vertex adjacent to two 2-vertices in G.
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Proof. Let v be a 3-vertex adjacent to two 2-vertices u and w and H∗ = G −
{u, v, w}. Graph H∗ has n − 3 vertices and m′ = m − 5 edges. Let F ′ be any
induced forest of H∗. Adding u and w to F ′ leads to an induced forest of G.
Observation 15 applied to (α, β, γ) = (3, 5, 2) completes the proof.

Lemma 21. Every vertex in G has degree at least 3.

Proof. Let v be a 2-vertex. Suppose that v has a neighbor u of degree 2 and a
neighbor w of degree 3. Let H∗ = G− {u, v, w}. Graph H∗ has n− 3 vertices
and m′ = m− 5 edges. Let F ′ be any induced forest of H∗. Adding u and v to
F ′ leads to an induced forest of G. Observation 15 applied to (α, β, γ) = (3, 5, 2)
leads to a contradiction.

Suppose that v has two neighbors of degree 3, say u and w. Consider three
cases according to the number of neighbors u and w have in common.

• Suppose u and w have only v in common. Let H∗ = G+ uw − v. Graph
H∗ has n − 1 vertices and m′ = m − 1 edges. Observe that H∗ ∈ P4.
Let F ′ be any induced forest of H∗. Adding v to F ′ (more formally,
consider G[V (F ′) ∪ {v}]) does not create any cycle (the edge uw is just
subdivided in uv, vw). Observation 15 applied to (α, β, γ) = (1, 1, 1) leads
to a contradiction.

• Suppose u and w have two neighbors in common, say v and x. Let y be
the last neighbor of u. By Lemma 20, both x and y have degree at least
3. Note that x and y are not adjacent because G has girth at least 4. Let
H∗ = G − {u, v, w, x, y}. Graph H∗ has n − 5 vertices and, since y and
w are not adjacent (otherwise u and w have three common neighbors),
m′ ≤ m − 9 edges. Let F ′ be any induced forest of H∗. Adding u, v
and w to F ′ leads to an induced forest of G. Observation 15 applied to
(α, β, γ) = (5, 9, 3) leads to a contradiction.

• Suppose u and w have three neighbors in common. Let x and y be the ones
that are not v. Suppose x is a 4+-vertex and let H∗ = G− {u, v, w, x, y}.
Graph H∗ has n − 5 vertices and m′ ≤ m − 9 edges (recall that y is a
3+-vertex by Lemma 20). Let F ′ be any induced forest of H∗. Adding u,
v and w to F ′ leads to an induced forest of G. Observation 15 applied to
(α, β, γ) = (5, 9, 3) leads to a contradiction.

W.l.o.g. we assume that x and y are 3-vertices. Let z be the third neighbor
of x. Let H∗ = G − {u, v, w, x, y, z}. Graph H∗ has n − 6 vertices and
m′ ≤ m − 8 edges. Let F ′ be any induced forest of H∗. Adding u, v, x
and y to F ′ leads to an induced forest of G. Observation 15 applied to
(α, β, γ) = (6, 8, 4) leads to a contradiction.

Therefore, by Lemmas 16 and 19, every 2-vertex has only neighbors of degree
2. As G is connected (Lemma 16), either G does not have any 2-vertex or it is
2-regular. If G is 2-regular, then G is a n-cycle and thus m = n. Since G ∈ P4,
we have n ≥ 4. It is clear that G has an induced forest of size n − 1. Recall
that 8a− 12b ≤ 5 and a ≤ 1; this gives that 4(a− b) ≤ 3. Since n ≥ 4, we can
deduce that an− bm = (a− b)n ≤ n− 1. This contradicts the fact that G is a
counter-example. Therefore, G has minimum degree at least 3. This completes
the proof.
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Lemma 22. There is no 4-cycle in G with

• at least one 4+-vertex and two opposite 3-vertices, or

• one 3-vertex opposite to a 4-vertex that has an edge going to the interior
of the cycle and one going to the exterior of it.

In particular there is no 4-cycle with exactly three 3-vertices in G.

Proof. • Let C = v0v1v2v3 be a cycle such that v0 and v2 have degree 3 and
v3 is a 4+-vertex. Suppose v1 is a 4+-vertex. Let H∗ = G − C. Graph
H∗ has n − 4 vertices and m′ ≤ m − 10 edges. Let F ′ be any induced
forest of H∗. Adding v0 and v2 to F ′ leads to an induced forest of G.
Observation 15 applied to (α, β, γ) = (4, 10, 2) leads to a contradiction.
Therefore v1 has degree 3.

Let u0, u1 and u2 be the third neighbors of v0, v1 and v2, respectively.
Suppose u0 = u2. Let H∗ = G− {v0, v1, v2, v3, u0}. Graph H∗ has n− 5
vertices andm′ ≤ m−9 edges. Let F ′ be any induced forest ofH∗. Adding
v0, v1 and v2 to F ′ leads to an induced forest of G. Observation 15 applied
to (α, β, γ) = (5, 9, 3) leads to a contradiction. So u0 and u2 are distinct.

By Lemma 18, u0u1 ∈ E and u1u2 ∈ E. Assume u0 (or u2) has at most one
neighbor w /∈ {v0, v1, v2, v3, u0, u1, u2}. LetH∗ = G−{v0, v1, v2, v3, u0, u1, u2}.
GraphH∗ has n−7 vertices andm′ ≤ m−13 edges. Let F ′ be any induced
forest of H∗. Adding v0, v1, v2 and u0 to H∗ leads to an induced forest
of G. Observation 15 applied to (α, β, γ) = (7, 13, 4) leads to a contradic-
tion. Thus both of the vertices u0 and u2 have at least two neighbors that
are not in {v0, v1, v2, v3, u0, u1, u2}. Let H∗ = G − {v0, v1, v2, v3, u0, u2}.
Graph H∗ has n − 6 vertices and m′ ≤ m − 14 edges. Let F ′ be any
induced forest of H∗. Adding the vertices v0, v1 and v2 to F ′ leads to an
induced forest of G. Observation 15 applied to (α, β, γ) = (6, 14, 3) leads
to a contradiction.

• Let C = v0v1v2v3 be a cycle such that v0 is a 3-vertex and v2 is a 4-
vertex with an edge going to the interior of the cycle and one going to the
exterior of it. If v1 and v3 have degree 3, then we fall into the previous
case. Therefore w.l.o.g. v1 is a 4+-vertex. Let H∗ = G − C. Graph
H∗ has n − 4 vertices and m′ ≤ m − 10 edges. Let F ′ be any induced
forest of H∗. Adding v0 and v2 to F ′ leads to an induced forest of G.
Indeed, if adding v2 creates a cycle, then there is a path from the interior
to the exterior of C in H∗, which is impossible. Observation 15 applied
to (α, β, γ) = (4, 10, 2) completes the proof.

Lemma 23. There is no 4-face with four 3-vertices in G.

Proof. Suppose that there is such a 4-face C = v0v1v2v3, and let ui be the third
neighbor of vi for i = 0..3. In the following, we consider the indices of the ui and
vi modulo 4. If for some i0 ∈ {0, 1, 2, 3}, ui0 = ui0+1, then we have a triangle.
Suppose now that ui0 = ui0+2 for some i0 ∈ {0, 1, 2, 3}, w.l.o.g. say i0 = 0.
In the cycle v0v1v2u0, the vertices v0 and v2 are two opposite 3-vertices. By
Lemma 22, u0 is a 3-vertex. Observe that u1v1 and u3v3 are separated by the
cycle v0v1v2u0. Hence one of them is a bridge, contradicting Lemma 16.
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Therefore all the ui are distinct. We now consider the question of the pres-
ence or not of the edges uiui+1. Consider the case uiui+1 /∈ E and ui+1ui+2 /∈ E
for some i ∈ {0, 1, 2, 3}, w.l.o.g. say i = 0. If u0u2 ∈ E, then either u2u3 /∈ E or
u0u3 /∈ E (otherwise G has a triangle), and u1u3 /∈ E by planarity of G. There-
fore up to the permutation of the indices, u0u1 /∈ E, u1u2 /∈ E and u0u2 /∈ E.
We then define H∗ = G+ x+ {xu0, xu1, xu2} − {v0, v1, v2, v3}. Graph H∗ has
n− 3 vertices and m′ = m− 5 edges and belongs to P4 as u0u1, u0u2 and u1u2
are not in E. Let F ′ be any induced forest of H∗. Let F be the subgraph
of G induced by V (F ′)\{x} plus v0, v1 and v2 if x ∈ F ′ or plus v0 and v2 if
x /∈ F ′. Subgraph F is an induced forest of G. Hence, Observation 15 applied
to (α, β, γ) = (3, 5, 2) leads to a contradiction. Therefore there must be an i
such that uiui+1 ∈ E and ui+2ui+3 ∈ E, w.l.o.g. u0u1 ∈ E and u2u3 ∈ E.

Let G′ = G − C. Graph G′ has n − 4 vertices and m − 8 edges. Let us
now count, for each of the ui’s, the number of the neighbors of ui that are
not in A = {v0, v1, v2, v3, u0, u1, u2, u3}. The edges that are known in G[A] are
represented in Figure 5.

v0

v3

v1

v2

u0 u1

u2u3

Figure 5: The graph G[A] (only the edges that are known to be there are
represented).

• Suppose w.l.o.g. u0 has only neighbors in A, and another ui′ has at most
one neighbor not in A. Let H∗ = G′ − {u0, u1, u2, u3}. Graph H∗ has
n− 8 vertices. By Lemma 21, each of the ui has degree at least 3. Graph
H∗ has m′ ≤ m− 12 edges. Let F ′ be any induced forest of H∗. Adding
the vertices u0, ui′ , v1, v2 and v3 to F ′ leads to an induced forest of G.
Observation 15 applied to (α, β, γ) = (8, 12, 5) leads to a contradiction.

• Suppose w.l.o.g. u0 has at most one neighbor not in A, and all the other
ui have each at least one neighbor not in A. Vertex u0 is not adjacent both
to u2 and u3 since G has girth at least 4. Let i0 be such that i0 6= 0 and
u0ui0 /∈ E (either i0 = 2 or i0 = 3). Let H∗ = G′ − {ui0+1, ui0+2, ui0+3}
(we remove all the vertices of A except ui0). Graph H∗ has n − 7 ver-
tices. Let us count the number of edges in G′ that have an endvertex in
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{ui0+1, ui0+2, ui0+3}. If i0 = 2, then there are at least two edges for the
neighbors of u1 and u3 that are not in A, plus the edges u0u1 and u2u3,
plus one edge since u0 has degree at least 3, thus at least 5 edges of H∗
have an endvertex in {ui0+1, ui0+2, ui0+3}. If i0 = 3, then there are at
least two edges for the neighbors of u1 and u2 that are not in A, plus the
edges u0u1 and u2u3, plus one edge since u0 has degree at least 3, thus
at least 5 edges of H∗ have an endvertex in {ui0+1, ui0+2, ui0+3}. In both
cases, H∗ has m′ ≤ m − 13 edges. Let F ′ be any induced forest of H∗.
Adding the vertices u0, v1, v2 and v3 to F ′ leads to an induced forest
of G, since there is no path between u0 and ui0 in G[{v1, v2, v3, u0, ui0}].
Observation 15 applied to (α, β, γ) = (7, 13, 4) leads to a contradiction.

• So all the ui have at least two neighbors not in A. Let H∗ = G −
{v0, v1, v2, v3, u0, u2}. Graph H∗ has n − 6 vertices and m′ ≤ m − 14
edges, and if F ′ is any induced forest in H∗, then adding the vertices v0,
v1 and v2 to F ′ leads to an induced forest of G. Observation 15 applied
to (α, β, γ) = (6, 14, 3) leads to a contradiction and completes the proof.

Lemma 24. There is no separating 4-cycle with four 3-vertices in G.

Proof. Let C = v0v1v2v3 be such a cycle. We will consider the indices of the vi
modulo 4 in what follows. Since G is 2-edge-connected (Lemma 16), two of the
vi have their third neighbor in the interior of C, and the two other have theirs
outside of it. There is a vi such that the third neighbors of vi+1 and vi+2 are
separated by C, w.l.o.g. for i = 0. Then let u be the third neighbor of v0. Let
H∗ = G − C − u. Graph H∗ has n − 5 vertices, and m′ ≤ m − 9 edges. Let
F ′ be any induced forest of H∗. Adding the vertices v0, v1 and v2 to F ′ leads
to a forest of G, thus Observation 15 applied to (α, β, γ) = (5, 9, 3) leads to a
contradiction.

Lemma 25. There is no 3-vertex adjacent to a 5-vertex in G.

Proof. Let v be a 3-vertex adjacent to a 5-vertex u. Let w and x be the two
other neighbors of v.

We first assume that w or x, w without loss of generality, is a 4+-vertex. Let
H∗ = G− {u, v, w}. Graph H∗ has n− 3 vertices and m′ ≤ m− 10 edges. Let
F ′ be any induced forest of H∗. Adding v to F ′ leads to an induced forest of G.
Thus Observation 15 applied to (α, β, γ) = (3, 10, 1) leads to a contradiction.

Therefore w and x are 3-vertices. By Lemma 18, w and x have a common
neighbor (distinct from v), which has degree 3 by Lemma 22. Finally Lemmas 23
and 24 lead to a contradiction, completing the proof.

Lemma 26. There is no separating 4-cycle with at least two 3-vertices in G.

Proof. Let C = v0v1v2v3 be such a cycle. By Lemmas 22 and 24, C has exactly
two 3-vertices. By Lemmas 21, 22 and 25, the two 3-vertices are adjacent, the
two other vertices have degree 4 and none of the 4-vertices has a neighbor inside
C and the other one outside C. W.l.o.g. the 3-vertices are v0 and v1. Let u0
and u1 be the third neighbors of v0 and v1 respectively.

If u0v2 ∈ E or u1v3 ∈ E, say u0v2 ∈ E w.l.o.g., then either v0v1v2u0 or
v0v3v2u0 has a 3-vertex (v0) opposite to a 4-vertex (v2) with an edge going
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inside and one going outside of it, contradicting Lemma 22. Therefore u0v2 /∈ E
and u1v3 /∈ E.

By Lemma 18, u0u1 ∈ E; thus C does not separate u0 and u1, say u0 and u1
are in the exterior of C up to changing the plane embedding. By Lemmas 21–25,
u0 and u1 are 4-vertices. At least one of v2 or v3, say v2, has two neighbors
inside of C (otherwise the cycle is not separating). Let H∗ = G−{v0, v1, v3, u1}.
Graph H∗ has n− 4 vertices and m′ ≤ m− 10 edges, and if F ′ is any induced
forest of H∗, then adding v0 and v1 to F ′ leads to an induced forest of G (since
v2 is only connected to the interior and u0 to the exterior of C). Observation 15
applied to (α, β, γ) = (4, 10, 2) completes the proof.

Lemma 27. There is no 4-face with exactly two 3-vertices in G.

Proof. Let C = v0v1v2v3 be such a face. By Lemmas 21 and 22 the two 3-
vertices are adjacent. W.l.o.g. v0 and v1 have degree 3, and v2 and v3 have
degree 4 (by Lemmas 21 and 25). Let u0 and u1 be the third neighbors of
v0 and v1 respectively. By Lemma 18 applied to v0 and v3, and v1 and v2,
u0u1 ∈ E. Then by Lemma 26, v0v1u1u0 cannot be a separating cycle, and so
it is the boundary of some 4-face. If both u0 and u1 have degree 3, we have
a contradiction to Lemma 23. If one has degree 3 and the other has degree at
least 4, we have a contradiction to Lemma 22. Finally, by Lemma 25, u0 and
u1 are 4-vertices.

If v2 is adjacent to u0, then u0v0v1v2 is a separating 4-cycle, with two 3-
vertices, contradicting Lemma 26. Hence v2u0 is not in E. Similarly, v3u1 is
not in E. Since G ∈ P4, either u0 and v2 do not have a common neighbor,
or u1 and v3 do not have a common neighbor. By symmetry assume that u0
and v2 do not have a common neighbor. Let H∗ = G + u0v2 − {u1, v0, v1, v3}.
Graph H∗ has n− 4 vertices, m′ ≤ m− 10 edges and belongs to P4. Let F ′ be
any induced forest of H∗. Adding v0 and v1 to F ′ leads to an induced forest
of G (intuitively the edge u0v2 is just subdivided). Observation 15 applied to
(α, β, γ) = (4, 10, 2) completes the proof.

Lemma 28. There is no 4-cycle with at least two 3-vertices in G.

Proof. It follows from Lemmas 22, 23, 26 and 27.

Lemma 29. There is no 4-face with exactly one 3-vertex in G.

Proof. Let C = v0v1v2v3 be such a face. W.l.o.g. v0 is the 3-vertex and v1, v2
and v3 are 4+-vertices. By Lemma 25, v1 and v3 are 4-vertices. Let u0 be the
third neighbor of v0. Vertex u0 is different from v2 and non-adjacent to v1 and
v3 (G is triangle-free).

Let us first assume that u0v2 ∈ E. By Lemmas 21, 25 and 28, u0 is a 4-
vertex. Assume v2 has degree 5. Let H∗ = G − {u0, v0, v2}. Graph H∗ has
n − 3 vertices and m − 10 edges. Let F ′ be any induced forest of H∗. Adding
the vertex v0 to F ′ leads to an induced forest of G (since u0v0v1v2 separates the
neighbours of v1 that are not in C and the neighbours of v3 that are not in C).
Observation 15 applied to (α, β, γ) = (3, 10, 1) leads to a contradiction. Hence
v2 has degree 4. Then either v0v1v2u0 or v0v3v2u0 has a 3-vertex opposite to a 4-
vertex with a neighbor in the interior and one in the exterior of it, contradicting
Lemma 22.
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Thus u0 is non-adjacent to v2. By Lemma 18, v1 and u0 have a common
neighbor other than v0, say u1. It is distinct from all the vertices we defined
previously. By Lemma 28 applied to v0v1u1u0, u0 and u1 have degree at least
4. By Lemma 25, u0 has degree exactly 4.

Suppose u1v3 ∈ E. As C is a face, the last neighbor of v1 ( 6= v0, v2, u1), say
w1, is not in the interior of C. The cycle v0v1u1v3 separates u0 and v2. Suppose
first that v0v1u1v3 does not separate u0 and w1. Then v0v1u1u0 separates v3
and w1. Let H∗ = G− {v0, v1, v2, v3, u0, u1}. Graph G∗ has n− 6 vertices and
m′ ≤ m−14 edges. Let F ′ be any induced forest of H∗. Adding the vertices v0,
v1 and v3 to F ′ leads to an induced forest of G. Hence Observation 15 applied
to (α, β, γ) = (6, 14, 3) leads to a contradiction. Therefore v0v1u1v3 separates
u0 and w1. Assume u1 has degree 5. Let H∗ = G− {u1, v0, v3}. Graph H∗ has
n − 3 vertices and m − 10 edges. Let F ′ be any induced forest of H∗. Adding
the vertex v0 to F ′ leads to an induced forest of G. Observation 15 applied
to (α, β, γ) = (3, 10, 1) leads to a contradiction. Hence u1 has degree 4. Then
v0v1u1v3, v0u0u1v3 or v0v1u1u0 has a 3-vertex opposite to a 4-vertex with a
neighbor in the interior and one in the exterior of it, contradicting Lemma 22.

So u1 cannot be adjacent to v3. As u1v3 /∈ E and u0v2 /∈ E, by Lemma 18
v3 and u0 have a common neighbor distinct from v0, say u3. By what pre-
cedes and by symmetry, it is of degree at least 4 and non-adjacent to v0, v1,
v2 and u1 (it has a role similar to that of u1, and is non-adjacent to u1 be-
cause of the girth assumption). See Figure 6 for a reminder of the structure
of G[{v0, v1, v2, v3, u0, u1, u3}]. Vertex v0 has degree 3, v1, v3 and u0 are 4-
vertices, and v2, u1 and u3 are 4+-vertices. Recall that u1v3 /∈ E, u3v1 /∈ E and
u0v2 /∈ E.

v0

u3

u0

u1

v1

v2

v3

3-vertex with all of its incident edges represented

3-vertex with some of its incident edges not represented

4-vertex with all of its incident edges represented

4-vertex with some of its incident edges not represented

4+-vertex with some of its incident edges not represented

3+-vertex with some of its incident edges not represented
Edge

Non-edge

Figure 6: Graph G[{v0, v1, v2, v3, u0, u1, u3}].

Let w0, w1 and w3 be the fourth neighbors of u0, v1 and v3 respectively.
In the following we will no longer use the fact that C is a face. By the girth
assumption, w0 is not adjacent to u1 or u3. Suppose w0 is adjacent to v1 or to v3,
say w0v1 ∈ E. Then by the girth assumption, w0v2 /∈ E. By Lemma 28 applied
to v0v1w0u0, w0 is a 4+-vertex. Let H∗ = G − {v0, v1, v2, v3, u0, u1, u3, w0}.
Graph H∗ has n − 8 vertices and m′ ≤ m − 19 edges. Let F ′ be any induced
forest of H∗. Adding the vertices v0, v1, v3 and u0 to F ′ leads to an induced
forest of G. Hence Observation 15 applied to (α, β, γ) = (8, 19, 4) leads to a
contradiction. So w0 is not adjacent to v1 or v3. By symmetry, w0, w1 and w3

are distinct.
Suppose w0v2 ∈ E. Assume that C separates w1 and w3, or that it does

not separate w1 and w3 nor w0 and w1. Then either C or v0v1v2w0u0 separates
w1 and w3. Let H∗ = G − {v0, v1, v2, v3, u0, u1, u3, w0}. Graph H∗ has n − 8
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vertices and m′ ≤ m − 19 edges. Let F ′ be any induced forest of H∗. Adding
the vertices v0, v1, v3 and u0 to F ′ leads to an induced forest of G. Hence
Observation 15 applied to (α, β, γ) = (8, 19, 4) leads to a contradiction. Thus
C does not separate w1 and w3 but separates w1 and w0. Let H∗ = G −
{v0, v1, v2, v3, u0, u1, u3, w3}. Graph H∗ has n − 8 vertices and m′ ≤ m − 19
edges. Let F ′ be any induced forest of H∗. Adding the vertices v0, v1, v3
and u0 to F ′ leads to an induced forest of G. Hence Observation 15 applied
to (α, β, γ) = (8, 19, 4) leads to a contradiction. So w0v2 /∈ E, and similarly
w1u3 /∈ E and w3u1 /∈ E.

Thus the only edges that may or may not exist between the vertices we
defined are w0w1, w0w3 and w1w3. See Figure 7 for a reminder of the edges
and vertices we know to this point. Vertex v0 has degree 3, v1, v3 and u0 are
4-vertices and v2, u1 and u3 are 4+-vertices. Vertices v0, v1, v3 and u0 have all
their incident edges represented in Figure 7.

v0

u3

u0

u1

v1

v2

v3

w0 w3

w1

Figure 7: Vertices v0, v1, v2, v3, u0, u1, u3, w0, w1 and w3.

Suppose w0w1 /∈ E, w0w3 /∈ E, and w1w3 /∈ E. Let H∗ = G + x +
{xw0, xw1, xw3} − {v0, v1, v2, v3, u0, u1, u3}. Graph H∗ has n − 6 vertices and
m′ ≤ m − 14 edges, and is in P4. Let F ′ be any induced forest of H∗. Either
x ∈ F ′, then the graph induced by V (F ′) ∪ {v0, v1, v3, u0}\{x} in G is a forest,
or x /∈ F ′, then adding v1, v3 and u0 to F ′ leads to an induced forest of G.
Observation 15 applied to (α, β, γ) = (6, 14, 3) leads to a contradiction. Thus
there is at least one edge among w0w1, w0w3 and w1w3. Moreover, since there
is no triangle in G, there are no more than two of these edges. W.l.o.g. let us
assume that w0w1 /∈ E and w0w3 ∈ E.

Let us now prove some claims that we will use later :

(a) Suppose that w0 and w1 are 4+-vertices, or that one is a 3-vertex, the other
a 4+-vertex, and v2, u1 or u3 has degree 5. LetH∗ = G−{v0, v1, v2, v3, u0, u1, u3, w0, w1}.
Graph H∗ has n − 9 vertices and m′ ≤ m − 24 edges, and adding v0, v1,
v3 and u0 to any induced forest of H∗ leads to an induced forest of G.
Observation 15 applied to (α, β, γ) = (9, 24, 4) leads to a contradiction.

(b) Suppose w0 or w3, say wi0 , is a 3-vertex and either one of the wi is a 4+-
vertex, or w1w3 /∈ E. Let H∗ = G − {v0, v1, v2, v3, u0, u1, u3, w0, w1, w3}.
Graph H∗ has n− 10 vertices and m′ ≤ m− 23 edges, and adding v0, v1,
v3, u0 and wi0 to any induced forest of H∗ leads to an induced forest of G.
Observation 15 applied to (α, β, γ) = (10, 23, 5) leads to a contradiction.
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(c) Suppose w0 and w3 are 3-vertices and w1 and w3 are adjacent. Let H∗ =
G − {v0, v1, v3, u0, u1, u3, w0, w1, w3}. Graph H∗ has n − 9 vertices and
m′ ≤ m − 19 edges, and adding v0, v1, u0, w0 and w3 to any induced
forest of H∗ leads to an induced forest of G (by planarity, since w1w3 ∈
E and w0w3 ∈ E, the cycle v0v1w1w3v3 separates v2 from w0 in G).
Observation 15 applied to (α, β, γ) = (9, 19, 5) leads to a contradiction.

If w1w3 ∈ E, then both w0 and w3 are 4+-vertices (by (b) and (c)), and by
symmetry w1 is also a 4+-vertex, which is impossible (by (a)). Hence w1w3 /∈ E.

v0

u3

u0

u1

v1

v2

v3

w0 w3

w1

Figure 8: Vertices v0, v1, v2, v3, u0, u1, u3, w0, w1 and w3.

Therefore w0 and w3 are 4+-vertices (by (b)), thus w1 has degree 3 (by
(a)), and v2, u1 and u3 have degree 4 (by (a)) (see Figure 8). Let y0 and y1
the two neighbors of w1 other than v1. By Lemma 18 they have a common
neighbor other than w1, say t. So by Lemmas 25 and 28 in w1y0ty1, y0 and y1
have degree 4, and by Lemma 18 each one is adjacent either to v2 or to u1. If
they are both adjacent to the same one, say v2 w.l.o.g., then either v2v1w1y0 or
v2v1w1y1 is a 4-cycle with a 3-vertex (w1) opposite to a 4-vertex (v2) that has
both an edge going outside and one going inside of it, which is impossible by
Lemma 22. W.l.o.g., say y0 is adjacent to v2 and y1 is adjacent to u1. At this
point we know that v0, v1, v2, v3, u0, u1, w1, y0 and y1 are distinct and do not
share an edge that we do not already know. See Figure 9 for a reminder of the
edges and vertices we know to this point.

v0

u3

u0

u1

v1

v2

v3

w0 w3

w1

y1 y0

Figure 9: Vertices v0, v1, v2, v3, u0, u1, u3, w0, w1, w3, y0 and y1.

Let z be the neighbor of v2 different from v1, v3 and y0. The only edges
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that may or not be among v0, v1, v2, v3, u0, u1, w1, y0, y1 and z are zy1
and zu1, and as G is triangle-free, there is at most one of those edges. Let
H∗ = G−{v0, v1, v2, v3, u0, u1, w1, y0, y1, z}. Graph H∗ has n− 10 vertices and
m′ ≤ m − 23 edges (recall that u1 cannot be adjacent both to y0 and y1, and
thus is not adjacent to y0). Adding to any induced forest of H∗ the vertices v0,
v1, v2, u1 and w1 leads to an induced forest of G, so Observation 15 applied to
(α, β, γ) = (10, 23, 5) leads to a contradiction, completing the proof.

Lemma 30. There is no 5-face with only 3-vertices in G.

Proof. Let C = v0v1v2v3v4 be such a face, and u0, u1, u2, u3, and u4 be the
third neighbors of v0, v1, v2, v3 and v4 respectively. The ui are all distinct due
to the girth assumption and Lemma 26. We will consider the indices of the ui
and vi modulo 5. There is no edge uiui+1 for any i due to Lemma 28. Let
H∗ = G + x + y + {xu0, xu1, yu2, yu3, xy} − C. Graph H∗ has n − 3 vertices
and m − 5 edges. Let F ′ be any induced forest of H∗. Let F be the subgraph
of G induced by the vertices of V (F ′)\{x, y}, plus the vertices v0 and v3, plus
v1 if x ∈ V (F ′), and plus v2 if y ∈ V (F ′). Subgraph F is an induced forest of
G. Thus Observation 15 applied to (α, β, γ) = (3, 5, 2) leads to a contradiction
completing the proof.

Lemma 31. There is no 3-vertex adjacent to a 3-vertex and to a 4-vertex in
G.

Proof. Let v be a 3-vertex adjacent to a 3-vertex u and to a 4-vertex w. Let x
be the third neighbor of v. By Lemma 18, x and u have a common neighbor
distinct from v which contradicts Lemma 28.

For every face f of G, let l(f) be the length of f , and let c4+(f) be the
number of 4+-vertices in f . For every vertex v, let d(v) be the degree of v. Let
k be the number of faces of G, and for every 3 ≤ d ≤ 5 and every 4 ≤ l, let kl
be the number of faces of length l and nd the number of d-vertices in G.

Each 4-vertex is in the boundary of at most four faces, and each 5-vertex is
in the boundary of at most five faces. Therefore the sum of the c4+(f) over all
the 4-faces and 5-faces is

∑
f,4≤l(f)≤5 c4+(f) ≤ 4n4+5n5. From Lemmas 25, 30

and 31 we can deduce that for each 5-face f we have c4+(f) ≥ 2. Moreover,
by Lemmas 28 and 29, for each 4-face f , c4+(f) ≥ 4. Thus

∑
f,l(f)=4 c4+(f) +∑

f,l(f)=5 c4+(f) ≥ 4k4 + 2k5. Thus we have the following:

4n4 + 5n5 ≥ 4k4 + 2k5

By Euler’s formula, we have:

−12 = 6m− 6n− 6k

= 2
∑

v∈V (G)

d(v) +
∑

f∈F (G)

l(f)− 6n− 6k

=
∑
d≥3

(2d− 6)nd +
∑
l≥4

(l − 6)kl

≥ 2n4 + 4n5 − 2k4 − k5
≥ 0
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This is a contradiction, which ends the proof of Theorem 14.
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