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Abstract
A simple digraph is semi-complete if for any two of its vertices u and v, at least one of the arcs
(u, v) and (v, u) is present. We study the complexity of computing two layout parameters of
semi-complete digraphs: cutwidth and optimal linear arrangement (Ola). We prove that:

Both parameters are NP-hard to compute and the known exact and parameterized algorithms
for them have essentially optimal running times, assuming the Exponential Time Hypothesis.
The cutwidth parameter admits a quadratic Turing kernel, whereas it does not admit any
polynomial kernel unless NP ⊆ coNP/poly. By contrast, Ola admits a linear kernel.

These results essentially complete the complexity analysis of computing cutwidth and Ola on
semi-complete digraphs. Our techniques can be also used to analyze the sizes of minimal obstruc-
tions for having small cutwidth under the induced subdigraph relation.
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1 Introduction

A directed graph (digraph) is simple if it does not contain a self-loop or multiple arcs with
the same head and tail. A simple digraph is semi-complete if for any pair of its vertices u
and v, at least one of the arcs (u, v) or (v, u) is present. If moreover exactly one of them is
present for each pair u, v, then a semi-complete digraph is called a tournament. Tournaments
and semi-complete digraphs form a rich and interesting subclass of directed graphs; we refer
to the book of Bang-Jensen and Gutin [1] for an overview.

We study two layout parameters for tournaments and semi-complete digraphs: cutwidth
and optimal linear arrangement (Ola). Suppose π is an ordering of the vertices of a digraph
D. With each prefix of π we associate a cut defined as the set of arcs with head in the
prefix and tail outside of it. The width of π is defined as the maximum size among the
cuts associated with the prefixes of π. The cutwidth of D, denoted ctw(D), is the minimum
width among orderings of the vertex set of D. Optimal linear arrangement (Ola) is defined
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similarly, but when defining the width of π, called in this context the cost of π, we take the
sum of the cutsizes associated with prefixes, instead of the maximum. Then the Ola-cost of
a digraph D, denoted Ola(D), is the minimum cost among vertex orderings of D.

Known results. The study of cutwidth in the context of tournaments and semi-complete
digraphs started with the work of Chudnovsky, Fradkin, and Seymour [3, 4, 10], who identified
this layout parameter as the right dual notion to immersions in semi-complete digraphs. In
particular, it is known that excluding a fixed digraph as an immersion yields a constant
upper bound on the cutwidth of a semi-complete digraph [3, 16]. Due to this connection,
cutwidth played a pivotal role in the proof of Chudnovsky and Seymour that the immersion
order is a well quasi-order on tournaments [4].

The algorithmic properties of cutwidth were preliminarily investigated by Chudnovsky,
Fradkin, and Seymour [3, 10, 9]. In Fradkin’s PhD thesis [9], several results on the tractability
of computing the cutwidth are presented. In particular, it is shown that the cutwidth
of a tournament can be computed optimally by just sorting vertices according to their
outdegrees, whereas in semi-complete digraphs a similar approach yields a polynomial-time
2-approximation algorithm. The problem becomes NP-hard on super-tournaments, that
is, when multiple parallel arcs are allowed. Later, the third author together with Fomin
proposed a parameterized algorithm for computing the cutwidth of a semi-complete digraph
with running time 2O(

√
k log k) · n2 [8, 17], where n is the number of vertices and k is the

target width. Using the same techniques, Ola in semi-complete digraphs can be solved
in time 2O(k1/3

√
log k) · n2 [8, 17], where k is the target cost. It was left open whether the

running times of these parameterized algorithms are optimal [17]. In fact, even settling the
NP-hardness of computing cutwidth and Ola in semi-complete digraphs was open [9, 17].

Our contribution. We study two aspects of the computational complexity of computing
cutwidth and Ola of semi-complete digraphs: optimality of parameterized algorithms and
kernelization. First, we prove that these problems are NP-hard and we provide almost tight
lower bounds for the running times of algorithms solving them, based on the Exponential Time
Hypothesis (ETH). Second, we describe the kernelization complexity of the two parameters
in semi-complete digraphs. In particular, we show, somewhat surprisingly, that the problem
of computing the cutwidth admits a quadratic Turing kernel, while the existence of a classic
polynomial kernel would imply that NP ⊆ coNP/poly. The proofs of these main results yield
complementary algorithmic and structural results that we discuss later.

Our algorithmic lower bounds are encapsulated in the following theorem.

I Theorem 1. For semi-complete digraphs, both computing the cutwidth and computing the
Ola-cost are NP-hard problems. Moreover, unless the Exponential Time Hypothesis fails:

the cutwidth cannot be computed in time 2o(n) nor in time 2o(
√
k) · nO(1); and

the Ola-cost cannot be computed in time 2o(n) nor in time 2o(k1/3) · nO(1).
Here, n is the vertex count of the input semi-complete digraph, and k is the target width/cost.

Thus, Theorem 1 shows that the known parameterized algorithms of Fomin and Pilip-
czuk [8] are optimal under ETH, up to

√
log k factor in the exponent. Note that both

cutwidth and Ola can be computed in time 2n · nO(1) using standard dynamic programming
on subsets, so we obtain tight lower bounds also for exact exponential-time algorithms.

Next, we turn our attention to kernelization. Recall that a kernelization algorithm (or
kernel, for short) is a polynomial-time algorithm that given some instance of a parameterized
problem, returns an equivalent instance whose size is bounded by a computable function of



F. Barbero, C. Paul, and Mi. Pilipczuk 70:3

the input parameter; this function is called the size of the kernel. We are mostly interested
in finding polynomial kernels, as admitting a kernel of any computable size is equivalent
to fixed-parameter tractability of the problem [6, 5]. Consider the parameterized problems
of deciding whether a given semi-complete digraph has cutwidth, respectively Ola-cost,
bounded by a given integer c, which is considered to be the parameter. As shown by the
next two theorems, the kernelization complexity of these two problems is quite different.

I Theorem 2. There exists a polynomial-time algorithm that given an arbitrary digraph D
and an integer c, either correctly concludes that Ola(D) > c, or finds a digraph D′ on at
most 2c vertices such that Ola(D′) = Ola(D).

I Theorem 3. Unless NP ⊆ coNP/poly, there exists no polynomial-size kernelization al-
gorithm for the problem of computing the cutwidth of a semi-complete digraph.

The proofs of these two theorems directly follow from the understanding of the contribution
of strongly connected components in optimal orderings. On one side, the contribution to
the Ola-cost of each strongly connected component is at least linear in its size, implying
Theorem 2. On the other side, we can observe that the cutwidth of a digraph is the maximum
over the cutwidth of its strongly connected components, which implies that, like many other
width parameters, cutwidth is an and-composable parameter [7, 5].

However, an alternative notion of kernelization, called Turing kernelization, has been also
studied intensively in the literature; cf. the discussion in [5]. In this framework, it is not
required that the instance at hand is reduced to one equivalent small instance, but rather that
the whole problem can be solved in polynomial time assuming oracle access to an algorithm
solving instances of size bounded by a function of the parameter. Somewhat surprisingly,
we prove that the problem of computing the cutwidth of a semi-complete digraph admits a
quadratic Turing kernel, which is encapsulated in the following theorem.

I Theorem 4. There exists a polynomial-time algorithm that given a semi-complete digraph
D and integer c, either correctly concludes that ctw(D) > c or outputs a list of at most n
induced subdigraphs D1, . . . , D` of D, each with at most O(c2) vertices, such that ctw(D) ≤ c
if and only if ctw(Di) ≤ c for each i ∈ {1, 2, . . . , `}.

Theorem 4 gives a so-called and-Turing kernel, meaning that the algorithm just computes
the output list without any oracle calls, and the answer to the input instance is the conjunction
of the answers to the output small instances. This places the problem of computing the
cutwidth of a semi-complete digraph among very few known examples of natural problems
where classic and Turing kernelization have different computational power [2, 15, 11, 18, 21].
Moreover, this is the first known to us polynomial and-Turing kernel for a natural problem:
examples of Turing kernelization known in the literature are either or-Turing kernels [2, 11,
18], or adaptative kernels that fully exploit the oracle model [15, 21]. As separating classic
and Turing kernelization is arguably one of the most important complexity-theoretical open
problems within parameterized complexity [6, 13, 5], we find this new example intriguing.

As a byproduct of our approach to proving Theorem 4, we obtain also polynomial upper
bounds on the sizes of minimal obstructions to having small cutwidth. More precisely, for a
positive integer c, a digraph D is called c-cutwidth-minimal if the cutwidth of D is at least c,
but the cutwidth of every proper induced subdigraph of D is smaller than c.

I Theorem 5. For every positive integer c, every c-cutwidth-minimal semi-complete digraph
has at most O(c2) vertices.

I Theorem 6. For every positive integer c, every c-cutwidth-minimal tournament has at
most 2c+ 2d

√
2ce+ 1 vertices.

ICALP 2017
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The bound of Theorem 6 is almost tight, as there exist c-cutwidth-minimal tournaments
with 2c+ 1 vertices. Theorems 5 and 6 have direct algorithmic applications for parameterized
graph modification problems related to cutwidth, e.g., c-Cutwidth Vertex Deletion:
remove at most k vertices from a given digraph to obtain a digraph of cutwidth at most c.

Approach. The starting point of our study is the approach used in the earlier works by
Fradkin [9] and by the third author [17, 16], namely to sort the vertices of the given semi-
complete digraph according to non-decreasing indegrees, and argue that this ordering has to
resemble an optimum one. As shown by Fradkin [9], this statement may be made precise for
tournaments: any indegree ordering has optimum cutwidth.

We present a somewhat finer study of this argument using the notion of a minimum
ordering. Namely, a vertex ordering π of a digraph D is minimum if for any other vertex
ordering π′ of D and any i ∈ {1, 2, . . . , n− 1}, the cutsize in π between the prefix of length i
and the complementary suffix is smaller or equal than the cutsize defined in the same manner
in π′. The sorting argument of Fradkin [9] in fact yields the following: a vertex ordering of
a tournament is minimum if and only if it is sorted according to indegrees. In particular,
every tournament admits a minimum ordering, computable in polynomial time. Since every
minimum ordering optimizes both the cutwidth and the Ola-cost, we obtain the following.

I Theorem 7. The cutwidth and Ola of a tournament can be computed in polynomial time.

Unfortunately, general semi-complete digraphs may not admit minimum orderings. How-
ever, a semi-complete digraph can be relaxed to a fractional tournament with a loss of factor
2 on the cutwidth and the Ola-cost. The ordering argument for tournaments may be applied
to fractional tournaments as well, and thus we obtain a polynomial-time 2-approximation.

I Theorem 8. There exists a polynomial-time algorithm that given a semi-complete digraph
D, outputs an ordering of its vertices of width, and respectively cost, upper bounded by twice
the cutwidth, respectively Ola-cost, of D.

While Theorems 7 and 8 for cutwidth were already proved by Fradkin [9], the applicability
of the approach to Ola is a new contribution of this work. We choose to include the proofs
of Theorems 7 and 8 in this work for two reasons. First, the fine understanding of minimum
orderings is a basic tool needed in the proofs of our main results. Second, the abovementioned
results of Fradkin [9] were communicated only in her PhD thesis and, to the best of our
knowledge, were neither included in any published work, nor we have found any reference to
them. We believe that these fundamental observations deserve a better publicity.

For the proof of Theorem 1, we construct a reduction from NAE-3SAT, a variant of
3SAT. In case the input formula is satisfiable, the output semi-complete digraph admits
a minimum vertex ordering with a precisely specified vector of cutsizes. On the other
hand, admitting any ordering of width bounded by the maximum of these cutsizes implies
satisfiability of the input formula. Thus, the same reduction may serve to certify the hardness
of both computing the cutwidth and computing the Ola-cost of a semi-complete digraph.

For the proof of Theorem 4, we use the notion of a lean ordering; see e.g. [12, 20].
Intuitively, a vertex ordering is lean if it is tight with respect to cut-flow duality: there are
systems of arc-disjoint paths which certify that cutsizes along the ordering cannot be improved.
Lean orderings and decompositions are commonly used in the analysis of obstructions for
various width notions, as well as for proving well quasi-order results. In particular, the
concept of a lean ordering for cutwidth of digraphs was used by Chudnovsky and Seymour
in their proof that the immersion order is a well quasi-order on tournaments [4].
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Lean orderings are used in the proof of Theorem 4 as follows. We first compute a 2-
approximate ordering using Theorem 8, and then we exhaustively improve it until it becomes
lean. Let σ be the obtained ordering, and consider the sequence of cutsizes along σ. The
next observation is crucial. Due to leanness, if some cutsize in this sequence is smaller or
equal than Ω(c) cutsizes to the left and to the right, then there is some optimum-width
ordering that uses the corresponding cut; that is, the prefix of σ up to this cut is also a
prefix of some optimum-width ordering. We call such cuts milestones. It is not hard to prove
that a milestone can be found every O(c2) vertices in the ordering σ. Thus we are able to
partition the digraph into pieces of size O(c2) that may be treated independently. Each of
these pieces gives rise to one digraph Di in the output of the kernelization algorithm.

Theorem 5 follows easily from Theorem 4; basically, the algorithm applied to a c-cutwidth
minimal semi-complete digraph cannot output only smaller digraphs. For Theorem 6 we
use our finer understanding of minimum orderings in tournaments. We remark that from
the well-quasi order result of Chudnovsky and Seymour [4], it follows that the number of
minimal immersion obstructions for tournaments of cutwidth at most c is finite. However,
this holds only for tournaments, yields a non-explicit upper bound on obstruction sizes, and
applies to immersion and not induced subdigraph obstructions.

Organization. In Section 2 we introduce notation, recall basic definitions, and prove Theor-
ems 7 and 8. In Sections 3 and 4 we prove Theorems 4 and 1, respectively. The proofs of
statements marked with ♠ will appear in the full version of the paper.

2 Preliminaries and basic results

Notation. We use standard graph notation for digraphs. All digraphs considered in this
paper are simple, i.e., they do not contain a self-loop or multiple arcs with the same head
and tail. For definitions of tournaments and semi-complete digraphs, see the first paragraph
of Section 1. If present in a digraph, the arcs (u, v) and (v, u) are called symmetric arcs.

For two integers p ≤ p′, let [p, p′] ⊆ Z be the set of integers between p and p′. If p < p′,
we set [p′, p] = ∅ by convention. A vertex ordering of a digraph D is a bijective mapping
π : V (D) → [1, n], where n = |V (D)|. A vertex u ∈ V (D) is at position i in π if π(u) = i.
We denote this unique vertex by πi. The prefix of length i of π is π≤i = {πj : j ∈ [1, i]}; we
set π≤i = ∅ when i ≤ 0, and π≤i = V (D) when n ≤ i. We extend this notation to prefixes
and suffixes of orderings naturally, e.g., π>i = V (D) \ π≤i is the set of the last n− i vertices
in π. The notions of restriction and concatenation of ordering(s) are defined naturally.

An arc (πi, πj) ∈ E(D) is a feedback arc for π if i > j, that is, if πi is after πj in π. Given
a digraph D = (V,E), an ordering π of V and an integer i, we define the cut Eiπ as the set
of feedback arcs E(π>i, π≤i). The tuple cuts〈D,π〉 = (|E0

π|, |E1
π|, . . . , |Enπ |) is called the cut

vector of π, and we denote cuts〈D,π〉(i) = |Eiπ|. Let � be the product order on tuples: for
n-tuples A,B, we have A � B iff A(i) ≤ B(i) for all i ∈ [0, n]. We define A ≺ B as A � B
and A 6= B. We say that a vertex ordering π is minimum for D if for all vertex orderings π′
of D we have cuts〈D,π〉 � cuts〈D,π′〉. Note that a minimum vertex ordering may not exist.

The width of a vertex ordering π of a digraph D, denoted ctw(D,π), is equal to
max{cuts〈D,π〉}, where max on a tuple yields the largest coordinate. The cutwidth of
D, denoted ctw(D), is the minimum width among vertex orderings of D. Similarly, the cost
of π, denoted Ola(D,π), is equal to

∑
{cuts〈D,π〉}, where

∑
on a tuple yields the sum of

coordinates. This is equivalent to summing j − i for all feedback arcs (πj , πi) in π. The

ICALP 2017
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OLA-cost of D, denoted Ola(D), is the minimum cost among vertex orderings of D. A vertex
ordering π of D satisfying ctw(D) = ctw(D,π), or Ola(D) = Ola(D,π), is respectively
called ctw-optimal or Ola-optimal for D. Note that a minimum ordering for D, if existent,
is always ctw-optimal and Ola-optimal for D.

Exponential-Time Hypothesis. The Exponential Time Hypothesis (ETH) of Impagliazzo
et al. [14] states that for some constant c > 0, there is no algorithm for 3SAT that would run
in time 2cn · (n+m)O(1), where n and m are the numbers of variables and clauses of the input
formula, respectively. Using the Sparsification Lemma [14] one can show that under ETH,
there is a constant c > 0 such that 3SAT cannot be solved in time 2cm · (n+m)O(1). In this
work we use the NAE-3SAT problem (for Not-All-Equal), which is a variant of 3SAT where
a clause is considered satisfied only when at least one, but not all of its literals are satisfied.
Schaefer [19] gave a linear reduction from 3SAT to NAE-3SAT, which immediately yields:

I Corollary 9. Unless ETH fails, NAE-3SAT cannot be solved in time 2o(m) · (n+m)O(1),
where n and m are the numbers of variables and clauses of the input formula, respectively.

Theorems 7 and 8. We now proceed to proving Theorems 7 and 8; recall that for cutwidth,
these results have been already established by Fradkin [9]. However, we use this opportunity
to present the reasoning in a more insightful manner and more general context, which also
yields a better combinatorial understanding that will be helpful later. The core idea is to
work in a more general setting of linear relaxations of tournaments, as defined next.

A fractional tournament is a pair T = (V, ω), where V is a finite vertex set and ω : V 2 →
R≥0 is a weight function that satisfies the following properties: ω(u, u) = 0 for all u ∈ V , and
ω(u, v)+ω(v, u) = 1 for all pairs of different vertices u, v. Thus, by requiring the weights to be
integral we recover the original definition of a tournament. We extend the notation for digraphs
to fractional tournaments as follows. For X,Y ⊆ V we define ω(X,Y ) =

∑
x∈X, y∈Y ω(x, y),

and for u ∈ V we define ω−(u) = ω(V, {u}) and ω+(u) = ω({u}, V ). The notions of
(minimum) vertex orderings, cut vectors, cutwidth, and OLA-cost are extended naturally:
the cardinality of any cut E(X,Y ) is replaced by the sum of weights ω(X,Y ).

Suppose T = (V, ω) is a fractional tournament. We say that a vertex ordering π of T
is sorted if for any pair of different vertices u and v, if ω−(u) < ω−(v), then π(u) < π(v);
in other words, the vertices are sorted according to their indegrees. The following lemma
encapsulates the essence of our approach.

I Lemma 10 (♠). A vertex ordering of a fractional tournament is minimum iff it is sorted.

The proof of Theorem 7, even in the more general setting of fractional tournaments, is
now immediate. We just sort the vertices according to their indegrees ω−. By Lemma 10,
the obtained ordering is minimum, hence it is both ctw-optimal and Ola-optimal.

Lemma 10 cannot be generalized to the semi-complete setting, as there are semi-complete
digraphs that do not admit any minimum ordering.

We now give a 2-approximation algorithm for general semi-complete digraphs. The main
idea is to relax a given semi-complete digraph to a fractional tournament. Precisely, for a
semi-complete digraph D, consider its relaxation TD which is a fractional tournament on the
vertex set V (D), where for every pair of different vertices u and v, we put

ω(u, v) = 1 and ω(v, u) = 0, when (u, v) is present in D but (v, u) is not present; and
ω(u, v) = ω(v, u) = 1/2, when (u, v) and (v, u) is a pair of symmetric arcs in D.

We put ω(u, u) = 0 for every vertex u, thus TD is indeed a fractional tournament. Observe
that for any pair of vertices u, v, we have |E({u}, {v})|/2 ≤ ωTD

({u}, {v}) ≤ |E({u}, {v})|.
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Therefore, for every vertex ordering π of D and every index i ∈ [0, n], it holds that

cuts〈D,π〉(i)/2 ≤ cuts〈TD, π〉(i) ≤ cuts〈D,π〉(i).

In particular we have ctw(D)/2 ≤ ctw(TD) ≤ ctw(D) and Ola(D)/2 ≤ Ola(TD) ≤ Ola(D).
The proof of Theorem 8 is now immediate: just output any sorted ordering of TD.

3 Turing kernel

In this section we prove Theorem 4, that is, we give a quadratic Turing kernel for the problem
of computing the cutwidth of a semi-complete digraph. The essence of our approach is
encapsulated in the following lemma. Intuitively, it provides a sufficient condition for a cut
in a given ordering π so that it can be assumed to be used in an optimum ordering σ.

I Lemma 11. Let D = (V,E) be a semi-complete digraph. Let π and σ be two vertex
orderings of D such that ctw(D,σ) ≤ ctw(D,π) = c. Suppose further that m ∈ [4c, |V | − 4c]
is such that in D there is a family of |Emπ | arc-disjoint paths leading from π>m+4c to π≤m−4c.
Then there exists a vertex ordering σ∗ such that:

σ∗≤m = π≤m;
for every j with j ≤ m− 4c or j > m+ 4c, we have σ∗j = σj;
ctw(D,σ∗) ≤ ctw(D,σ).

The intuition behind Lemma 11 is as follows. Consider σ∗ as rearranged σ. The second
condition says that this rearrangement is local: it affects only vertices at positions in the
range [m−4c+ 1,m+ 4c]. The third condition says that the rearrangement does not increase
the width. Finally, the first condition is crucial: σ∗ uses the prefix π≤m of π as one of its
prefixes. Thus, any ordering can be locally rearranged while preserving the width so that
prefix π≤m is used, provided there is a large arc-disjoint flow locally near m.

Proof of Lemma 11. We first establish the following basic observation on the relation
between orderings π and σ.

I Claim 12 (♠). In the ordering σ, every vertex of π≤m−4c is placed before every vertex of
π>m, and every vertex of π≤m is placed before every vertex of π>m+4c.

The proof of the claim naturally follows by finding, say for each u ∈ π≤m−4c and v ∈ π>m,
sufficiently many vertices that are both outneighbors of u and inneighbors of v.

Let σ≤ and σ> denote the restriction of σ to π≤m and π>m, respectively. Then, define
σ∗ to be the concatenation of σ≤ and σ>. By the construction we have π≤m = σ∗≤m, so the
first condition is satisfied. For the second condition, observe that by Claim 12, every vertex
of π≤m−4c is before every vertex of π>m in σ. It follows that in σ, the first vertex of π>m
appears only after a prefix of at least m− 4c vertices of π≤m. In the construction of σ∗ from
σ, the vertices of that prefix stay at their original positions, so σ∗j = σj for all j ≤ m− 4c. A
symmetric argument shows that σ∗j = σj also for all j > m+ 4c.

It remains to prove that ctw(D,σ∗) ≤ ctw(D,σ). Consider any j ∈ [0, |V |]; we need
to prove that |Ejσ∗ | ≤ ctw(D,σ). By the second condition we have that Ejσ∗ = Ejσ when
j ≤ m − 4c or j ≥ m + 4c, and |Ejσ| ≤ ctw(D,σ) by definition. Hence, we are left with
checking the inequality for j satisfying m− 4c < j < m+ 4c.

In the following, for a vertex subset A we denote δ(A) = |E(V \A,A)|. We will use the
submodularity of directed cuts: δ(A ∩B) + δ(A ∪B) ≤ δ(A) + δ(B) for all vertex subsets
A,B. In these terms, we need to prove that δ(σ∗≤j) ≤ ctw(D,σ).

ICALP 2017
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Let x be the vertex at position j in σ∗ and let X be the set of all vertices placed not
after x in σ, including x itself. Suppose first that j ≤ m. Then, by the construction we have
x ∈ π≤m and σ∗≤j = X ∩ π≤m. By the submodularity of cuts we have

δ(σ∗≤j) = δ(X ∩ π≤m) ≤ δ(X) + δ(π≤m)− δ(X ∪ π≤m). (1)

As X is a prefix of σ by definition, we have δ(X) ≤ ctw(D,σ). Hence, by (1), in order to
prove that δ(σ∗≤j) ≤ ctw(D,σ), it suffices to prove that δ(X ∪ π≤m) ≥ δ(π≤m).

Denote d = δ(π≤m) = |Emπ | and recall that there is a family of d arc-disjoint paths leading
from π>m+4c to π≤m−4c. In particular, this means that for each set A with A ⊇ π≤m−4c
and A ∩ π>m+4c = ∅, each of these paths has to contribute to δ(A), implying δ(A) ≥ d.

Therefore, it suffices to show that X ∪ π≤m ⊇ π≤m−4c and (X ∪ π≤m) ∩ π>m+4c = ∅.
While the first assertion is trivial, the second is equivalent to X ∩ π>m+4c = ∅. For this,
observe that by definition all elements of X are placed not after x in σ, and x belongs
to π≤m. However, by Claim 12 all vertices of π>m+4c are placed in σ after all vertices of
π≤m, in particular after x. This implies that X and π>m+4c are disjoint, which proves that
δ(X ∪ π≤m) ≥ d and, consequently as discussed above, also that δ(σ∗≤j) ≤ ctw(D,σ).

The proof for the case j > m is completely symmetric, however we need to observe that
now x ∈ π>m and σ∗≤j = X ∪ π≤m. By applying the same submodularity argument (1), we
are left with proving that δ(X∩π≤m) ≥ δ(π≤m), which follows by a symmetric reasoning. J

Our goal now is to construct an approximate ordering π where we will be able to find
many positions m to which Lemma 11 can be applied. We first recall the concept of a lean
ordering, which will be our main tool for finding families of arc-disjoint paths.

I Definition 13. A vertex ordering π of a digraph D = (V,E) is called lean if for each
0 ≤ a ≤ b ≤ n, the maximum size of a family of arc-disjoint paths from π>b to π≤a in D is
equal to mina≤i≤b |Eiπ|.

Note that by Menger’s theorem, the maximum size of a family of arc-disjoint paths from
π>b to π≤a is equal to the minimum size of an arc cut separating π>b from π≤a. Thus, in a
lean ordering we have that the minimum cutsize between any disjoint prefix and suffix is
actually realized by one of the cuts along the ordering.

The notion of a lean ordering is the cutwidth analogue of a lean decomposition in
the treewidth setting, cf. [20]. An essentially equivalent notion of linked orderings was
used by Chudnovsky and Seymour [4] in the context of immersions in tournaments. Also,
Giannopoulou et al. [12] used this concept to study immersion obstructions for the cutwidth
of undirected graphs. A careful analysis of the arguments of [4, 12] yields the following.

I Lemma 14 ([4, 12]). There is a polynomial-time algorithm that given a vertex ordering π
of a digraph D, computes a lean vertex ordering π∗ of D satisfying ctw(D,π∗) ≤ ctw(D,π).

Next, we introduce the concept of a milestone. Intuitively, a milestone is a position where
Lemma 11 can be applied, provided the ordering is lean.

I Definition 15. Let π be a vertex ordering of a digraph D = (V,E), and let α be a positive
integer. An integer m ∈ [0, |V |] is a π-milestone of D of span α if |Emπ | ≤ |Eiπ| for each
integer i with m− α ≤ i ≤ m+ α.

Note that if π is lean and m is a π-milestone of span α, then minm−α≤i≤m+α |Eiπ| = |Emπ |,
hence there is a family of |Eπm| arc-disjoint paths leading from π>m+α to π≤m−α. Thus,
a π-milestone of span 4c satisfies the prerequisite of Lemma 11 about the existence of
arc-disjoint paths. We now observe that in an ordering of small width milestones occur often.
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I Lemma 16 (♠). Let D = (V,E) be a digraph and let π be a vertex ordering of D of
width at most c. Then for any integers p ∈ [0, |V |] and α ≥ 0, there exists a π-milestone
m ∈ [p− α · c, p+ α · c] of span α.

Having gathered all the tools, we are finally ready to prove Theorem 4.

Proof of Theorem 4. By Theorem 8, we can compute in polynomial time a vertex ordering
π0 of D such that ctw(D,π0) ≤ 2 · ctw(D). If ctw(D,π0) > 2c, we can conclude that
ctw(D) > c and report this answer, so let us assume that ctw(D,π0) ≤ 2c. By applying the
algorithm of Lemma 14 to π0, we can compute in polynomial time a lean ordering π such
that ctw(D,π) ≤ ctw(D,π0) ≤ 2c. In the following we assume w.l.o.g. that |V | > 16c, for
otherwise we can output a list consisting only of D.

Call a set of π-milestones dispersed if these π-milestone pairwise differ by more than 16c.
Observe that 0 and |V | are always π-milestones, and they differ by more than 16c. Starting
from the set {0, |V |}, we compute an inclusion-wise maximal dispersed set 0 = m0 < m1 <

m2 < . . . < m` = |V | of π-milestones of span 8c. More precisely, whenever some π-milestone of
span 8c can be added to the set without spoiling the dispersity requirement, we do it, until no
further such milestone can be added. Observe that then we have thatmi+1−mi ≤ 32c2+32c+1
for each i ∈ [1, `− 1], for otherwise the range [mi + 16c+ 1,mi+1 − 16c− 1] would contain
more than 32c2 vertices, so by Lemma 16 we would be able to find in it a π-milestone of
span 8c that could be added to the constructed dispersed set.

Thus, π is partitioned into ` blocks B1, . . . , B`, each of length at most 32c2 + 32c + 1,
such that the j-th block Bj is equal to {πmj−1+1, πmj−1+2, . . . , πmj}. For each j ∈ [1, `], let
Aj be defined as Bj augmented with the following vertices:

vertices at positions in ranges [max(1,mj−1−8c+1),mj−1] and [mj+1,min(|V |,mj+8c)],
all heads of arcs from E

mj−1−8c
π , and all tails of arcs from E

mj+8c
π .

Since the width of π is at most 2c, we have that |Aj | ≤ |Bj |+ 20c = O(c2).
For j ∈ [1, `], let us denote Dj = D[Aj ]. To prove the theorem, it now suffices to show

that ctw(D) ≤ c if and only if ctw(Dj) ≤ c for each j ∈ [1, `]. The forward direction is trivial,
since cutwidth is closed under taking induced subdigraphs. Hence, we are left with showing
that if ctw(Dj) ≤ c for each j ∈ [1, `], then ctw(D) ≤ c.

Take any j ∈ [1, `−1]. Asmj is a π-milestone of span 8c, we have minmj−8c≤i≤mj+8c |Eiπ| =
|Emj
π |. Since π is lean, there is a family Fj of |Emj

π | arc-disjoint paths in D leading from
π>mj+8c to π≤mj−8c. We can assume w.l.o.g. that each internal (non-endpoint) vertex of
each of these paths has position between mj + 8c+ 1 and mj − 8c in π. Hence, in particular,
each path of Fj starts with an arc of Emj+8c

π and ends with an arc of Emj−8c
π . This implies

that for each j ∈ [1, `], all the paths of Fj are entirely contained both in Dj and in Dj+1.
Consider any j ∈ [1, `], and for simplicity assume for now that j 6= 1 and j 6= `. Let π′ be

the restriction of π to the vertex set of Dj ; obviously the width of π′ is at most 2c. Further,
let m′ be the position of πmj−1 in π′, so that π′≤m′ = π≤mj−1 ∩ V (Dj). Observe that since
all vertices at positions between mj−1− 8c+ 1 and mj−1 + 8c in π are included in the vertex
set of Dj , they are at positions between m′ − 8c+ 1 and m′ + 8c in π′, and hence the paths
of Fj−1 in Dj lead from π′>m′+8c to π′≤m′−8c. Their number is |Emj−1

π |, which is equal to
the cutsize at position m′ in π′, by the construction of Dj and π′.

We conclude that Lemma 11 can be applied to position m′ in the ordering π′ of Dj . If
we now use it on any ctw-optimal vertex ordering σ of Dj , we obtain a ctw-optimal vertex
ordering σ∗ of Dj such that σ∗≤m′ = π′≤m′ = π≤mj−1 ∩ V (Dj). Note that by Lemma 11, σ∗
differs from σ by a rearrangement of vertices at positions between m′ − 8c+ 1 and m′ + 8c.
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Now we define m′′ to be the position of πmj in π′, so that π′≤m′′ = π≤mj ∩ V (Dj). A
symmetric reasoning, which uses the fact that Fj is also entirely contained in Dj , shows that
Lemma 11 can be also applied to position m′′ in the ordering π′ of Dj . Then we can use this
lemma on the ctw-optimal vertex ordering σ∗, yielding a ctw-optimal ordering σ∗∗ such that
σ∗∗≤m′′ = π′≤m′′ = π≤mj

∩ V (Dj). Again, by Lemma 11 we have that σ∗ and σ∗∗ differ by a
rearrangement of vertices at positions m′′ − 8c + 1 and m′′ + 8c. Since mj −mj−1 > 16c
by construction, we infer that this rearrangement does not change the prefix of length m′,
and hence we still have σ∗∗≤m′ = π′≤m′ = π≤mj−1 ∩ V (Dj). The ordering σ∗∗ obtained in this
manner shall be called σj . For j = 1 and j = ` we obtain σj in exactly the same way, except
we apply Lemma 11 only once, for the position not placed at the end of the sequence.

All in all, for each j ∈ [1, `] we have obtained a ctw-optimal ordering σj of Dj such that
the vertices of Bj form an infix (a sequence of consecutive elements) of σj , while vertices
to the left of this infix are the vertices of V (Dj) ∩ π≤mj−1 and vertices to the right of this
infix are the vertices of V (Dj) ∩ π>mj

. Define an ordering σ of D by first restricting every
ordering σj to Bj , and then concatenating all the obtained orderings for j = 1, 2, . . . , `. Since
we assumed that ctw(Dj) ≤ c for each j ∈ [1, `], and each ordering σj is ctw-optimal on
Dj , we have that ctw(Dj , σ

j) ≤ c for each j ∈ [1, `]. From the construction of Dj , and in
particular the fact that all the arcs of Emj−1

π and Emj
π are contained in Dj , it follows that

the infix of cutvector cuts〈Dj , σj〉 corresponding to the vertices of Bj is equal to the infix of
the cutvector cuts〈D,σ〉 corresponding to the vertices of Bj . This shows that

ctw(D,σ) = max
i∈[0,|V |]

cuts〈D,σ〉(i) ≤ max
j∈[0,`]

i∈[0,|V (Dj)|]

cuts〈Dj , σj〉(i) = max
j∈[0,`]

ctw(Dj , σ
j) ≤ c,

hence we are done. J

Regarding the bounds on sizes of c-cutwidth-minimal semi-complete digraphs (Theorems 5
and 6), we will give a full exposition in the complete version of the paper. Essentially,
Theorem 5 follows easily by considering applying the algorithm of Theorem 4 on a c-cutwidth-
minimal semi-complete digraph for parameter c− 1, while for Theorem 6 we need to use the
understanding of minimum orderings in tournaments in the spirit of Lemma 10.

4 Lower bounds

In this section, we prove Theorem 1, which provides almost tight lower bounds for the
complexity of computing the cutwidth and the Ola-cost of a semi-complete digraph. We
start our reduction from an instance of the NAE-3SAT problem, which was defined in
Section 2 and for which a complexity lower bound under ETH is given by Corollary 9.

Let us introduce some notation. For a formula ϕ in CNF, the variable and clause sets of ϕ
are denoted by vars(ϕ) and cls(ϕ), respectively. A variable assignment α : vars(ϕ)→ {⊥,>}
NAE-satisfies ϕ if every clause of ϕ has at least one, but not all literals satisfied. Formula ϕ
is NAE-satisfiable if there is a variable assignment α that NAE-satisfies it; equivalently, both
α and its negation ¬α satisfy ϕ. A digraph is called basic if it is simple and has no pair of
symmetric arcs. For an integer m > 0, let λm be the tuple of size 14m+ 1 such that:

λm(i) =


2i, when i ∈ [0, 5m]
5m+ i, when i ∈ [5m+ 1, 6m]
11m, when i ∈ [6m+ 1, 7m]
18m− i, when i ∈ [7m+ 1, 12m]
42m− 3i, when i ∈ [12m+ 1, 14m]

The following lemma encapsulates the first, main step of our reduction.
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I Lemma 17. There exists a polynomial-time algorithm that, given a 3CNF formula ϕ with
m clauses, returns a basic digraph D(ϕ) with 14m vertices and 24m edges such that:
1. for every vertex ordering π, we have cuts〈D(ϕ), π〉 � λm;
2. if ϕ is NAE-satisfiable, then there exists a vertex ordering π with cuts〈D(ϕ), π〉 = λm;
3. if there is a vertex ordering π with max{cuts〈D(ϕ), π〉} ≥ 11m, then ϕ is NAE-satisfiable.

Note that Lemma 17 expresses a reduction from NAE-3SAT to a maximization problem:
NAE-satisfiability of ϕ is equivalent to D(ϕ) admitting a vertex ordering of width at least
11m. The main idea is that this maximization will be later turned into minimization by
complementing the digraph, which also yields a semi-complete digraph since D(ϕ) is basic.

Proof of Lemma 17. Without loss of generality, we may assume that each clause of ϕ
contains exactly 3 literals, by repeating some literal if necessary. Then, we may also assume
that every variable of vars(ϕ) appears at least twice, because a variable that appears only once
can always be set in order that the clause in which it appears is NAE-satisfied, and thus such
a variable and its associated clause may be safely removed. For every variable x ∈ vars(ϕ), let
px be the number of occurrences of x in the clauses of ϕ; hence 3m =

∑
x∈vars(ϕ)

px and px ≥ 2

for each x ∈ vars(ϕ). We finally assume the clauses and literals are ordered, so we may say
that a literal `x is the ixth occurrence of variable x in the clauses of ϕ, with ix ∈ [1, px].

We now describe the construction of D(ϕ). For every variable x ∈ vars(ϕ) construct a
variable gadget Gx, which is a directed cycle of length 2px with vertices named as follows:
⊥x1 → >x1 → ⊥x2 → >x2 → . . .→ ⊥xpx

→ >xpx
→ ⊥x1 .

Note that this cycle has no symmetric arcs since px > 1.
Then, for every clause C ∈ cls(ϕ), where C = `x ∨ `y ∨ `z for literals of variables

x, y, z ∈ vars(ϕ), respectively, construct the following >-clause gadget GC>. Introduce a
vertex >C and a set of vertices V C> = {>C`x

,>C`y
,>C`z

} together with the following arcs:
A directed 3-cycle (>C`x

,>C`y
), (>C`y

,>C`z
), (>C`z

,>C`x
).

The arcs (>C ,>C`x
), (>C ,>C`y

) and (>C ,>C`z
) from >C to the vertices of V CT .

Similarly, construct the ⊥-clause gadget GC⊥, which is isomorphic to GC>, but with vertices
named ⊥. Gadgets GC> and GC⊥ will differ in how we connect them with the rest of the graph.

Intuitively, the variable assignment α, intended to NAE-satisfy ϕ, is encoded by choosing,
in each variable gadget Gx, which vertices are placed in the first half of π, and which are
placed in the second. We use the gadget GC> to verify that α satisfies C, whereas the gadget
GC⊥ verifies that ¬α also satisfies C. For this purpose, connect the clause gadgets to variable
gadgets as follows. Suppose `x ∈ C is the ixth occurrence of x. If `x = x then add two arcs
(>C`x

,⊥xix) and (⊥C`x
,>xix), and if `x = ¬x then add two arcs (>C`x

,>xix) and (⊥C`x
,⊥xix).

This concludes the construction of D(ϕ). Clearly D(ϕ) is basic, and a straightforward
verification using the equality 3m =

∑
x∈vars(ϕ)

px shows that conditions |V (D(ϕ))| = 14m

and |E(D(ϕ))| = 24m hold as well. The complete proof of the three lemma statements will
appear in the full version of the paper. In order to show the main gist of the reduction, we
sketch now the proof of the third claim.

We prove the following statement: for any vertex subset A ⊆ V , it always holds that
|E(A, V \A)| ≤ 11m. Note that this in particular implies that the cutwidth of any ordering
of D(ϕ) is at most 11m, which is a part of the verification of the first claim. Denote
F = E(A, V \ A). First, consider any variable x ∈ vars(ϕ). Since Gx is a directed cycle
of length 2px, it can easily be seen that |F ∩ E(Gx)| ≤ px and the equality holds if
and only if A contains every second vertex of the cycle Gx. Second, consider any clause
C = `x ∨ `y ∨ `z ∈ cls(ϕ). Let RC> be the set of three arcs connecting GC with the variable
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gadgets Gx, Gy, and Gz. Since >C has no incoming arcs, we can assume without loss of
generality that >C ∈ A, as putting >C into A can only increase |E(A, V \ A)|. We now
distinguish cases depending on the size of A ∩ V C> = A ∩ {>C`x

,>C`y
,>C`z

}. The following
implications follow from a straightforward analysis of the situation in GC> and on incident arcs.

If |A ∩ V C> | = 0 then |F ∩RC>| = 0 and |F ∩ E(GC>)| = 3.
If |A ∩ V C> | = 1 then |F ∩RC>| ≤ 1 and |F ∩ E(GC>)| = 3.
If |A ∩ V C> | = 2 then |F ∩RC>| ≤ 2 and |F ∩ E(GC>)| = 2.
If |A ∩ V C> | = 3 then |F ∩RC>| ≤ 3 and |F ∩ E(GC>)| = 0.

In all the cases, we conclude that |F ∩ (E(GC>) ∪ RC>)| ≤ 4; note that the equality can
hold only in the two middle ones. The same analysis applies to the ⊥-clause gadgets,
yielding |F ∩ (E(GC⊥) ∪RC⊥)| ≤ 4, where RC⊥ is defined analogously. Since the sets E(Gx) for
x ∈ vars(ϕ) and E(GC>)∪RC> ∪E(GC⊥)∪RC⊥ for C ∈ cls(ϕ) form a partition of E(D(ϕ)), we
immediately get that |F | ≤

∑
x∈vars(ϕ) px + 8|cls(ϕ)| = 11m.

To verify the third claim of the lemma, note that if there is some vertex ordering of
cutwidth at least 11m, then there is some set A with |E(A, V \A)| ≥ 11m. Hence, for such
all the inequalities used above are in fact equalities. In particular, in every variable gadget
Gx, the vertices belong to A and to V (D) \A alternately. This gives us two possibilities for
every variable gadget, which naturally defines a variable assignment α for the formula ϕ.
The fact that we have equalities also in each clause gadget GC> and GC⊥ ensures that each
clause C is satisfied both by α and ¬α. Hence α NAE-satisfies ϕ. J

We now proceed to complementing the obtained digraph. Precisely, given a simple digraph
D = (V,E), define its complement as D̄ = (V, Ē), where Ē = V 2\(E∪{(u, u) : u ∈ V }). That
is, we take the complete digraph without self-loops on the vertex set V , and we remove all the
arcs that are present in D. Note that the complement of a basic digraph is semi-complete.

Now, let λ̄m be the tuple such that for all i ∈ [0, 14m], we have λm(i)+ λ̄m(i) = i(14m−i).
It is not hard to check that max{λ̄m} = λ̄m(7m) = 49m2−11m. A simple verification of how
the conditions of Lemma 17 are transformed under complementation yields the following.

I Lemma 18 (♠). The complement of D(ϕ) is a semi-complete digraph D̄(ϕ) satisfying:
1. for every vertex ordering π, we have λ̄m � cuts〈D̄(ϕ), π〉;
2. if ϕ is NAE-satisfiable, then there exists a vertex ordering π with cuts〈D̄(ϕ), π〉 = λ̄m;
3. if D̄(ϕ) admits a vertex ordering π of width at most 49m2−11m, then ϕ is NAE-satisfiable.

Thus, Lemma 18 shows that NAE-satisfiability of ϕ is equivalent to D̄(ϕ) having cutwidth
at most 49m2 − 11m. However, the fact that NAE-satisfiability of ϕ implies that D̄(ϕ)
admits a vertex ordering with a very concrete cut vector λ̄m, which is the best possible in
the sense of the first claim of Lemma 18, also enables us to derive a lower bound for OLA.
All these observations, together with the linear bound on the number of vertices of D̄(ϕ),
make the proof of Theorem 1 essentially complete.

The reduction of Lemma 17 constructs a basic digraph whose complement has a pair of
symmetric arcs between almost every pair of vertices. On the other hand, on tournaments the
problem is polynomial-time solvable, which suggests looking at the parameterization by the
number of vertices incident to symmetric arcs. We indeed show that this parameterization
leads to an FPT problem, even in a larger generality. Call a vertex u of a simple digraph D
pure if for any other vertex v, exactly one of the arcs (u, v) or (v, u) is present in D.

I Theorem 19 (♠). There is an algorithm that, given a simple digraph D on n vertices,
computes the cutwidth and the OLA-cost of D in time 2k · nO(1), where k is the number of
non-pure vertices in D. The algorithm can also report orderings certifying the output values.
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