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Abstract—Many techniques have been presented to protect
image content confidentiality. The owner of an image encrypts it
using a key and transmits the encrypted image across a network.
If the recipient is authorized to access the original content of
the image, he can reconstruct it losslessly. However, if during the
transmission the encrypted image is noised, some parts of the
image can not be deciphered. In order to localize and correct
these errors, we propose an approach based on the local Shannon
entropy measurement. We first analyze this measure as a function
of the block-size. We provide then a full description of our blind
error localization and removal process. Experimental results show
that the proposed approach, based on local entropy, can be used
in practice to correct noisy encrypted images, even with blocks
of very small size.

Index Terms—Image encryption, image denoising, statistical
analysis, multimedia security.

I. INTRODUCTION

The aim of encryption methods is to guarantee data privacy
by fully or partially randomizing the content of an original
image. Cryptosystems can be symmetric, when the same key
is used during the encryption and the decryption phases, like
in AES or DES, or asymmetric, when there are public and
private keys, like in RSA or in the Paillier cryptosystem.
Moreover, in symmetric cryptography, data can be encrypted
independently of the last operation or by utilizing previously
encrypted content [1]. During the transmission or the archiving
of the encrypted digital data, it is often necessary to analyze or
process it, without knowing the original content or the secret
key used during the encryption phase. In recent years, this
topic has attracted increasing research attention and different
image processing methods in the encrypted domain have been
developed [2], such as visual secret sharing (VSS) schemes,
recompression of crypto-compressed digital images, indexation
and search techniques in encrypted databases and reversible
data hiding in encrypted images (RDHEI).

Furthermore, encrypted data can be damaged during its
transmission through a noisy channel or by watermarking.
Even if the secret key is known during the decryption phase,
it becomes difficult to reconstruct the original image without
errors. In order to deal with this problem, error correction
methods for noisy encypted images have been proposed.
Classical error correction codes introduce redundancy in the
digital data [3]. After detection, error correction can carried
out in two different ways: automatic repeat request (ARQ) or
forward error correction (FEC). In the first instance, the error
detection scheme is combined with requests for retransmission

of erroneous data until all the data can be verified. In the
second, the sender of the image encodes it by using an error-
correcting code (ECC) before the transmission phase. After
transmission, redundancy is used to check consistency of the
delivered message and to recover initial data. Privacy-preserving
error correction schemes are also proposed. Hu et al. described
a technique where a double cipher is used to perform non-
local means (NLM) denoising [4]. Some authors suggested
resorting to secret sharing, like SaghaianNejadEsfahani et al.
in [5]. Recently, Pedrouzo-Ulloa et al. presented an error cor-
rection scheme based on 2-ring learning with errors (2-RLWE)
where they combined homomorphic polynomial equations and
thresholding [6]. Other methods allow the removal of noise by
completing a statistical analysis of each block of the encrypted
image during the decryption process to determine if it has
been decrypted or if it is still encrypted. Puech et al. proposed
a RDHEI scheme where they performed an analysis of the
standard deviation of the marked encrypted image, in order
to reconstruct the original version without any errors during
the decryption step [7]. Islam et al. described an effective
means to correct noisy AES-encrypted images by calculating
three statistical measurements: global variance method (GVM),
mean local variance method (MLVM) and sum of the squared
derivative method (SSDM) [8].

Although some papers were interested by pixel block entropy
calculation [9], none of the previous noisy encrypted image
correction methods are based on Shannon entropy [10]. In fact,
due to the sparsity of the sample when a small block-size is
considered, the direct use of entropy is not possible.

For this reason, in this paper, we are interested in analyzing
the signification of this statistical measurement according to
the considered block-size and by adapting its calculation in
order to be able to use it for noisy encrypted image correction.

Section II depicts our analysis on the entropy measurement
as a function of pixel block-size in an image and our method of
error localization and removing in a noisy encrypted image. In
Section III, experimental results and discussion are presented.
Finally, the conclusion is drawn in Section IV.

II. ENTROPY ANALYSIS AS A FUNCTION
OF BLOCK-SIZE AND NUMBER OF GREY-LEVELS

In this section, we first perform an entropy analysis as a
function of block-size and number of grey-levels in an image.
We study the zero-order entropy measurement, and then, we
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exploit the redundancy between pixels by performing a distance-
map entropy analysis. In a second phase, we present our blind
method based on local entropy measurement to detect and
correct the errors in a noisy encrypted image.

A. Zero-order entropy
Let X be an image with a size of m× n pixels with l grey-

levels αi (0 ≤ i < l), with the associated probability p(αi).
Zero-order entropy of an image X , in bit per pixel (bpp) is:

H(X) = −
l−1∑
i=0

p(αi) log2(p(αi)). (1)

In the particular case where the l grey-levels αi have the
same probability, zero-order entropy value is maximal:

H(X) = −
l−1∑
i=0

1

l
log2

(
1

l

)
= log2 (l) bpp. (2)

If the encryption algorithm is effective, the pixel values of
an encrypted image are pseudo-randomly generated. Therefore,
the grey-level distribution tends to be uniform. Then, entropy
value of an encrypted image with l grey-levels (He) is very
close to the maximal entropy value:

He ' log2 (l) bpp. (3)

In the clear domain, we assume that an image follows
a normal law. For discrete values, the equivalent to the
normal distribution is the binomial distribution, according
to the de-Moivre-Laplace theorem. Therefore, in the clear
domain, entropy value of an image with l grey-levels (Hc) is
approximated by the binomial law B(l, p) entropy value:

Hc '
1

2
log2 [2πe(l − 1)p(1− p)] bpp, (4)

with e the base of the exponential function and 0 ≤ p ≤ 1.
If we compare the value of zero-order entropy of a clear

image and those of an encrypted one, we would like to have:
1

2
log2 [2πe(l − 1)p(1− p)] < log2(l),

2πe(l − 1)p(1− p) ≤ l2. (5)

If l is large, this inequality is always true because λl� l2,
with λ < l. If l is large enough, then, the entropy value in a
clear image is smaller than those of an encrypted image:

Hc < He. (6)

Therefore, we can consider blocks of k pixels in an image
of l grey-levels αi, instead of the full image (i.e. we examine
a much smaller pixel sample), in order to define the concept
of local entropy. Let B be a block of k pixels in an image
of l grey-levels, with the associated probability p(αi). Local
entropy (i.e. inside the block) is increased by the minimal value
between its block-size k and the number of grey-levels l:

H(k,l)(B) ≤ log2(min (k, l)) bpp. (7)

Indeed, if the block-size is larger than the number of grey-
levels, maximal entropy corresponds to equiprobability between
all the grey-levels. Otherwise, if there are more grey-levels
than pixels in the block, the maximal value is reached when

each pixel value is different. In this case, the pixels sample is
sparse, because some grey-level values are not present in the
block B. For this reason, the entropy measurement may be
erroneous and a block in the clear domain may be considered
as encrypted.

When the number of grey-levels is much greater than the
block-size, the maximum entropy value is thus often reached in
the clear domain and we cannot distinguish a clear block from
an encrypted one by using the standard zero-order entropy
value. Therefore, we propose to quantize the number of grey-
levels for the entropy measurement in order to decrease the
value of l. The idea is to find the best trade-off between the
block-size k and the number of grey-levels l in the image.

B. Distance-map entropy

In the zero-order entropy measurement, we do not take into
account the local correlation between neighboring pixels in the
clear domain. Indeed, values in adjacent pixels are very close,
which is not the case in the encrypted domain: the correlation
is very small since pixels are pseudo-randomly generated. Note
that even if there is an edge in a block in clear, this frontier
delimits two relatively homogeneous regions.

In order to exploit this property, we generate the distance-
map D from the original image X . We compute the absolute
difference between a pixel x and its predictor pred(x),
computed according to the values of its neighbors:

∀d ∈ D, d = d(x, pred(x)) = |x− pred(x)| . (8)

Like the original image, the distance-map is also encoded
on l grey-levels. By using Eq. (1), since each distance value di
(0 ≤ i < l) has the probability p(di), the distance-map entropy
is:

H(D) = −
l−1∑
i=0

p(di) log2(p(di)). (9)

In the encrypted domain, the distance distribution is
not uniform: it depends on the value of x. For exam-
ple, if x is equal to 128, the range of the distance
value is J0, 128K: ∀ pred(x), d(x, pred(x)) ≤ 128, and then,
P (D > 128 | X = 128) = 0. Therefore, theoretical distance-
map entropy (HD

e ) in the encrypted domain is:

HD
e =

[
−

l−1∑
i=1

2i

l2
log2

(
2i

l2

)]
− 1

l
log2

(
1

l

)
. (10)

In a clear image, the distance value distribution seems to
be a geometric one. Consequently, theoretical distance-map
entropy (HD

c ) in the clear domain is:

HD
c = −

l−1∑
i=1

(
(1− q)i−1q

)
log2

(
(1− q)i−1q

)
, (11)

with 0 < q < 1.
According to Eq. (10) and Eq. (11), we have:

HD
c < HD

e . (12)

Entropy value of the distance-map in the clear domain is
then smaller than its value in the encrypted domain. In case of
local distance-map entropy, the trade-off between the block-size
k and the number of grey-levels l still respects Eq. (7).
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C. Application: noisy encrypted image correction

Although encryption algorithms are useful to preserve the
content confidentiality of an original image, they are also
extremely noise-sensitive. In case of noisy encrypted image, the
knowledge of the encryption key is not sufficient to reconstruct
the original content without error. Indeed, even if only one
bit of the encrypted image is altered, the reconstructed image
can be quite different from the original one. Hence, during the
decryption phase, it is necessary to perform a correction of the
noisy encrypted image. According to the presented analysis,
we propose to achieve a local entropy analysis during the error
removal process.

Suppose that an original image has been encrypted using
a block cipher, such as the AES algorithm in ECB mode. If
the encrypted image is noised during its transmission across a
channel, some of its pixel blocks cannot be correctly decrypted
without correction. However, we have seen previously that zero-
order (or distance-map) entropy is smaller in the clear domain
than in the encrypted domain (Eq. (6) and Eq. (12)). Therefore,
this property can be used to differentiate a clear block from
a badly decrypted one, which seems still encrypted. In fact,
local entropy value of the expected block in clear (i.e. when
the encrypted block is correctly denoised before decryption)
should be much smaller than in case of erroneous block
reconstruction. As there is no information about both location
and number of altered bits, all bits of the encrypted image can
be possibly erroneous. For each block of k pixels, there are
also 28k possible combinations to test. Consequently, this is not
practically feasible, due to the computational complexity, even
if k is small. This is actually equivalent to perform a brute-force
attack. Nevertheless, in practice, the amount of noise which
affects the image is low and relies on the transmission type.
The bit error rate (BER) is also between 10−12 for optical fiber
transmission, and 10−4 for wireless transmission. Moreover,
as noise is a pseudo-random phenomenon, we can presume
that it uniformly alters an encrypted image. Considering these
two assumptions, during the encrypted image denoising, we
can suppose that one bit at most has been flipped into each
block of k pixels (with a small k), which corresponds to a
BER of 1

8k . Associated computational complexity is greatly
reduced, because there are also 8k + 1 configurations to test
for each block of k pixels.

In our proposed error correction method, for each block,
we are interested by defining the set of the possible correct
configurations in clear, according to the local entropy value. In
most cases, the configuration which has the lowest local entropy
value is the expected block in clear. Indeed, the associated local
entropy value is much smaller than for the other configurations,
where the local entropy value is close to be maximal. However,
in rare cases, some block configurations have close local
entropy values after decryption. This problem arises when
the local entropy value of the expected block in clear is high –
especially when there is a edge into the block – or when the
local entropy value of a badly decrypted block is quite low.
In these two cases, the expected block in clear corresponds to

one of the configurations which minimize the local entropy
value, but has not necessarily the lowest value.

Algorithm 1: Identification of the possible correct
configurations in clear for one block.

Data: Block B[i] of size k, number of grey-levels l,
threshold ∆

Result: Set L of the possible correct configurations in clear
/* Step 1: Search of the decrypted block

combination which minimizes entropy */
Hmin = H(k,l)(B[i]);
Bmin = DAES(B[i]);
for j = 0 to 8k − 1 do

if H(k,l)(DAES(B[i]jb̄)) < Hmin then
Hmin = H(k,l)(DAES(B[i]jb̄));
Bmin = DAES(B[i]jb̄);

L← Bmin;
/* Step 2: Search of all possible correct

configurations in clear, according to ∆ */
if
∣∣H(k,l)(DAES(B[i]))−Hmin

∣∣ < ∆ then
L← DAES(B[i]);

for j = 0 to 8k − 1 do
if B[i]jb̄ 6= Bmin then

if
∣∣H(k,l)(DAES(B[i]jb̄))−Hmin

∣∣ < ∆ then
L← DAES(B[i]jb̄);

Algorithm 1 presents the steps to define the set of the possible
correct configurations in clear, for one block B[i] of size k of a
noisy encrypted image Ine with m× n pixels (0 ≤ i < m×n

k ).
First step consists to identify the decrypted block combination
Bmin which has the lowest local entropy value Hmin, according
to a number of grey-levels l chosen in accordance with the
block-size k in order to perform a significant measurement.
Indeed, we consider the 8k + 1 possible combinations of the
input block: the initial configuration, and the 8k others by
modifying only one bit b by its inverse value b̄. Then, the
decryption function of the AES algorithm DAES(·) is applied
to each configuration, and the local entropy measurement is
performed. During a second step, according to a threshold
∆ and the minimal local entropy value Hmin (computed in
Step 1), the set L of the possible correct configurations in
clear for the block B[i] is defined. After applying Algorithm 1
to all the blocks B[i] (0 ≤ i < m×n

k ), almost all the blocks
of the original image are correctly reconstructed, when there
is just one possible correct configuration in clear (|L| = 1).
For the remaining blocks, when |L| > 1, the expected correct
configuration in clear is necessarily in the set of the possible
correct configurations. It is not possible to distinguish it from
the other possible configurations using only the local entropy,
because values are too close and not discriminating. However,
note that this proposed method allows to obtain a confidence
index on the error location and possible correct configurations in
clear for each block. In fact, this is not the case for the previous
noisy encrypted image correction methods, where some blocks
remain badly decrypted. Their location is unknown without
resorting to the original image, and there are some artifacts on
the reconstructed image which cannot be removed.
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(a) (b) (c) (d)
Fig. 1. Illustration of the problem of noisy encrypted image decryption: a) Original Village image (512×512 pixels, 256 grey-levels), b) Encrypted image, using
the AES algorithm in ECB mode with blocks of 4×4 pixels (PSNR with the original image = 8.86 dB), c) Noisy encrypted image, BER = 2.6×10−3 (PSNR
with the original image = 8.85 dB, PSNR with the encrypted image = 33.71 dB), d) Directly decrypted image (PSNR with the original image = 16.51 dB).

III. EXPERIMENTAL RESULTS AND DISCUSSION

In Fig. 1, we first present an illustration of the problem of
noisy encrypted image decryption. The original Village image,
of size 512 × 512 pixels and encoded on 256 grey-levels, is
presented in Fig. 1.a. This image is encrypted using the AES
algorithm in ECB mode, with blocks of 4×4 pixels, illustrated
in Fig. 1.b. Note that there is no information about the original
image content in the encrypted image, as indicated by a very
low PSNR of 8.86 dB. During the transmission, the encrypted
image has been randomly noised with a BER of 2.6× 10−3,
which randomly corrupts approximately one bit, every three
blocks (see Fig. 1.c). PSNR between the noisy encrypted image
and the original image remains very low (8.85 dB). Moreover,
the encrypted image and its noisy version are quite different
(PSNR = 33.71 dB). As shown in Fig. 1.d, if we directly
decrypt the noisy encrypted image without correction, there is
a large number of erroneous blocks (framed in red for more
visibility). Therefore, the original image cannot be recovered
after decryption, even with the correct secret key. In fact, the
reconstructed image is very different from the original version,
according to a low PSNR value of 16.51 dB. This highlights the
necessity to apply a method of error localization and correction
in the noisy encrypted image, during the decoding phase.

Fig. 2. ROC curves in order to select the best parameters and the best threshold
∆ to use in our method of correction of noisy encrypted image, for a block-size
k = 4 × 4 pixels, depending if zero-order entropy or distance-map entropy is
used and for different numbers l of grey-levels (2 ≤ l ≤ 256).

In Section II-C, we proposed to analyze the local entropy
value, for each block of a noisy encrypted image. The idea is
to use the fact that, in theory, local entropy value of a block in
the clear domain is much smaller than in the encrypted domain.
However, in practical cases, this is not always true in textured
areas. In addition, when an original image is encrypted using the
AES algorithm, the block-size k to consider for local entropy
measurements is very small (4×4 pixels). With this block-size
and by supposing that one bit at most has been flipped in a

noisy encrypted block, there is also one correct configuration
among 129. For this reason, making the assumption that the
clear block corresponds to the configuration which minimizes
the local entropy value is not practicable to correct all the
errors in a noisy encrypted image. In fact, there is a significant
risk to consider a badly decrypted configuration as the expected
one and, even worse, this would not be possible to identify
this error. Therefore, the best practice consists to find the set
of the possible correct configurations for each block. Note that
these possible configurations are always close to the evaluated
minimal entropy value, which is more or less high. Then, the
set of the possible correct configurations is composed of the
configurations whose the difference with the evaluated minimal
entropy value is smaller than a threshold value. In Fig. 2, in
order to be sure of always having the correct configuration
in this set for each block, we analyze the threshold ∆ which
has to be consider for a block-size of 4 × 4 pixels by ROC
curves analysis, depending if zero-order entropy or distance-
map entropy is used and for different numbers l of grey-levels
(2 ≤ l ≤ 256). We perform these tests on 352, 256 blocks of
4 × 4 pixels with strong statistical variability. Moreover, we
categorize the configurations as following:

• Positive: Configuration B, H(k,l)(B)−Hmin ≤ ∆.
TP: B is positive and is the configuration in clear.
FP: B is positive and is not the configuration in clear.

• Negative: Configuration B, H(k,l)(B)−Hmin > ∆.
TN: B is negative and is not the configuration in clear.
FN: B is negative and is the configuration in clear.

Note that the number of false negative (FN) has to be null,
in order to be sure that the expected configuration in clear is
in the set of possible correct configurations. Moreover, we are
also interested by minimizing the number of false positives
to reduce the size of the set. Therefore, the threshold value
is associated to the point on the curve with an abscissa equal
to zero and an ordinate as higher as possible. Firstly, we can
remark that results are better with distance-map entropy than
with zero-order entropy, according to the area under the ROC
curves. Then, if we observe the number of grey-levels, best
results are achieved with l = 8 grey-levels (curve in sky blue).
In conclusion, for our error localization and correction method,
we will consider these parameters. The associated threshold
value is therefore ∆ = 0.25 (after normalization of the entropy
measurement by dividing the computed value by the maximal
entropy value considering (k, l)).

In Fig. 3, according to this threshold, we applied our method
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(a) (b) (c) (d)
Fig. 3. Example of our method, applied to the noised encrypted image in Fig. 1.c: a) Correction of the noisy encrypted image using distance-map entropy
without image quantization (l = 256) and considering for each block, the configuration which minimizes the entropy value as the expected value in clear
(PSNR with the original image = 16.37 dB), b) Correction of the noisy encrypted image using distance-map entropy after image quantization (l = 8) and
considering for each block, the configuration which minimizes the entropy value as the expected value in clear (PSNR with the original image = 29.73 dB),
c) Location of the blocks where there are more than one possible configuration for the block in clear, applying the Algorithm 1 using distance-map entropy,
l = 8 grey-levels and ∆ = 0.25, d) Approximation of the original image, according to Fig. 3.c.

on the noisy encrypted Village image displayed in Fig. 1.c.
In Fig. 3.a and Fig. 3.b, we illustrate the obtained results by
making the assumption that the clear block corresponds to
the configuration which minimizes the local entropy value, by
considering respectively l = 256 and l = 8 grey-levels during
the distance-map entropy calculation. As expected, we can
see that there is a non-negligible amount of blocks which are
badly decrypted (PSNR = 16.37 dB without quantization vs
PSNR = 29.73 dB after quantization with l = 8). However, by
comparing the results obtained in these two cases, we can see
the interest to perform a quantization step before the entropy
measurement, because this allows to significantly decrease the
number of badly decrypted blocks. In Fig. 3.c, we can see
the obtained results applying the Algorithm 1, using distance-
map entropy, l = 8 grey-levels and ∆ = 0.25. When there
is only one possible correct configuration in clear, blocks of
the original image are perfectly reconstructed. Moreover, all
blocks which are badly decrypted in Fig. 3.b are localized in
Fig. 3.c. Indeed, they form a sub-set of the blocks for which
there are more than one possible correct configuration in clear.
Unfortunately, they are not the only ones, as indicated by
the blocks represented in green, which are not framed in red.
Therefore, we are sure that a set with a size equal to one
consists of the correct configuration. In fact, in the context
of blind approach, we can localize the correctly decrypted
blocks and of the possibly badly decrypted ones, using local
entropy. Finally, in Fig. 3.d, using a simple interpolation to
estimate values of the blocks in clear where there are more than
one possible correct configuration, we can obtain a very good
approximation of the original image, without visual artifact
such as badly decrypted blocks.

In order to provide average results, we applied our method
on a set of 100 images with various statistical properties. If we
consider the configuration which minimizes the entropy value
as the expected block value in clear, we have 0.2% of blocks
which cannot be correctly decrypted. Using our confidence
index on the error location, 4.5% of the blocks are identified
as blocks with more than one possible configuration in clear,
on average. Therefore, note that there is no false negative with
the threshold ∆ = 0.25 for all blocks from the dataset. Finally,
we are sure that more than 95% of the blocks are correctly
decrypted, without reference to the original image.

IV. CONCLUSION

In this paper, we performed an analysis of the use of Shannon
entropy to correct noisy encrypted images. As zero-order
entropy value in a block of pixels in a clear image is generally
smaller than the value in the encrypted domain, it is possible to
know if a block has been correctly decrypted or not during the
decoding phase. However, there are some misconfigurations
when blocks in the clear domain are highly textured. In this case,
entropy value in the clear domain can be close to the values
measured for badly decrypted configurations (and even higher),
in particular when we consider very small block-sizes. A first
idea to reduce the number of misconfigurations is to adapt
the number of grey-levels by image quantization. Moreover,
using distance map entropy, we show that we can significantly
reduce the number of possible correct configurations in clear
for each block, since we exploit the natural correlation between
neighboring pixels in the clear domain. Furthermore, with our
approach, we obtain a confidence index on the error location
and the possible correct configurations in clear for each block.

In future work, we are also involved in the extension of
the proposed method to noisy encrypted images using AES in
CBC mode in order to detect if there is more than one error
into a block.
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