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Color noise-based feature for splicing detection and
localization

Christophe Destruel, Vincent Itier , Olivier Strauss and William Puech
LIRMM, Univ. Montpellier, CNRS, France

Abstract—Images that have been altered and more specifically
spliced together have invaded the digital domain due to the ease
with which we are able to copy and paste them. To detect such
forgeries the digital image processing community is proposing
new automatic algorithms designed to help human operators
reveal manipulated images. In this paper, we focus on a local
detection system, which considers which tampered areas produce
local statistical effects that do not impact neighboring areas or
the image as a whole. We propose to study how the definition of
local blocks, considering their size and overlap, impacts final
pixel detection. We also propose new features which are an
original way to consider the noise of an image as a colored signal.
Indeed, in a non-forged image, there is a high correlation of noise
between the three color channels R, G and B. We show that an
optimal configuration can be defined and in this case the proposed
approach outperforms several previously proposed methods using
the same tested dataset, in uncompressed and JPEG modes. Note,
in this paper we only focus on feature extraction without using
machine learning.

I. INTRODUCTION

Today it is almost a platitude to say that everyone, once
in their life, will be mislead by an altered digital image.
Image manipulation software is now widely available and
make it possible for anyone to produce fake images. The
daily flow of images is continuous and the work to identify
which images have been tampered with becomes very complex
and time consuming. A large number of image modifications
can be considered: from simple transformations (contrast en-
hancement, resize and resample) to more malicious examples
(copy/move from a single image -cloning- and copy/paste
between several images -splicing- etc.). To try to detect these
modifications, several clues can be investigated.

The first source of traces that can be addressed is the
acquisition device itself. The imperfections of any optical
system is part of the full system and impacts the final obtained
image. Under given conditions it is possible to detect variations
in chromatic aberrations [1], in the underlaying noise [2] or
in color interpolated pixels [3]. The camera response function
(CRF) can also provide evidence of splice manipulations. It
converts captured irradiance values into pixel brightness and is
deeply linked to the physical elements that composes a camera.
In [4], checking the consistency is made using the segments
highlighted by the segmentation process: after a classification
step, suspicious segments allow the automatic system to detect
a suspicious image.

The method used to encode the image is another useful
source of clues. Images compressed with JPEG format are

widely used and are very susceptible to anti-forgery mecha-
nisms. The nature of this compression algorithm introduces
traces and small alterations in the produced images that
can be used directly [5] or in the spatial domain [6]. The
“blockiness” nature of JPEG can also be used to detect an
image that has been double compressed by considering aligned
or non-aligned [7] merged blocks. The physical captured scene
itself can be considered as a source of clues and several
investigations try to identify elements in the real world to
detect forgeries. To be captured, a scene has to be illuminated
and the 3D position of the lights can be detected to prove
inconsistencies [8]. The projection function defines the point of
view and gives a unique look to a captured scene: an incorrect
or deformed perspective can be used to reveal a modified
image [9].

In this paper, we propose several new features based on
RGB noise to detect spliced images and to classify altered
pixels. In the same way as methods based on the recapture of
CCD or mosaicking, we focus on the inconsistency in color
noise correlation. In the case of a spliced image the high
correlation between channels is broken. We analyze how such
features are sensitive to sliding window size and sliding step,
which is used in the detection process.

In Section II, we propose a noise color-based feature to
detect if images and pixels have been tampered with. Sec-
tion III presents detection results over a test dataset and a
study about its sensitivity to block size and block overlapping.
In Section IV we conclude and discuss future work.

II. TAMPERED IMAGE DETECTION

Images can be forged in many different ways. In this paper
we focus on splicing forgery: a region of an external source is
pasted into a host image which then becomes forged. Of course
it can be done using several regions from several external
sources. The aim of such a forgery is to either hide details
or to add new elements to the original image.

We do not consider general features over the whole doc-
tored image, but we focus on locally detectable variations
in the images statistics introduced by the splicing process.
To detect these variations, the suspicious image is split into
regular windows and each feature is processed separately in
an individual window. Each sliding window is then described
by features and any inconsistency of the noise, highlights a
probable act of forgery. In any local approach, the definition
of the local concept is a main preliminary state. A balance has
to be found between large areas, which contain a huge amount



of information, but provide a poor final resolution and small
areas which provide good resolution, but have to deal with
less information. In this paper we will present how we use a
sliding window to enhance the final resolution and to maintain
a sufficiently high level of available information.

In Section II-A we present how the color noise is extracted
and how it is used. In Section II-B we explain the sliding
window approach and how to compute using the proposed
features. Section II-C presents the image classification process
and Section II-D is about the pixel classification process.

A. Overview of color noise feature extraction

Images are mainly in color, and since the recapture of CCD
and mosaicking produce an interplay noise between channels,
we focus on the inconsistency in color noise correlation.
The main idea is to propose new features which are able
to highlight and characterize the correlation between RGB
channels of image noise. We propose two specific features
that can be used as a tiny fingerprint to differentiate two parts
of an image acquired by two different devices or in different
conditions.

Fig. 1 presents the full process used to compute these
features. At each pixel i of the tested image, we independently
extract noise from each RGB channel by processing the
difference between the image and its median filtered version.
We obtain three noise values – namely ri, gi, bi for each
pixel. The features we propose are based on characterizing the
statistical properties of those noise values in a sliding window.
The noise related feature κk is used to decide if an image is
forged or not, and the Eigen related feature Ck is used to
localize the spliced area.

Fig. 1: Overview of the proposed method: two proposed
features are computed over the noise color image using sliding
windows.

B. Sliding window analysis for feature extraction

The objective is to extract local features that consider the
pixels’ neighbourhood, we propose to use a sliding window.
Therefore, the analysis we propose is based on splitting the
considered image of m × n pixels into K sliding windows
(Wk)k=1...K measuring w × w. Sliding windows are shifted
by a step measuring s such as s ≤ w. In order to avoid
border problems we only consider entire sliding windows,
then K = mn

s2 − w(n + m). The sliding step size defines
the sampling size of the resulting heat map and is a trade-off
between precision and resolution. A small size focuses on local
variability, whereas a larger size focuses on global features in
the area.

Both parameters w and s define a particular configuration
noted (w; s).The sliding window size defines the amount of
information used to estimate the feature, while the step size de-
fines the precision of the final detection on the corresponding
pixel in the image. Naturally, estimating features over samples
of different sizes leads to different results.

C. Statistical analysis of the color noise cloud

We propose a noise related feature which can be seen as a
fourth central statistical moment. It is dedicated to deciding
whether the image under analysis has been forged or not. A
value κk of this feature is computed with the point cloud
of each sliding window Wk. The purpose of this feature
is to find blocks that overlap the authentic and the spliced
area. We use the variance of the euclidean distances between
each point of the point cloud to its barycenter in order
to characterize its dispersion. The distance histogram of an
overlapping area is generally more spread out than the distance
histogram of a uniform area. Let us suppose that each triplet
prgbi = (ri, gi, bi)i=1...n=w2 in the sliding window Wk are
lexicographically ordered, then κk is:

κk =
1

n

n∑
i=1

(d(prgbi , p̄rgb)− µ)2 , (1)

where d(x, y) is the euclidean distance and µ the average
of the d(prgbi , p̄rgb) values in Wk and p̄rgb = (r̄, ḡ, b̄) is
the barycenter of the point cloud in the sliding window Wk:
p̄rgb = 1

n

∑n
i=1 p

rgb
i .

The set (κk)k=1...K is then analyzed. If, for any k, the
distance of κk to the median value of the set is greater than
an experimentally defined threshold, the kth sliding window is
marked as suspicious. An image with at least one suspicious
sliding window is considered suspect.

D. Localization analysis of the color noise cloud

We propose an Eigen related feature dedicated to localizing
parts of the images that have been forged (i.e. for pixel
classification). For each sliding window Wk, we project the
(prgbi )i=1...n on the main axis obtained by principal component
analysis (PCA). The main idea is to characterize the local im-
age properties by the noise dispersion along the principal axis
in the RGB color space. This set is denoted E = {(ui)i=1...n}.



We then select, in these projected values, those that belong
to the interval [u2, u7], where (ut)t=1...8 are the 8 octiles of
E . The resulting set, of size q < n, is denoted E ′ such that
E ′ = {ui ∈ E/(ui ≥ 2) ∧ (ui ≤ 7)}. The value Ck of the
second feature attached to the sliding window Wk is:

Ck =
1

q

q∑
i=1

u′i, u
′
i ∈ E ′. (2)

As in the previous case, the distance between the median
of (Ck)k=1...K and each Ck is used to detect if the kth

sliding window has been tampered with or not. The decision is
given by comparing this distance to an experimentally defined
threshold.

III. EXPERIMENTAL RESULTS

To evaluate the two proposed features, we used images
from the “Columbia Uncompressed Image Splicing Detection
Evaluation Dataset” [10]. It is composed of 183 original and
uncompressed images, captured with four different cameras.
There are 180 spliced images in the dataset which are the
result of a copy/paste operation between two different original
images. The image sizes range from 757× 568 to 1152× 768
pixels. Even if this database does not contain visually realistic
spliced images, it is widely diffused and used for evaluation
purposes. An example of a spliced image and its true map are
shown in Fig. 2.

Fig. 2: Image test and its true map from the Columbia
dataset [10].

A. Image classification (detection)

In this section, we present the capability of the proposed
feature κk (see Eq. 1) to classify the images from the database.
Fig. 3 illustrates the ROC curve of classification results for the
363 images of the dataset, taking into account three different
block sizes. As shown in Section III-C, the best results are
obtained with the (32; 8) configuration which reaches 0.85
as Area Under the ROC Curve (AUC). Table I summarizes
the classification results: our score (0.78 for precision and
recall) outperforms the results presented in [4] (0.70 for both
precision and recall).

The proposed feature is based on color characteristics, but
they are still robust enough to be used on compressed images,
even if the compression process reduces color information. To
analyze the capability of our method to classify compressed
images, we compress the original dataset in JPEG format using
various compression quality factors. The JPEG compression is
done with standard sub-sampling (4:2:2) basically it divides by

Fig. 3: ROC curves for the full dataset, processed without
overlapping (sliding window size w = s) for 3 different sliding
window sizes (32, 64 and 128).

2 the block size by averaging neighbour pixel values, which
is not a huge compression of chroma channels. The JPEG
images are then decoded and the RGB channels are used in
our classification algorithm.

Method precision recall
Hsu and Chang [4] 0.70 0.70

Our method 0.78 0.78
Our method - JPEG 50 0.73 0.68

TABLE I: Comparison of image classification scores.

We performed tests using five different quality factors (QF):
50%, 60%, 70%, 80% and 90%. For each level, we consider
the ROC curve (Fig. 4.(i)) and the AUC value (Fig. 4.(ii)).
We also plot the precision/recall pair at the same threshold
point (Fig. 4.(ii)). To be more realistic, the threshold is chosen
as the best solution for the uncompressed dataset. Note, all
values slightly decrease when compression increases. The
JPEG algorithm is a lossy compression process and some
information is lost, but results of the classification are still
usable. With QF = 50%, this feature produces precision and
recall values (respectively 0.73 and 0.68) which denote a good
classification capability cf. Table I.

B. Pixel classification (localization)

This section is about the localization of forged pixels in
an image which has been classified as a forged image and is
based on the Ck (see Eq. 2) feature. The pixel classification is
represented by a heat map that can be easily interpreted. Fig. 5
shows heat maps for different steps (16, 32, 64) considering
a single sliding window size of 64. This shows how the
resolution of the detection increases when the sliding step
decreases. Fig. 6 shows heat maps for different sliding window
sizes (8, 32, 64) using a fixed sliding step of 8 to highlight the
impact of the sliding window size. Note that noise increases
when the sliding window size decreases (and overlapping tends
to 0).

To evaluate the ability of our method to classify the pixels
of spliced images from the Columbia dataset, we process the



(i) ROC curve: detection results on JPEG compressed dataset
(QF = 50%).

(ii) Metric evolution with the JPEG quality factor.

Fig. 4: JPEG compression effects - original non compressed
images and compressed dataset processed with the same
configuration (32; 32).

standard F1 and Matthews Correlation Coefficient (MCC)
scores:

F1 =
2 · TP

2 · TP + FP + FN
, (3)

MCC =
TP · TN − FP · FN√

P.(TP + FP ) ·N · (TN + FN)
, (4)

where TP and TN are respectively the number of true positive
and true negative, FP and FN correspond to the number
of false positive and false negative. In the same way, we
have the number of positive pixel P = TP + FN and the
number of negative pixels N = TN+FP . In [11], the authors
performed a full comparison of the existing algorithm for pixel
classification using the same dataset. We applied the same
test parameters on this dataset to obtain comparable scores.
Table II presents comparisons between our proposed approach
and previous similar work. We succeeded in obtaining a
score of F1 = 51% and MCC = 39% without using
machine learning. Only work based on fully convolutional
networks [11] and the modeling of local image noise variance
by wavelet filtering [12] gave better results.

(i) Heat map (64;64)

(ii) Heat map (64;32)

(iii) Heat map (64;16)

Fig. 5: Image heat maps: sliding step variation with a window
size of 64.

(iv) Heat map (64;8)

(v) Heat map (32;8)

(vi) Heat map (8;8)

Fig. 6: Image heat maps: sliding window size variation with
a sliding step of 8.



Methods F1 MCC
Our 0.51 0.39

CFA2 [13] 0.50 0.33
NOI3 [14] 0.45 0.21
ELA [15] 0.47 0.23
CFA1 [16] 0.47 0.23
NOI2 [17] 0.53 0.35
FCN [11] 0.61 0.48
NOI1 [12] 0.57 0.41

TABLE II: Comparison of pixel classification scores: CFA2:
CFA simulation [13], NOI3: Co-occurence of high-frequency
component [14], ELA: Error level analysis [15], CFA1: CFA
patterns [16], NOI2: Local noise [17], FCN: Fully Convolu-
tional Network [11], NOI1: Local noise [12].

C. Effects of sliding window size and sliding step

In this section we focus on the relationship between sliding
window size, sliding step and pixel classification. In order to
evaluate the sensitivity of the detection of these parameters,
we carried out detection tests on a set of spliced images,
varying the sliding window size and the sliding step. We chose
a set of parameters to test, in order to sample the largest
field of possibilities and to avoid an exhaustive approach.
Each parameter of the configuration is chosen from the set
of values [4, 8, 16, 32, 64, 128] and we focus on two sets of
configurations:
• Different sliding step values in (4, 8, 16, 32, 64) for a

given sliding window size (64).
• Different sliding window size in (8, 16, 32, 64, 128) for a

given sliding step (8).
For each selected configuration, we evaluate the ability of

the feature to distinguish between authentic and tampered
pixels. We propose to use a measure based on the proposed
localization feature Ck (see Eq. 2) to evaluate the pixel
classification. The feature values are first normalized between
[0, 1] over the whole image and denoted fi, 0 ≤ i ≤ N , where
N is the number of pixels of the forged image (and of the true
map). The true positive score TPs is the average of this signal
over the tampered areas. We note TM the pixel true map in
which 1 marks the positive pixels and 0 marks the negative
(original) pixels:

TPs =

∑N−1
i=0 fi × TMi∑N−1

i=0 TMi

, (5)

Both values are between [0, 1] and the best result is obtained
when TPs → 1.

In this experiment the pixel classification is evaluated con-
sidering TPs (Eq. 5) which is the mean of Ci signal over
the positive area. We randomly choose six images from the
dataset, and the image “im71”, in Fig. 7, represents an image
that is not detected as forged by the system. The other curves
denote the difficulties to correctly choose the most efficient
configuration. Majority of curves presented in Fig. 7.(i) show
a logical behaviour and have a maximum value for a central
sliding window size value between 16 and 64 pixels. We

(i) Sliding window size variations for a fixed sliding step of 8.

(ii) Sliding step variations for a fixed sliding window size of 64.

Fig. 7: True Positive score (TPs) variations as a function of
sliding window size and sliding step .

believe that small areas (8 and 16) do not contain sufficient
information, while large areas (128) induce an averaged signal
that makes the useful information hard to detect.
On the other hand, Fig. 7.(ii) presents an unexpected zigzag
shape. The first local maximum value (around the sliding
step value 8) is fully compatible with the previous results:
an optimal configuration can be defined at this point. As the
sliding step decreases, the precision of the detection increases
up to a maximum value. Beyond this point, increasing the
sliding window size is inefficient: very small sliding step
values induce a noisy solution that reduces final detection
results. We have to investigate why all curves present an
increasing slope whilst sliding step increases. An explanation
for this effect can be found in the structure of the images we
used: sliced images in the Columbia Dataset present large and
uniform forged areas that may artificially overvalue results for
these configurations. Finally, in Fig. 7, we can see that an
optimal configuration can be selected at around (32; 8).

IV. CONCLUSION AND FUTURE WORK

In this paper we propose a study on sliding window effects
(size and sliding step) over pixel classification results in a
spliced image context. We also proposed a new method to
automatically detect spliced images. This work is based on
a local evaluation algorithm, considering local relationships
between noise colors. The main objective is to detect signif-
icant local variations between feature values processed over
small areas of a tested image. The method has been evaluated
with the Columbia Uncompressed Image Splicing Detection
Evaluation Dataset. We highlighted the incidence of sliding
steps using a local algorithm and we showed that an optimal



configuration can be found to improve final classification
results. Our detection algorithm reaches performance levels
of 0.78% for precision and recall, better than results from
previous work (0.70 for [4]). We also tested this method with
JPEG formatted images: we compressed the original dataset
with various quality factors to evaluate the robustness of our
method. Up to QF = 70% our tests show better performance
levels than [4] for both precision and recall. With a quality
factor QF = 50% our tests show performance levels of 0.73%
precision and 0.67% for recall. The method shows convincing
behavior with the Columbia database which is promising for
testing on more realistic database with the experimentally
obtained window size and threshold.

Although in this work we have focused on evaluating the
proposed features by themselves, it is only natural to consider
how it would perform in a machine-learning setup. Therefore,
future work will be devoted to exploring how it can be allied
with well known learning methods (e.g. random forest, support
vector machine and convolutional neural networks).
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