G. K. Wallace, The JPEG still picture compression standard, IEEE Transactions on Consumer Electronics, vol.38, issue.1, pp.xviii-xxxiv, 1992.

E. Hamilton, JPEG file interchange format, 1992.

C. Syin, University of Kent, Canterbury, 1992.

A. Foi, V. Katkovnik, and K. Egiazarian, Pointwise shape-adaptive DCT for high-quality denoising and deblocking of grayscale and color images, IEEE Transactions on Image Processing, vol.16, issue.5, pp.1395-1411, 2007.

Y. Luo and R. K. Ward, Removing the blocking artifacts of block-based DCT compressed images, IEEE transactions on Image Processing, vol.12, issue.7, pp.838-842, 2003.

S. Singh, V. Kumar, and H. K. Verma, Reduction of blocking artifacts in JPEG compressed images, Digital signal processing, vol.17, issue.1, pp.225-243, 2007.

J. Jancsary, S. Nowozin, and C. Rother, Loss-specific training of nonparametric image restoration models: A new state of the art, European Conference on Computer Vision, pp.112-125, 2012.

H. Chang, M. Ng, and T. Zeng, Reducing artifacts in JPEG decompression via a learned dictionary, IEEE transactions on signal processing, vol.62, issue.3, pp.718-728, 2014.

L. Cavigelli, P. Hager, and L. Benini, CAS-CNN: A deep convolutional neural network for image compression artifact suppression, International Joint Conference on Neural Networks, pp.752-759, 2017.

Y. Yang, N. P. Galatsanos, and A. K. Katsaggelos, Projectionbased spatially adaptive reconstruction of block-transform compressed images, IEEE Transactions on Image Processing, vol.4, issue.7, pp.896-908, 1995.

K. Bredies and M. Holler, Artifact-free JPEG decompression with total generalized variation, VISAPP, pp.12-21, 2012.

K. Bredies and M. Holler, A TGV-based framework for variational image decompression, zooming, and reconstruction. Part I: Analytics, SIAM Journal on Imaging Sciences, vol.8, issue.4, pp.2814-2850, 2015.

K. Bredies and M. Holler, A TGV-based framework for variational image decompression, zooming, and reconstruction. Part II: Numerics, SIAM Journal on Imaging Sciences, vol.8, issue.4, pp.2851-2886, 2015.

D. Sun and W. Cham, Postprocessing of low bit-rate block DCT coded images based on a fields of experts prior, IEEE Transactions on Image Processing, vol.16, issue.11, pp.2743-2751, 2007.

Y. Chen, Variational JPEG artifacts suppression based on high-order MRFs, Signal Processing: Image Communication, vol.52, pp.33-40, 2017.

M. Sorel and M. Barto?, Fast bayesian JPEG decompression and denoising with tight frame priors, IEEE Transactions on Image Processing, vol.26, issue.1, pp.490-501, 2017.

. Ns-dimitrova, E. D. Sm-markov, and . Popova, Extended interval arithmetics: new results and applications, Computer Arithmetic and Enclosure Methods, pp.225-232, 1992.

F. Kucharczak, C. Mory, O. Strauss, F. Comby, and D. Mariano-goulart, Regularized selection: A new paradigm for inverse based regularized image reconstruction techniques, IEEE International Conference on Image Processing, 2017.
URL : https://hal.archives-ouvertes.fr/lirmm-01884483

L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, vol.60, issue.1-4, pp.259-268, 1992.

A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, Journal of Mathematical Imaging and Vision, vol.40, pp.120-145, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00490826

M. A. Saad, A. C. Bovik, and C. Charrier, Blind image quality assessment: A natural scene statistics approach in the dct domain, IEEE Transactions on Image Processing, vol.21, issue.8, pp.3339-3352, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00811769

A. Mittal, A. K. Moorthy, and A. C. Bovik, No-reference image quality assessment in the spatial domain, IEEE Transactions on Image Processing, vol.21, issue.12, pp.4695-4708, 2012.

H. Talebi and P. Milanfar, NIMA: Neural image assessment, 2017.

C. Yim and A. C. Bovik, Quality assessment of deblocked images, IEEE Transactions on Image Processing, vol.20, issue.1, pp.88-98, 2011.

S. Goedegebure, A. Goralczyk, E. Valenza, N. Vegdahl, W. Reynish et al., Big buck bunny, 2008.

P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, Contour detection and hierarchical image segmentation, IEEE Trans. Pattern Anal. Mach. Intell, vol.33, issue.5, pp.898-916, 2011.

E. , C. Larson, and D. Chandler, Most apparent distortion: full-reference image quality assessment and the role of strategy, Journal of Electronic Imaging, vol.19, issue.1, p.11006, 2010.

O. Strauss, A. Lahrech, A. Rico, D. Mariano-goulart, and B. Telle, NIBART: A new interval based algebraic reconstruction technique for error quantification of emission tomography images, International Conference on Medical Image Computing and Computer-Assisted Intervention, pp.148-155, 2009.