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Recompression of JPEG crypto-compressed images
without a key

Vincent Itier, Pauline Puteaux Student Member, IEEE and William Puech, Senior Member, IEEE

Abstract—The rising popularity of social networks and cloud
computing has greatly increased number of JPEG compressed
image exchanges. In this context, the security of the transmission
channel and/or the cloud storage can be susceptible to privacy
leaks. Selective encryption is an efficient tool to mask image
content and to protect confidentiality while remaining format-
compliant. However, image processing in the encrypted domain
is not a trivial task. In this work, we present a JPEG crypto-
compression method which allows us to recompress a JPEG
crypto-compressed image several times, without any information
about the secret key or the original image content. Indeed, using
the proposed method in this paper, each recompression can be
done directly on the JPEG bitstream by removing the last bit of
the code representation of each non-zero coefficient, adapting the
entropic code part, and slightly modifying the quantization table.
This method is efficient to recompress JPEG crypto-compressed
images in terms of ratio compression. Moreover, the decryption
of the recompressed image produces an image with a very similar
visual quality when compared to the original image, according
to the obtained results.

Index Terms—JPEG compression, selective image encryption,
image security, signal processing in the encrypted domain,
recompression.

I. INTRODUCTION

IN the last few years, the growing popularity of cloud
storage and network sharing has led to the demand for

greater security and privacy of personal data [1]. In fact,
during the transmission and/or the storage of multimedia
data, confidentiality, authentication and integrity are constantly
being threatened by illegal activities, such as hacking, copying
or malicious use of information. Securing the access to the
file is not enough. The content should be protected itself,
and this can be implemented by encryption for example.
Furthermore, the rapid growth of network usage has led
to greater needs in bandwidth which is limited. The most
popular image compression standard is JPEG [2]. In order to
exploit both the efficient compression and encryption, format-
compliant methods are designed to produce content compatible
with format specifications. There are format-compliant JPEG
encryption methods which can be used in this context. The
authors have proposed size preserving JPEG encryption [3]–
[5] or, have limited the expansion of the size [6], [7]. Partial
encryption methods using sign encryption have been exposed
as insecure by Said [8]. In the work of Puech et al. [5], a partial
encryption is applied selectively on automatically detected
faces. This method which relies on XOR operation with the
AES algorithm, performs the compression and the encryption
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in the same process. Partial encryption is sufficient to keep
hiding sensitive information, such as text [9]. Moreover, it
has the advantage of not changing the size of the encrypted
file. Blocks and coefficients scrambling is used in [3], [4],
[6], [7]. Simple scrambling methods tend to increase the
size if there is no verification of the run-length for example.
Inter-block shuffle and non-zero AC scrambling methods have
been exposed as liable to sketch attacks [10], [11]. Other
authors propose a specific format for compression of encrypted
images [12]–[14], these are limited due to the removal of the
redundancy by the encryption. Moreover, encrypted images
should be compatible with most viewers, social networks,
cloud storage i.e. format-compliant.

JPEG crypto-compressed images should be recompressible
with the aim to be adapted to limited bandwidth or storage,
for example. Usually, when a bandwidth is limited, a network
node can perform a recompression of a heavy JPEG file.
Classic JPEG recompression consists of decoding the JPEG
file and applying a JPEG compression to the decoded pixels.
As shown by Chan, some artifacts - grainy effect and loss of
sharpness - appear on the image after the second compression
to a lower quality factor [15]. The same author also remarks
that these artifacts do not appear if the compression to the
lower quality factor is directly applied. In keeping with this
work, Bauschke et al. explain that if a JPEG image with a
quality factor of 75% is classically recompressed with a quality
factor of 50%, the grainy effect appears and alters perceptually
the image. However, this is not the case with a smaller
quality factor of 48%: the quality rating scale is thus not
perceptually monotone [16]. They also propose an analysis of
the problem and a recompression algorithm in order to prevent
it. It is then possible to investigate the effect of multiple
JPEG compressions for forensics applications [17]. Lewis and
Kuhn [18] defined four main classes of recompressors: a
recompressor can be exact, complete, stable or naive. Naive
recompression consists of applying a standard compression
on decompressed data. It produces a non-monotone quality of
recompressed images as it has been shown in [15], [16]. There-
fore, authors have proposed exact recompressors, that produce
the same output as the input decompressed data. Complete
recompressors focus on generating a set of equivalent inputs,
while stable recompressors can localize loss of information
during recompression.

The problem lies in applying recompression in the en-
crypted domain. In fact, direct JPEG recompression of crypto-
compressed images does not allow decryption. Thus, the
method proposed in [16] for example, cannot be applied
in the encrypted domain. A potential solution would be to
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share the encryption key with the service provider. Thanks
to the key, it can perform the decryption of the crypto-
compressed image, recompress the reconstructed image in
clear, and finally, encrypt it with the same encryption key
as before. Nevertheless, this scheme is insecure and may be
susceptible to leaks, because the service provider has access
to the original image content.

As a solution to solve this problem, in this paper, we present
a method of recompression of crypto-compressed JPEG im-
ages. First, we propose a new JPEG crypto-compression
method based on [5], but which is robust to multiple recom-
pressions. Indeed, it is not possible to apply a recompression
in the encrypted domain by using the method in [5]. In our
scheme, a JPEG compression and an encryption of the sorted
non-zero quantized DCT coefficients are jointly performed
during the Huffman coding stage. This encryption procedure
preserves both the JPEG format and the compression rate,
which is exactly the same compared to a simple JPEG
compression of the same image. Next, the crypto-compressed
image can be uploaded onto a cloud platform and, if necessary,
it can be recompressed directly by the service provider, with-
out any access to the clear image content or the encryption
key. Moreover, the recompression method achieves a very
good compression rate for the obtained recompressed crypto-
compressed JPEG image and the decrypted recompressed
crypto-compressed JPEG image is very similar to the original
image.

The rest of this paper is organized as follows. Section II
gives an overview of the JPEG algorithm and of related work
on image crypto-compression. Then, the proposed method is
described in detail, with example of application, in Section III.
Experimental results and analysis are provided in Section IV.
Finally, the conclusion is drawn in Section V.

II. RELATED WORK

A. JPEG compression

JPEG (Joint Photographic Experts Group) is the most pop-
ular method of lossy compression for digital images [2]. It
has been standardized by the IJG (Independent JPEG Group).
Moreover, in order to encapsulate images compressed with
JPEG, the JFIF (JPEG File Interchange Format) is often
used [19].

According to JPEG standard, a RGB image represented
by three components red, green and blue, is first converted
into luminance/chrominance space (YCrCb). Then, the two
chrominance components may be subsampled. In fact, the
human visual system (HVS) can see considerably more fine
details in the luminance (Y component) of an image than in the
chrominance (Cr and Cb components). Using this knowledge,
in order to compress images more efficiently, it is possible to
reduce the spatial resolution of the Cr and Cb components with
a subsampling. After this step, each component is encoded
separately, by applying the same transformations. First, they
are decomposed into non-overlapping blocks of 8 × 8 pixels
on which a DCT transformation is applied. After the DCT
transformation, the frequency coefficients are floating values
and a quantization operation is necessary to convert them

into 8 bits integers and to reduce their range. This operation
causes the loss of information in JPEG compression. The final
step of JPEG compression is entropy coding, where the run-
length coding algorithm (RLC) and then Huffman coding are
performed. Section II-A1 to Section II-A3 give a detailed
description of these last three steps.

1) DCT transformation: The obtained 8 × 8 pixels blocks
of each component are transformed from the spatial to the fre-
quency domain using the Discrete Cosine Transform (DCT):

F (u, v)=
1

4
C(u)C(v)

7∑
i=0

7∑
j=0

p(i, j)cos

[
(2i+ 1)uπ

16

]
cos

[
(2j + 1)vπ

16

]
,

(1)
with p(i, j), 0 ≤ i, j < 8 the pixels of the 8 × 8 block of
the original image, F (u, v), 0 ≤ u, v < 8 the computed DCT
coefficients and C(x) = 1√

2
for x = 0, C(x) = 1 for x > 0.

There are two types of DCT coefficients: the DC and the
AC coefficients. The DC coefficient, F (0, 0), corresponds to
the zero frequency and is relative to the average value of the
block. The AC coefficients, F (u, v), with 0 ≤ u, v < 8 and
(u, v) 6= (0, 0), relate to the frequency information. Note that
the more (u, v) is close to (8, 8), the more the frequencies are
high and imperceptible for the HVS. Moreover, even if the
pixels are integers, the DCT coefficients F (u, v) are floating
values.

2) JPEG quantization: In order to decrease the size and
since each coefficient F (u, v) is a floating value, a quanti-
zation is necessary. From a quality factor QF ∈ [1, 100], a
quantization table QQF is defined.
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Fig. 1: Standard luminance quantization table Q50.

The IJG specifies a standard luminance quantization table
Q50 for QF = 50%, displayed in Fig. 1. From this table,
the coefficients qQF(u, v) from each quantization table can be
calculated:

qQF(u, v) =


⌊

q50(u,v)×( 5000
QF )+50

100

⌋
, if QF < 50,⌊

q50(u,v)×(200−2QF)+50
100

⌋
, otherwise.

(2)

In order to fulfill the IJG recommendation and for a full
JPEG baseline compatibility, the coefficients qQF(u, v) have to
remain integers, between 1 to 255. Under this constraint, we
have:

qQF(u, v) =


1, if qQF(u, v) < 1,

255, if qQF(u, v) > 255,

qQF(u, v), otherwise.

(3)
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Note that for QF = 100%, all the coefficients
q100(u, v), 0 ≤ u, v < 8 are equal to 1. Even using this
high quality, there is still a loss of information. The more the
quality factor is small, the more the quantization coefficients
are high and then, the degradation of the compressed image is
more visible, due to the importance of the quantization step.

Since the quantization step is performed in order to encode
DCT coefficients onto small integers, several coefficients are
equal to zero after the quantization. This fact also increases
the compression rate. Each DCT coefficient F (u, v) is then
divided by its corresponding quantization parameter qQF(u, v)
from the table QQF to obtain the quantized coefficients
F ′(u, v):

F ′(u, v) =

[
F (u, v)

qQF(u, v)

]
. (4)

Note that this step is the main cause of image quality losses
in JPEG compression since it is not reversible. During the
decoding stage, the inverse function returns the input for the
I-DCT:

F̃ (u, v) = F ′(u, v)× qQF(u, v). (5)

The quantization table may be saved in the JFIF header and
the quantized DCT blocks are then compressed using entropy
coding.

3) JPEG entropy coding: After the quantization step, the
quantized DCT coefficients are scanned in a zigzag order onto
a vector, called Minimum Code Unit (MCU), according to
their increasing spatial frequency. Using this method, blocks
often end up with zeros since high frequency are more
quantized. After the last non-zero coefficient, an End Of Block
(EOB) symbol is added to the MCU. For each quantized DC
coefficient, the difference with the quantized DC coefficient
from the previous adjacent blocks is computed in order to
calculate a prediction error. Then, this prediction error is
encoded as the amplitude value AF ′(u,v) of the quantized
DC coefficient. The head HF ′(u,v) of this coefficient contains
the number of bits to represent this amplitude, i.e. the size
parameter. For the quantized AC coefficients, a run-length
coding (RLC) algorithm is applied to compress the consecutive
coefficients equal to zero. On one hand, the value of each
non-zero quantized AC is then encoded as the amplitude
value AF ′(u,v). On the other hand, the head HF ′(u,v) of
these coefficients is composed of the run-length computed
previously and the amplitude size parameter. Finally, the head
parameter of each quantized DCT coefficient is encoded using
the Huffman algorithm. The sequence of MCU is then placed
after the header in JFIF bitstream.

B. Image encryption

The aim of encryption is to guarantee data privacy and vi-
sual confidentiality of an original image. In these approaches,
security is ensured by randomizing – selectively, partially or
completely – the content of a clear image, by using a secret
key. Cryptosystems can be symmetric, when the same key is
used during the encryption and the decryption phases, like
in AES or DES, or asymmetric, when there are public and
private keys, like in RSA or in the Paillier cryptosystem.

Moreover, in symmetric cryptography, data can be encrypted
independently of the last operation or by utilizing previously
encrypted content [20]. Although classic algorithms have been
adapted, many other methods, such as scrambling techniques
and chaos-based cryptography, have been specifically devel-
oped for image encryption in order to take into account image
properties.

Scrambling techniques have also been designed in several
papers. Efficient and easy to implement, their objective is to
produce a non-intelligible image, by permuting the position
of the pixels. Usman et al. suggested randomly permuting
the rows and the columns of an image in order to break
the correlation of the edges [21]. In [22], Premaratne et al.
proposed a similar approach. Wright et al. proposed two
scrambling techniques [23]. The first one consists of permuting
the locations of the pixels within the blocks. In the second
one, sub-blocks within the blocks are permuted and, after that,
pixels in sub-blocks are shuffled.

Along with the rapid development of theory and application
of chaos, a lot of image encryption schemes based on chaos
theory have been presented. In most cases, in addition to
a scrambling operation, the pixels values are substituted.
Chaos-based image cryptosystems can be divided into two
categories. In the first one, a pixel is considered as the smallest
element [24]–[26] and, in the second, a pixel is composed
by bits, on which bit-level operations are performed [27],
[28]. Chen et al. employed a three-dimensional (3D) Arnold
cat map [24] and Mao et al. used a 3D baker map [25]
to shuffle the pixel positions during the substitution phase.
Guan et al. applied the Arnold cat map to shuffle the positions
of the image pixels in the spatial-domain and then, used the
chaotic system of Chen and Ueta in [29] to modify the pixels
values [26]. In order to reduce execution time, Xiang et al.
suggested to encrypt only the four most significant bits of each
pixel in their scheme described in [27]. Thus, this method is
selective: the four last bits of each pixel remain in clear. In
their paper [28], Zhu et al. proposed an image crypto-system
where the Arnold cat map is used for bit-level permutation,
this results in both pixel position and pixel value modifications.
After that, the logistic map is employed for diffusion.

Furthermore, for acquisition, exchange and storage, com-
pressed JPEG images are often used. Thus, many cryptosys-
tems combining encryption and compression have been de-
signed. They are known as crypto-compression algorithms.

C. Image crypto-compression

In the first methods of crypto-compression, encryption was
done separately from the compression stage. However, the
main problem with these approaches is that encryption sig-
nificantly modifies the statistical characteristics of the image
and, consequently, compression efficiency is severely reduced
if the encryption is completed before. For this reason, in the
last few years, there has been a growing research interest
in studying how to encrypt JPEG compressed images in
such a way that the encrypted data can still be represented
in a meaningful format (format-compliant property). In this
new kind of methods, JPEG compression and encryption are
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performed jointly. Three categories can be established: sign-bit
encryption, DCT coefficient encryption and scrambling-based
security methods.

Shi and Bhargava designed one of the first crypto-
compression approaches allowing to perform encryption di-
rectly on the JPEG bitstream [30]. They proposed to encrypt
sign-bits of both AC and DC coefficients (for DC coefficients,
these are sign-bits of the differential values). A pseudo-random
binary sequence is generated according to a secret key and
encryption is then performed by XORing this sequence with
the bitstream obtained by concatenation of all sign-bits. With
this method, the JPEG structure is preserved (format-compliant
property) and the compression rate is not modified. However,
as shown by Said in [8], this scheme is insecure. In fact, due
to format-compliance, a low complexity attack scheme can be
designed. It is actually possible to guess encrypted bits using
information from the rest of the data which is in clear.

In [31], Van Droogenbroeck and Benedett suggested en-
crypting the AC coefficients after DCT transformation, but
not the DC coefficients, because they carry important visible
information and are predictable. Puech and Rodrigues, in [32],
proposed a selective encryption method for JPEG images,
based on the encryption of both DC and AC coefficients. All
of the DC coefficients and some AC coefficients of the lowest
frequencies are concatenated to form a bitstream of 128 bits.
This bitstream is encrypted using the AES algorithm. In [5],
Puech et al. presented a method to perform encryption of some
regions of interest (ROI) corresponding to the human skin.
ROI are detected using the clear quantized DC coefficients
of the two chrominance components Cr and Cb. Selective
encryption is applied to blocks of the Y component, during
the JPEG entropy coding phase. Using the AES algorithm
in CFB mode, the quantized AC coefficients of the ROI are
encrypted. This method is format-compliant and the JPEG
crypto-compressed image has exactly the same size as with
the standard JPEG algorithm. Shahid et al. designed a selective
encryption technique for H.264/AVC video codec for CAVLC
and CABAC [33]. Encryption is performed during the entropy
coding stage and using the AES algorithm in CFB mode. In
order to preserve the H.264/AVC format and the file size,
encryption is only done on the CAVLC codewords and the
CABAC binstrings. A survey of HEVC crypto-compression
methods has also been proposed by Hamidouche et al. [34].

With the full inter-block shuffle (FIBS) method, proposed by
Li and Yuan in [10], DC coefficients and same frequency coef-
ficients are scrambled. This produces an unintelligible image.
However, as all coefficients are scrambled, the compression
performances of RLC are reduced. Scrambling coefficients
of the same frequencies may change the header part of the
code of a coefficient, because it may change run-length size.
In case of DC coefficients, the efficiency of the predictive
coding decreases and then much more bits are used to encode
them. Minemura et al. proposed to scramble a JPEG image in
order to encrypt it without causing bandwidth expansion [4].
They made some recommendations on the AC coefficients and
built regions according to edge information induced by these
coefficients. After that, DC coefficients with similar values

are processed in groups. Actually, if only the AC coefficients
are scrambled, the outline of the image is still revealed.
Unterweger and Uhl described a crypto-compression approach
based on three steps [3]. After permuting the order of the
run-length coded symbols together with their corresponding
coefficient values, bits of the coefficient values are scrambled,
and finally, similar blocks are permuted.

Dufaux and Ebrahimi designed two different methods for
privacy protection in video surveillance systems [35]. In
the first one, the sign of some coefficients are pseudo-
randomly flipped during the coding phase. In the second
one, they pseudo-randomly scrambled some bits of the code-
stream. In [36], Kurihara et al. designed an encryption-then-
compression system where blocks are shuffled in the spatial
domain. However, this encryption scheme can be broken using
a jigsaw puzzle solver, as shown in [37]. In fact, authors con-
sidered the blocks of an encrypted image as pieces of a jigsaw
puzzle: image decryption amounts to jigsaw puzzle assembly.
Moreover, other encryption-then-compression schemes have
also been described in [38]–[40].

Although most methods are based on discrete cosine trans-
form (DCT), some other schemes exist and have been popular
in the last few years. In fact, many crypto-compression meth-
ods are based on JPEG2000, as presented in the survey of the
state-of-the-art methods performed by Engel et al. [41]. These
schemes are also based on wavelet coefficient sign encryp-
tion [42], permutations [43], [44] or randomized arithmetic
coding [45] for example.

III. PROPOSED METHOD OF RECOMPRESSION OF A JPEG
CRYPTO-COMPRESSED IMAGE

In this section, we develop our proposed method of re-
compression of JPEG crypto-compressed images in the en-
crypted domain, without knowing the secret key. We first
present a new method of crypto-compression which is robust
to multiple recompressions. The JPEG compression and the
encryption of the sorted non-zero quantized DCT coeffi-
cients are jointly performed during the Huffman coding stage.
Then we describe our proposed method to recompress the
crypto-compressed image directly in the encrypted domain,
while maintaining the security level of the crypto-compression
method. In Section III-A, we present an overview of the
proposed method. The JPEG crypto-compression approach is
described in Section III-B and our approach to recompress
the crypto-compressed image is presented in Section III-C. In
Section III-D, we explain the decoding of a crypto-compressed
image after recompression, and finally, in Section III-E, we
present a full application example of our method.

A. Overview of the proposed method

From an original image, the first step of JPEG consists of
applying a color transformation, from RGB to YCrCb space,
where the two chrominance components can be subsampled.
The DCT and quantization steps are then performed separately
on the three components Y, Cr and Cb. On our proposed ap-
proach, encryption can be only applied on the luminance com-
ponent Y or both on the luminance and the two chrominance
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Fig. 2: A global overview of the proposed recompression method of JPEG crypto-compressed images.

components Cr and Cb. This is justified by the fact that the Y
component carries the most significant information. In order
to preserve the compression rate, we only encrypt the non-
zero quantized coefficients [5]. A JPEG crypto-compressed
image is then obtained and we are interested in recompressing
this encrypted image, without knowing the secret key nor
the original image content. The overview of the method is
presented in Fig. 2.

Assume that Alice uses a crypto-compression system in
order to protect her image against malicious use, and she wants
to use format-compliant recompression. In this case, this does
not require a specific viewer and it can allow partial, blurred
or low resolution visualization in case of selective encryption.
Alice does not know the state of the bandwidth, first she can
crypto-compress her image in order to let the network provider
recompress the image without knowing the secret key. Through
the network, the image can then be recompressed to a lower
quality factor QF∗ < QF. In addition, with the aim that it can be
completed directly in the encrypted domain (i.e. without know-
ing the secret key), our recompression method is performed
into the JPEG bitstream. The main idea for the recompression
consists of removing the last bit of the amplitude of each non-
zero coefficient code, which corresponds to a division by two
in base-10. During the decoding phase, it is thus necessary
to adapt the quantization table by multiplying each coefficient
by two. Moreover, decryption is possible because the removal
part in the encrypted sequence can be localized and then, the
pseudo-random binary sequence can be resynchronized.

B. Crypto-compression

In this paper, for the JPEG crypto-compression step, based
on the method described in [5], we propose a new crypto-
compression approach in order to make it possible to apply
one or multiple recompressions after the crypto-compression.
Indeed, if we try to do a recompression of a crypto-compressed
image with the method proposed in [5] without any adaptation,
then, during the decoding step, there is a desynchronization
with the pseudo-random sequence used for decryption. Con-
sequently, the image content in clear can absolutely not be
recovered. In order to solve this problem, in our proposed
crypto-compression method, we have added a sorting step
during the encryption step, in order to make recompression
possible after encryption. With this method, the size of the
JPEG crypto-compressed image is preserved compared with
a standard JPEG compression. An overview of the crypto-
compression method is presented in Fig. 3. Until the quantiza-
tion, the method follows the standard JPEG compression steps.
After the quantization, the encryption is completed during

the JPEG Huffman coding step. In order ensure minimum
requirements of confidentiality, encryption is inevitably ap-
plied on the Y component. The two chrominance components
can be encrypted, but as illustrated in Fig. 3, they can also
remain in clear because they do not carry important visible
information. For each MCU, all the F ′(u, v), which are non-
zero quantized coefficients, are used for encryption. The DC
coefficient F ′(0, 0) consists of a pair (HF ′(0,0), AF ′(0,0)). The
amplitude parameter AF ′(0,0) is a code for the prediction
error, and the head parameter HF ′(0,0) is a simple scalar
corresponding to the size of this amplitude. Moreover, all other
AC coefficients F ′(u, v), such as (u, v) 6= (0, 0), are made
up of a pair (HF ′(u,v), AF ′(u,v)), where AF ′(u,v) encodes the
amplitude. Otherwise, the head HF ′(u,v) is composed of the
run-length computed previously, and of the amplitude size
parameter. Therefore, according to their amplitude size, all
non-zero F ′(u, v) are sorted to be encrypted, from the largest
to the smallest ones with amplitudes equal to 1. This sorting
is very important to be able to decode the recompressed
JPEG crypto-compressed image without error, as explained
in Section III-D.

Indeed, as explained in Section III-C, during the recompres-
sion step, every non-zero F ′(u, v) coefficients are divided by
two. With this proposed reordering, during the decoding, we
are still able to resynchronize the pseudo-random generator,
even with a F ′(u, v) with an amplitude which is encoded on
only one bit and which is quantized to zero after a recom-
pression. As we cannot differentiate these coefficients with
those that were already null before recompression, without this
sorting, there is a desynchronization with the pseudo-random
binary sequence. Therefore, in this case the image content in
clear cannot be recovered, which is actually the case with the
use of the crypto-compression method described in [5].

After the selection and the reordering of the non-zero
F ′(u, v), a secret key is used to generate a different seed
for each MCU. This seed is taken as input of a pseudo-
random generator to obtain a pseudo-random binary sequence,
according to the size information of each selected coefficient
F ′(u, v). Indeed, this size is used to determine the required
amount of bits to perform the encryption. This sequence is then
used to encrypt the amplitude part of the coefficients F ′(u, v).
The value of the encrypted coefficient F ′e(u, v) is:

F ′e(u, v) = E (F ′(u, v), size(F ′(u, v))) ,

= E
({
HF ′(u,v), AF ′(u,v)

}
, size(F ′(u, v))

)
,

=
{
HF ′e(u,v)

, AF ′e(u,v)

}
,

(6)

where HF ′e(u,v)
= HF ′(u,v).
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Fig. 3: Overview of the JPEG crypto-compression method which is robust to recompression.

Fig. 4: Example: crypto-compression of one block of quantized DCT coefficients.

As illustrated in Fig. 3, the encryption function E(·) cor-
responds to a binary XOR-operation between the amplitude
value of the clear coefficient F ′(u, v) with the corresponding
part of the generated pseudo-random binary sequence, accord-
ing to its size and its position in the MCU. The amplitude
values AF ′(u,v) of the original bitstream are substituted by
the encrypted values AF ′e(u,v)

to obtain the encrypted MCU. In
this sequence, the encrypted version of the coefficient F ′(u, v),
coded by a pair

{
HF ′(u,v), AF ′(u,v)

}
, is F ′e(u, v), coded

by a pair
{
HF ′e(u,v)

, AF ′e(u,v)

}
, where the head information

remains the same. Note that the clear and the encrypted
coefficients have exactly the same number of bits, since we
apply only a binary XOR-operation directly on the bits.

In Fig. 4, an example of an application of the proposed
crypto-compression method is illustrated for one block. After
the quantization step, the quantized DCT coefficients are
stored in zigzag order in the MCU. Then, the DC coefficient
and all AC coefficients, which are non-zero coefficients, are
considered for encryption (for example F ′(0, 1), F ′(3, 3) and
F ′(0, 6)). These coefficients are sorted as a function of their
size, before being considered as the to-be-encrypted bitstream,
which starts with the amplitude of the prediction error of
F ′(0, 0). For each MCU, a secret key is used to generate
a different seed. This seed is taken as input of a pseudo-
random generator to obtain a pseudo-random binary sequence.
The amplitude part of each coefficient is then encrypted, with
respect to size information. The encrypted amplitude values
AF ′e(0,0)

, AF ′e(0,1)
, AF ′e(3,3)

and AF ′e(0,6)
are then substituted

to the amplitudes AF ′(0,0), AF ′(0,1), AF ′(3,3) and AF ′(0,6)

respectively. The encrypted MCU has exactly the same size as
the original one and it can be decoded by a standard viewer,
but with a content (the amplitude of the non-zero quantized
coefficients F ′(u, v)) which is encrypted.

C. Recompression of crypto-compressed image

The global scheme of the recompression stage is presented
in Fig. 5. As shown, the recompression is applied directly
to the encrypted JPEG bitstream for each component. Each
MCU, after the encryption phase, is composed of coefficients
encoded by pairs head/amplitude

{
HF ′e(u,v)

, AF ′e(u,v)

}
in the

MCU. The first step of recompression consists of removing the
least significant bit from the amplitude binary representation
of each non-zero quantized DCT coefficient. The compressed
coefficients F ′∗e (u, v) are computed by removing the least
significant bit of each coefficient F ′e(u, v):

F ′∗e (u, v) =


⌊
F ′e(u,v)

2

⌋
, if |F ′e(u, v)| > 1,

0, if |F ′e(u, v)| = 1.

(7)

Removing the last bit of each coefficient implies reducing
the binary size by one for all initially non-zero coefficients.
It is also necessary to adjust the size value of the head part
of these coefficients, according to the new amplitude value
(size − 1). Moreover, when a F ′e(u, v) coefficient has a size
of 1 bit before recompression, after the process, its compressed
version F ′∗e (u, v) is a zero coefficient. Consequently, it is
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Fig. 5: Recompression of the encrypted JPEG bitstream.

coded in the run-length of the code of the next F ′∗e (u, v)
coefficient, which is necessarily non-null by construction.
Then, the corresponding run-length value of its head part
HF ′e(u,v)

is adapted depending on the number of previous
zeros. Therefore, the new run-length corresponds to the run-
length of the current coefficient plus that of the previous
coefficient, plus one:

HF ′∗e (u,v) = (new run-length, size− 1). (8)

Finally, in each MCU, the recompressed quantized DCT
coefficients are encoded by

{
HF ′∗e (u,v), AF ′∗e (u,v)

}
. The coef-

ficients qQF∗(u, v) of the quantization table QQF∗ are:

qQF∗(u, v) =

2× qQF(u, v), if 2× qQF(u, v) ≤ 255,

255, otherwise.
(9)

In JPEG standard, values of quantization tables are bounded,
thus if qQF∗(u, v) > 255, then qQF∗(u, v) = 255, to be fully
JPEG format-compliant. Consequently, due to the truncation,
image quality can be altered in case of overflow. As the new
quantization table QQF∗ is derived from the table QQF used
during the first JPEG compression, the second compression
is not obtained according to a predefined standard quality
factor. Consequently, it is not possible to choose the desired
quality of the resulting compressed image after decryption.
This depends directly from the quality factor chosen for the
first compression. The problem is therefore to estimate the
quality factor after recompression QF∗ using the quantization
table QQF∗ . In order to give an approximation of this quality
factor, we propose to invert Eq. (2) and to compute the value
for each coefficient and give an average value. We have two
possible equations:

EQF∗≤50 =

⌊
1

64

7∑
u=0

7∑
v=0

q50(u, v)× 5000

qQF∗(u, v)× 100− 50

⌋
, (10)

EQF∗>50 =

⌊
1

64

7∑
u=0

7∑
v=0

100− qQF∗(u, v)× 50− 25

q50(u, v)

⌋
. (11)

Therefore, the estimated QF∗, denoted EQF∗, is given by:

EQF∗ =

 EQF∗≤50, if EQF∗≤50 ≤ 50,

EQF∗>50, otherwise.
(12)

This inversion method works if the Eq. (3) is not considered.
The range value limitation implies that values which are not
included in the interval [1, 255] are lost. Extreme cases are

then defined by two quantization tables QQF− and QQF+ , where
all coefficients qQF−(u, v) and qQF+(u, v), 0 ≤ u, v < 8 are
equal to 1 and 255 respectively. Using Eq. (12), we have
QQF− = 11 and QQF+ = 99 and then, EQF∗ ∈ [11, 99],
although QF ∈ [1, 100].

However, the main advantage of the proposed method is that
it is very easy to localize the removed bits, due to the proposed
recompression scheme. In this way, synchronization with the
generated pseudo-random binary sequence is still possible and
then, the decryption can occur without any error. Indeed, since
the non-zero coefficients have been sorted as a function of their
amplitudes, after the recompression, the coefficients having a
value equal to zero do not desynchronize the bitstream of a
MCU since they are at the end of the sequence.

Fig. 6: Our proposed recompression method applied to the
example used in Fig. 4.

The recompression step applied to the example in Fig. 4, is
presented in Fig. 6. First, the encrypted coefficients F ′e(0, 0),
F ′e(0, 1) and F ′e(0, 6) are divided by two. Their size is
therefore decreased by one and their associated head values
HF ′e(0,0)

, HF ′e(0,1)
and HF ′e(0,6)

are modified as a conse-
quence. Note that the amplitude part of the encrypted coef-
ficients with an amplitude equal to 1, like F ′e(3, 3), is also
divided by two. When a size is one bit before recompression,
this coefficient becomes zero coefficient after recompression.
Consequently, F ′e(3, 3), after recompression, is set to zero
and is then included in the entropy coding of the next
encrypted coefficient F ′∗e (0, 6): the run-length of its head
part is changed as a function of the run-length of F ′e(3, 3).
The recompressed crypto-compressed image is still format-
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Fig. 7: Overview of the decoding phase.

compliant. Furthermore, the decryption stage can be performed
with the secret key used during the encryption phase, but only
if the information that the image is recompressed is known.
For example, a flag informing how many times the crypto-
compressed image has been recompressed can be added in
the JFIF comment part.

D. Decoding phase

As presented in Fig. 7, the decoding phase includes four
main steps: the decryption of the encrypted JPEG bitstream
during the Huffman decoding stage, the inverse quantization
operation, the I-DCT transformation and the inverse color
transformation.

Decryption can be done by anyone that has the same
secret key used during the encryption. Thanks to the JFIF
comment part, the user who performs the decryption knows
if the encrypted image has been recompressed or not. He first
generates the pseudo-random binary sequence, using the secret
key as a seed of the pseudo-random generator. After that, he
knows that he has to shift the encrypted sequence during the
decryption of each coefficient. In fact, as each coefficient has
been divided by two during the recompression phase, the last
bit was removed and it is necessary to take into account this
information, by not considering the last bit of each part of the
pseudo-random binary sequence related to one coefficient. The
decryption function D(·), similarly to the encryption one, takes
two arguments as input: the encrypted coefficient F ′∗e (u, v)
and its size according to the head part, which corresponds to
the size of the non-encrypted coefficient minus one. It consists
of a binary XOR between the amplitude of the encrypted
coefficient and the related part of the encrypted sequence:

F ′∗(u, v) = D (F ′∗e (u, v), size(F ′∗e (u, v))) ,

= D
({

HF ′∗e (u,v), AF ′∗e (u,v)

}
, size(F ′(u, v))− 1

)
,

=
{
HF ′∗(u,v), AF ′∗(u,v)

}
,

(13)
where HF ′∗(u,v) = HF ′∗e (u,v).

Note that if we use the proposed recompression method
directly on the compressed image I ′ without encryption, we
obtain exactly the same coefficients F ′∗(u, v) than after the
decryption of the coefficients F ′∗e (u, v). In fact, we have the

following relation, because the encryption/decryption method
is commutative with the recompression method, as the XOR
operation is commutative with the floor function:

F ′∗(u, v) = D
(⌊

E(F ′(u,v), size(F ′(u,v)))
2

⌋
, size(F ′(u, v))− 1

)
,

=
⌊

D(E(F ′(u,v), size(F ′(u,v))), size(F ′(u,v))−1)
2

⌋
,

=
⌊

F ′(u,v)
2

⌋
.

(14)
As explained in Section III-B, since the coefficients becom-

ing zero after recompression are included at the end of the
sequence for each block, the decoding phase is error free.
Then, even if they have been encrypted previously, there is no
mismatch with the bits of the pseudo-random binary sequence
and those of the encrypted sequence.

After the decryption step, the Huffman decoding is applied
and the quantized DCT coefficients are retrieved. The inverse
quantization operation is then performed in order to obtain
the dequantized value ˜̃F (u, v). As explained previously, the
decrypted image corresponds to the recompressed compressed
image I ′∗ and its related quantization table QQF∗ is the
quantization table QQF of the compressed image I ′, whose
total coefficients are multiplied by two:
˜̃F (u, v) = F ′∗(u, v)× qQF∗(u, v)

=

{
F ′∗(u, v)× 2× qQF(u, v), if 2× qQF(u, v) ≤ 255,

255, otherwise.
(15)

Moreover, we can see that the proposed recompression
method is better than a naive recompression, as described in
Section I. Indeed, each dequantized coefficient ˜̃F (u, v) of the
recompressed image can be defined as a function of the input
dequantized coefficient F̃ (u, v), such as:

˜̃F (u, v) = F ′∗(u, v)× qQF∗(u, v)

= bF
′(u, v)

2
c × 2× qQF(u, v) (16)

=

{
F̃ (u, v) , if F ′(u, v) is even,
F̃ (u, v)− qQF(u, v) , if F ′(u, v) is odd.
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Fig. 8: Decoding method applied to the encrypted MCU after recompression of the example illustrated in Fig. 6.

Therefore, it is shown that in the case of a recompression
of an even quantified coefficient, the dequantization of the
recompressed coefficient produces the same value as the
dequantized coefficient.

Finally, the decompressed RGB image ˜̃I is obtained by
performing the I-DCT transformation, to convert the frequency
coefficients into pixels, and then, the inverse color transforma-
tion converts the YCrCb image to RGB space. Just like with a
standard JPEG compression, as a function of QF, the content
of the reconstructed image ˜̃I is more or less similar to the
original image I .

In Fig. 8, we can see the application of the decoding
method on the encrypted MCU after recompression of the
example illustrated in Fig. 6. First, the secret key – identical
to the one involved in the encryption phase – is used to
generate the pseudo-random binary sequence. Each encrypted
coefficient F ′∗e (0, 0), F ′∗e (0, 1) and F ′∗e (0, 6) is decrypted by
XORing its amplitude value with the corresponding part of the
generated binary sequence. Indeed, the size parameter gives us
the amount of bits to select, and the information that there was
a recompression allows us to understand that it is necessary to
shift the generated binary sequence between each decryption
of one coefficient. The clear coefficients F ′∗(0, 0), F ′∗(0, 1)
and F ′∗(0, 6) are obtained by substituting the amplitude values
in the MCU. Furthermore, the head part of each coefficient
remains the same. At the end of the decryption, we obtain the
recompressed compressed image I ′∗. To reconstruct the image
in the spatial domain ˜̃I , it is necessary to perform the inverse
quantization operation, the I-DCT and finally, the inverse color
transformation.

E. Application example of the proposed method

To summarize the proposed approach, we present a full
example of the proposed method of recompression of JPEG
crypto-compressed images. Suppose that F (0, 1) = 164 is
quantized by q80(0, 1) = 4 for a quality factor of 80%. After
the quantization operation, its new value is F ′(0, 1) = 41.
Since 41 is in the range J−63,−32K ∪ J32, 63K, in the
Huffman table, its binary amplitude value is encoded by
AF ′(0,1) = 101001. Since, it is preceded by any zero in

zigzag order, its corresponding head value is HF ′(0,1) = (0, 6).
Indeed, its run-length is 0 and 6 bits are necessary for the
size to encode its amplitude. This pair run-length/size is then
encoded by 1111000, according to the standard Huffman table.
The binary code of the quantized coefficient F ′(0, 1) is thus
1111000 101001 (13 bits).

The encryption algorithm E(·) is applied to F ′(0, 1) to
obtain the encrypted coefficient F ′e(0, 1) = E(F ′(0, 1), 6).
As the size parameter is equal to 6, the corresponding
six bit sub-sequence of the pseudo-random binary sequence
are selected: for example, 101010. The encrypted value
of the amplitude AF ′e(0,1)

is computed by XORing this
part of the pseudo-random binary sequence and AF ′(0,1):
AF ′e(0,1)

= 101010⊕ 101001 = 000011, being −60 in dec-
imals. The encrypted value of the quantized coefficient
F ′(0, 1) is obtained by substituting this value in the code:
F ′e(0, 1) = 1111000 000011. Note that the head is unchanged.

Then, the recompression scheme can be performed. The am-
plitude value of F ′e(0, 1) is divided by two, which corresponds
to removing the last bit: AF ′∗e (0,1) = 00001×1, being −30 in
decimal. After that, the head value is adapted in consequence,
because the size of the amplitude is now equal to 5. Thus,
the head parameter of the recompressed crypto-compressed
coefficient is equal to HF ′∗e (0,1) = (0, 5), which is encoded by
11010. Finally, F ′∗e (0, 1) is encoded on 10 bits: 11010 00001.

During the decoding phase, the decryption function
D(·) is applied to F ′∗e (0, 1) to compute the clear value
F ′∗(0, 1) = D(F ′∗e (0, 1), 5). The same part of the pseudo-
random binary sequence as those during the encoding phase
is used to perform the decryption of the amplitude part, but
the last bit is ignored: AF ′∗(0,1) = 10101×0⊕ 00001 = 10100,
being 20 in decimal. The decrypted recompressed crypto-
compressed coefficient F ′∗(0, 1) is then encoded by
11010 10100. After the Huffman decoding, the inverse
quantization is performed in order to reconstruct the value
˜̃F (0, 1). The quantization table is multiplied by two, so the
value ˜̃F (0, 1) = 20× (2× q80(0, 1)) = 20× 8 = 160. Note
that this value is close to the original value F (0, 1) = 164.
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IV. EXPERIMENTAL RESULTS

In this section, we present the results we obtained by apply-
ing our method of recompression of JPEG crypto-compressed
images. Section IV-A gives a full example of application of
our method, by using different quality factors for the first
JPEG compression. We also show that it is actually possible
to recompress several times a JPEG crypto-compressed image.
Then, in Section IV-B, we perform an analysis in order
to estimate the quality factor of the obtained image after
recompression. Finally, in Section IV-C, we discuss level
of security and statistical properties of the JPEG crypto-
compressed images in order to estimate a visual security of
the proposed encryption method. Furthermore, we discuss the
parameters to select depending on the required security level
and practical applications.

A. A detailed example for the proposed method

We first apply our method on the Peppers image
(321× 481 pixels). Fig. 9 shows the results obtained using
QF = 75% for the first JPEG compression.

Original image Crypto-compressed
JPEG image (QF = 75%),

PSNR = 11.74 dB

Decrypted crypto-compressed
JPEG image (QF = 75%),

PSNR = 38.59 dB

JPEG image (QF = 75%),
PSNR = 38.59 dB

Recompressed crypto-compressed
JPEG image (EQF∗ = 50%),

PSNR = 11.77 dB

Decrypted recompressed
crypto-compressed

JPEG image (EQF∗ = 50%),
PSNR = 35.21 dB

Recompressed
JPEG image (EQF∗ = 50%),

PSNR = 35.21 dB

JPEG image (QF = 50%),
PSNR = 36.26 dB

Compression

Compression

Secret key
Ke

Secret key
Ke

=
=

'

Recompression

Recompression

Crypto-compression

Decryption Decryption

Fig. 9: Full application example of our proposed method:
crypto-compression of the Peppers image (QF = 75%, en-
cryption of both AC and DC coefficients of the luminance
and two chrominance components) and recompression of the
crypto-compressed image (EQF∗ = 50%).

The first step of our method consists of crypto-compressing
the original image. In this application example, AC and DC
coefficients of the three components (Y, Cr and Cb) are
encrypted in order to provide a good visual confidentiality.
In fact, we can see that it is really difficult to distinguish
details of the original content and we have a very low color

PSNR of 11.74 dB. After decoding, we can see that the
decrypted crypto-compressed JPEG image is very close to
the original image, which is indicated by a PSNR equal to
38.59 dB. Note that this image is exactly the same as the
image obtained with a standard JPEG compression in the
clear domain using QF = 75%. Then, we recompress the
obtained crypto-compressed image, directly in the encrypted
domain (i.e. without decrypting the crypto-compressed image).
By analyzing the quantization table, we obtain EQF∗ = 50%.
Finally, the recompressed crypto-compressed JPEG image can
be perfectly decrypted with the encryption key used during
the crypto-compression step. PSNR value is high (35.21 dB),
which indicates a strong similarity with the original Peppers
image.

In order to compare, we also recompress the JPEG image
in the clear domain with QF = 75% using our recompression
method. The obtained recompressed image is identical to the
decrypted recompressed crypto-compressed JPEG image. In
addition, if the original image is directly compressed (using
the standard JPEG compression method) with QF = EQF∗, we
can see that the obtained image is quite close to the decrypted
recompressed crypto-compressed JPEG image.

We have completed the same experiments starting with
a crypto-compression using QF = 50%. Then, we obtain
EQF∗ = 25%, and we reach the same conclusions as before.

Our method has been applied on 1,338 images from the
UCID database [46]. Each image is crypto-compressed, then
recompressed and finally decrypted. Fig. 10 presents the
compression rate in bit-per-pixel (bpp), as a function of the
image quality in comparison with the original image (in
terms of color PSNR). The plotted values have been obtained
by averaging the results from the 1,338 images. For the
crypto-compression step, both AC and DC coefficients of the
luminance and the two chrominance components have been
encrypted and various quality factors QF have been used.

Fig. 10: Average color PSNR for 1,338 images from the UCID
database [46] as a function of the average compression rate,
in blue the JPEG crypto-compression (various QF, encryption
of both AC and DC coefficients of the luminance and the two
chrominance components), in green the recompression of the
JPEG crypto-compressed images, in red the decryption of the
JPEG crypto-compression and in orange the decryption of the
recompressed crypto-compressed images.

According to the obtained results in terms of compression
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rate and image quality, we can see that our method is efficient
(PSNR ' 10 dB), on being used directly in the encrypted do-
main. For example, if we perform the first crypto-compression
using QF = 90%, we can see that the compression rate
is not very high (approximately 0.9 bpp), but the PSNR is
close to 35 dB, this indicates a strong similarity with the
original image content. However, in order to decrease the size
of the crypto-compressed image, we can apply the proposed
recompression method directly to the crypto-compressed im-
age. EQF∗ is also equal to 80% and we achieve this by
having a compression rate of approximately 0.53 bpp, while
maintaining good image quality (PSNR ' 32 dB). After re-
compression, there is still no information about the content of
the original image, which is indicated by a very low PSNR
value (PSNR ' 10 dB). In addition, the PSNR value of
the decrypted recompressed crypto-compressed JPEG image
is high and remains greater than 30 dB and very close to
the direct compressed version. Thus, the proposed method
achieves a very good trade-off between the reconstructed
image quality and the compression rate, while offering a
good level of security because the recompression step occurs
directly in the encrypted domain and has no impact on the
confidentiality of the original image content.

In Fig. 11, we have applied five times our recompression
method on the Hats image of 768 × 512 pixels (491 kB).
First, the original image is crypto-compressed by encrypting
both AC and DC coefficients of the luminance and the
two chrominance components. The initial QF is chosen high
(QF = 95%). If we directly decrypt this crypto-compressed
JPEG image, we obtain an image very similar to the original
one, as indicated by a PSNR value equal to 47.14 dB. We
apply then our proposed recompression method on the crypto-
compressed JPEG image: all the non-zero coefficients are then
divided by two. After this second quantization, some of them
become equal to zero and are thus coded in the run-length
of the code of the next coefficient. EQF∗ is equal to 90%
and, if we decrypt the recompressed crypto-compressed JPEG
image, the obtained image remains similar to the original
one (PSNR = 43.91 dB). Note that the recompressed crypto-
compressed JPEG image is still suitable for recompression: we
can recompress it in order to decrease its size once again. In
fact, with our method, it is possible to recompress a crypto-
compressed image several times. In this example, we have
recompressed the crypto-compressed JPEG image five times.
After this series of recompressions, the estimated quality factor
is QF∗ = 17% and the image size is equal to 15.4 kB,
which corresponds to a compression rate of 0.32 bpp. We
can remark that it would be possible to obtain this image
directly from the initial crypto-compressed image by dividing
all coefficients by 25 = 32 and by adapting the comment part
JCOM of the JFIF header. Actually, a flag which indicates
the number of recompressions is necessary. Thanks to this
flag, it is possible to know the number of to-be-shifted bits in
the pseudo-random sequence, and thus, the decoding phase is
done without error. Moreover, the quality of the associated
decrypted recompressed crypto-compressed JPEG image is
still high (PSNR = 32.11 dB).
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Fig. 11: Five recompressions of the Hats image starting with
QF = 95% for the crypto-compression (encryption of both AC
and DC coefficients of the luminance and the two chrominance
components).

B. Quality factor analysis

In this section, we discuss the estimation of the quality
factor after recompression EQF∗. This estimation is made from
the luminance quantization table, because it is more relevant
than using the chrominance quantization table. In Eq. (12),
we have shown that it is possible to obtain the value of EQF∗

by inverting Eq. (2). Due to the range limitation, we have
noticed that EQF∗ ∈ [11, 99]. In Table I, we present some QF
which can be used for the first crypto-compression and the
corresponding values of EQF∗. Note that the chosen values
are representative of the interval of possible values. We can
see that, for QF ≥ 90%, EQF∗ remains high (' −10 %). For
small QF (QF ≤ 25%), values of EQF∗ are also close to QF
(' −10 %). For widely used QF (for example, QF = 75% and
QF = 50%), we note that EQF∗ is much lower than before
recompression (from −25 % to −50 %).

QF (%) 100 95 90 75 50 25 15
EQF∗ (%) 97 90 80 50 25 14 12

TABLE I: Example of QF and their corresponding EQF∗ after
recompression using our proposed method

.
In Fig. 12, we illustrate the difference between the quan-

tization table QQF∗ obtained with our recompression method
and associated to the estimated quality factor EQF∗, and the
quantization table QQF, such as QF = EQF∗. As an example, in
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Fig. 12.b, we present Q75. This quantization table, generated
from Q50 (Fig. 12.a) according to Eq. (2), is used during the
crypto-compression of an original image. Using our proposed
recompression method, QQF∗ is computed by multiplying each
coefficient of QQF by two (Eq. (9)). The obtained table is
presented in Fig. 12.c. Moreover, using Eq. (12), EQF∗ is equal
to 50. By comparing Fig. 12.a and Fig. 12.c, we can see that
the two tables are very similar. Indeed, the difference between
two coefficients at the same position is either null or equal to
one.
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Fig. 12: Difference between Q50 and QQF∗ , with EQF∗ = 50%:
a) Standard quantization table Q50, for QF = 50%,
b) Quantization table Q75, for QF = 75%, calculated from
Q50, c) Quantization table QQF∗ with EQF∗ = 50%, calculated
from Q75.

In Fig. 13, in order to deal with this analysis in depth,
we evaluate the L2-distance between QQF∗ and QQF, such as
QF = EQF∗ for different values in the interval [11, 99]. In other
words, we aim to evaluate the relevance of our estimation
(EQF∗) from the real value of QF∗. We note that a significant
divergence starts for an EQF∗ around 34 to the limit at 11. We
also notice a range where the function has a sawtooth shape,
which is due to integer rounding errors. Nevertheless, we can
well estimate the quality factor after recompression from 99%
to 34%. Note that for chrominance quantization table, whose
coefficients are higher, the divergence is more important.

Fig. 13: L2-distance between QQF∗ (associated to the estimated
quality factor EQF∗), and QQF calculated from the standard
quantization table Q50, such as QF = EQF∗.

From this experimental result, we note that EQF∗ is sig-
nificant. Therefore, we can expect that the crypto-compressed
JPEG image after recompression, associated to EQF∗, would
be similar to the image obtained with a direct JPEG crypto-
compression with QF = EQF∗, both in terms of compression
rate and image quality, as illustrated Fig. 11.

C. Security analysis discussion

In this part, we propose to discuss the security level of the
crypto-compression scheme used in our proposed method of
recompression of crypto-compressed JPEG images. As shown
in the presentation of the proposed method in Section III
and in Fig. 14, different parameters can be used during the
crypto-compression of the original image: encryption of AC
coefficients or encryption on both AC and DC coefficients, of
the luminance component (Y) or on both the luminance and
chrominance components (Y, Cr, Cb). These parameters are
chosen as a function of the required security level: transparent
encryption, sufficient encryption or content confidentiality
level [41].

By encrypting only the non-zero AC coefficients of the
luminance component (or of the luminance and the two
chrominance components), see Fig. 14, we can observe that
only a high quality version of the original image is hidden: in
this case, we have a transparent encryption. The method fol-
lows the requirements created by Van Droogenbroeck in [47]
for selective encryption in real-time applications: visual accep-
tance (part of the information may be visible, but the encrypted
image looks noisy), constant bit rate and bitstream compliance.
Moreover, sufficient encryption can be achieved by encrypting
both AC and DC coefficients of the luminance component
only. As illustrated in Fig. 14, in this case, the original
content is highly distorted, but color information about the
original image content is preserved. However, for the highest
security level, it is necessary to hide the image content (content
confidentiality level). Therefore, it is required to encrypt both
AC and DC coefficients of the luminance and two chrominance
components. Using this method, encryption achieves a strong
level of security, because only a limited amount of information
is available about the original image content from the crypto-
compressed image.

In regard to the statistical properties of the encrypted image,
we can see that even if the PSNR with the original image is
equal to 11.69 dB, UACI and NPCR values are not significant
(17.61% and 98.14% respectively). Moreover, entropy value
is higher than for the original image (7.61 bpp > 7.12 bpp),
but not close to the maximal entropy value of 8 bpp. With
the χ2 test, we also observe that the value remains high
after encryption (square-root equal to 165.95). In order to
enhance the security level by introducing diffusion, it would
be possible to apply scrambling in addition to our method
– like the full inter-block shuffle (FIBS) [10] or the method
of Lian et al. [48] for example. In this case, the encryption
method should be indistinguishable under chosen plaintext
attack (IND-CPA secure). Nevertheless, the size of the en-
crypted image could increase (but the additional cost remains
low). However, even with this improvement, the encryption
method cannot be IND-CPA$ secure [1]. Indeed, in addition
to being IND-CPA, a crypto-system is IND-CPA$ secure when
an adversary cannot make the distinction between an encrypted
image and a sequence of random numbers. Actually, this
cannot be the case for any selective encryption method which
has to be format-compliant, since the JPEG structure must be
preserved.
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Crypto-compression

Secret key
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Fig. 14: Crypto-compression of the Hats image with
QF = 80% and the possible parameters of our method.

In Fig. 15, we have applied the encryption on the AC and
the DC coefficients of the luminance and two chrominance
components, by using a quality factor QF = 90%. We present
the distribution of the AC coefficients (after quantization)
before and after encryption. Firstly, we note that in both cases,
the distribution seems to be Laplacian. In fact, there are many
coefficients which are equal to zero after JPEG compression. It
is also important to notice that the encrypted coefficients have
exactly the same size (in terms of bits) than the clear ones. In
fact, the size of each to-be-encrypted coefficient is considered
as a parameter in order to select the appropriate number of
bits in the pseudo-random binary sequence to perform the
XOR-operation. In this way, the encryption method allows us
to preserve the JPEG structure and the size of the standard
JPEG compressed image. From a security point of view, this
is a leak, because coefficients in large quantities are encoded
with a smaller number of bits (Huffman coding). For example,
coefficients equal to 1 or −1 are encoded on only one bit, and
there are thus two possible values to encrypt these coefficients.
On the positive side, if we consider coefficients which are
encoded with the same number of bits, we can see that the
encryption process provides uniform distribution (Fig. 15.b).
It is thus not possible to exploit them in order to statistically
try to reconstruct the clear coefficient values.

(a) Before encryption. (b) After encryption.

Fig. 15: Distribution of the AC coefficients before and after
encryption (QF = 90%, encryption of both AC and DC coef-
ficients of the luminance and two chrominance components).

In Fig. 16, we analyzed the encryption space ES as a func-
tion of the chosen quality factor for the crypto-compression
step, and as a function of the selected parameters (AC, DC,
luminance and chrominance):

ES =
number of encrypted bits

size of the compressed image (in bits)
.

We can first observe that the higher the quality factor, the
larger the ES is. This is explained by the fact that there are

more non-zero coefficients with a high QF. Actually, only the
non-zero coefficients are encrypted (Fig. 16.a). Then, we can
see that the ES varies between 41% for QF = 100% and
28% for QF = 15% (on average). The size of the ES is
also different as a function of the parameters of our method
(see Fig. 16.b). Indeed, with QF = 80% and by encrypting
both AC and DC coefficients, 33% of the image content (on
average) is encrypted when the encryption is only performed
on the luminance component. Moreover, the ES is higher when
the two chrominance components are also encrypted (36% on
average). In the case of encrypting only the AC coefficients,
on average 28% of the data is encrypted when the encryption
is completed only on the luminance component, and 30%
when all components are encrypted. However, there is a more
important variability depending on the original image content.
We can see that a larger amount of information is encrypted
if the three components are encrypted, rather than when we
encrypt the luminance component only. But the additional
encrypted information amount is not important, due to the
subsampling of the chrominance components.

(a) (b)

Fig. 16: ES in % for our method of recompression of
JPEG crypto-compressed images (1,338 images from the
UCID database [46]) as a function of: a) QF for the crypto-
compression method with encryption of both AC and DC co-
efficients of the luminance and two chrominance components,
b) The selected parameters (with QF = 80%).

V. CONCLUSION

In this work, we proposed a new method of recompressing
crypto-compressed JPEG images, which is efficient in the
encrypted domain. From our knowledge, this is one of the
first methods allowing recompression directly in the encrypted
domain, without knowing the secret key. Recompression step
consists mainly in dividing by two each quantized encrypted
DCT coefficient. In fact, the least significant bit of the non-
zero quantized encrypted coefficients are thus removed, and
zero coefficients are then encoded in the run-length of the
next non-zero coefficients. For the decoding, the coefficients
of the quantization table are adapted in consequence, by
multiplying them by two. As shown in the experimental part,
this recompression operation achieves a very good trade-off
between the compression rate and the image quality. Moreover,
unlike standard recompression with JPEG, the recompressed
image with EQF∗ is very similar to the JPEG image obtained
with a direct JPEG compression with the equivalent QF. There
are no artifacts, such as grainy effects or an important loss



1051-8215 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2019.2894520, IEEE
Transactions on Circuits and Systems for Video Technology

14

of sharpness. In order to make this recompression operation
possible in the encrypted domain, the crypto-compression step
is adapted. In fact, quantized DCT coefficients are encrypted
according to their size, from the largest to the smallest, in order
to avoid desynchronization during the decryption phase. Fur-
thermore, in the crypto-compressed image, the main content of
the original image is kept secret, as indicated by a PSNR close
to 10 dB. Note that, after recompression, visual confidentiality
is still preserved, because our recompression method does not
introduce security leaks. Therefore, in addition to offering a
strong security level and allowing recompression, the used en-
cryption procedure is format-compliant and does not introduce
overhead.

In future work, we are interested in investigating other
crypto-compression techniques which allow us to apply our
proposed recompression method without decryption. In fact,
to transform the proposed method into a IND-CPA secure one,
it is actually possible to combine it with a scrambling method
like, for example, the full inter-block shuffle (FIBS). Moreover,
we are also involved in analyzing more precisely the EQF∗.
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