P. Angelini, C. Binucci, W. S. Evans, F. Hurtado, G. Liotta et al., Universal point subsets for planar graphs, 23rd International Symposium on Algorithms and Computation, vol.7676, pp.423-432, 2012.

M. J. Bannister, Z. Cheng, W. E. Devanny, and D. Eppstein, Superpatterns and universal point sets, J. Graph Algorithms Appl, vol.18, issue.2, pp.177-209, 2014.
DOI : 10.1007/978-3-319-03841-4_19

URL : https://link.springer.com/content/pdf/10.1007%2F978-3-319-03841-4_19.pdf

L. Barba, W. Evans, M. Hoffmann, V. Kusters, M. Saumell et al., Column planarity and partially-simultaneous geometric embedding, J. Graph Algorithms Appl, vol.21, issue.6, pp.983-1002, 2017.
DOI : 10.7155/jgaa.00446

URL : https://pure.tue.nl/ws/files/90012600/Barba_2017.21.6.pdf

P. Bose, On embedding an outer-planar graph in a point set, Comput. Geom, vol.23, issue.3, pp.303-312, 2002.

P. Bose, V. Dujmovi´cdujmovi´c, F. Hurtado, S. Langerman, P. Morin et al., A polynomial bound for untangling geometric planar graphs, Discrete & Computational Geometry, vol.42, issue.4, pp.570-585, 2009.

J. Cano, D. Csaba, J. T-´-oth, and . Urrutia, Upper bound constructions for untangling planar geometric graphs, SIAM J. Discrete Math, vol.28, issue.4, pp.1935-1943, 2014.

N. Castã-neda and J. Urrutia, Straight line embeddings of planar graphs on point sets, Proc. the 8th Canadian Conference on Computational Geometry, (CCCG), pp.312-318, 1996.

J. Cibulka, Untangling polygons and graphs, Discrete & Computational Geometry, vol.43, issue.2, pp.402-411, 2010.
DOI : 10.1016/j.endm.2008.06.041

URL : http://arxiv.org/pdf/0802.1312v1.pdf

G. Da-lozzo, V. Dujmovi´cdujmovi´c, F. Frati, T. Mchedlidze, and V. Roselli, Drawing planar graphs with many collinear vertices, Journal of Computational Geometry, vol.9, issue.1, pp.94-130, 2018.

H. De-fraysseix, J. Pach, and R. Pollack, How to draw a planar graph on a grid, Combinatorica, vol.10, issue.1, pp.41-51, 1990.

O. Devillers, G. Liotta, P. Franco, R. Preparata, and . Tamassia, Checking the convexity of polytopes and the planarity of subdivisions, Comput. Geom, vol.11, issue.3-4, pp.187-208, 1998.
URL : https://hal.archives-ouvertes.fr/hal-01179691

E. D. Giacomo, W. Didimo, G. Liotta, H. Meijer, and S. K. Wismath, Planar and quasi-planar simultaneous geometric embedding, The Computer Journal, vol.58, issue.11, pp.3126-3140, 2015.

V. Dujmovi´cdujmovi´c, The utility of untangling, J. Graph Algorithms Appl, vol.21, issue.1, pp.121-134, 2017.

I. Fáry, On straight line representions of planar graphs, Acta Sci. Math. (Szeged), vol.11, pp.229-233, 1948.

X. Goaoc, J. Kratochvíl, Y. Okamoto, C. Shin, A. Spillner et al., Untangling a planar graph, Discrete & Computational Geometry, vol.42, issue.4, pp.542-569, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00431408

P. Gritzmann, B. Mohar, J. Pach, and R. Pollack, Embedding a planar triangulation with vertices at specified points (solution to problem e3341), Amer. Math. Monthly, vol.98, pp.165-166, 1991.

M. Kang, O. Pikhurko, A. Ravsky, M. Schacht, and O. Verbitsky, Untangling planar graphs from a specified vertex position -Hard cases, Discrete Applied Mathematics, vol.159, issue.8, pp.789-799, 2011.
DOI : 10.1016/j.dam.2011.01.011

URL : https://doi.org/10.1016/j.dam.2011.01.011

M. Kurowski, A 1.235 lower bound on the number of points needed to draw all n-vertex planar graphs, Information Processing Letters, vol.92, issue.2, pp.95-98, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00550171

T. Mchedlidze, M. Radermacher, and I. Rutter, Aligned drawings of planar graphs, 25th International Symposium on Graph Drawing and Network Visualization, vol.10692, pp.3-16, 2017.
DOI : 10.7155/jgaa.00475

URL : http://arxiv.org/pdf/1708.08778

P. J. Owens, Non-Hamiltonian simple 3-polytopes whose faces are all 5-gons or 7-gons, Discrete Mathematics, vol.36, issue.2, pp.227-230, 1981.
DOI : 10.1016/s0012-365x(81)80017-9

URL : https://doi.org/10.1016/s0012-365x(81)80017-9

J. Pach and G. Tardos, Untangling a polygon, Discrete & Computational Geometry, vol.28, issue.4, pp.585-592, 2002.
DOI : 10.1007/3-540-45848-4_13

URL : https://link.springer.com/content/pdf/10.1007%2F3-540-45848-4_13.pdf

A. Ravsky and O. Verbitsky, On collinear sets in straight-line drawings, 37th International Workshop on GraphTheoretic Concepts in Computer Science, vol.6986, pp.295-306, 2011.
DOI : 10.1007/978-3-642-25870-1_27

URL : http://arxiv.org/pdf/0806.0253v1.pdf

W. T. Tutte, How to draw a graph, Proceedings of the London Mathematical Society, vol.13, pp.743-768, 1963.
DOI : 10.1112/plms/s3-13.1.743

D. R. Wood, A simple proof of the Fáry-Wagner theorem. CoRR, abs/cs/0505047, 2005.