
HAL Id: lirmm-02047701
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02047701

Submitted on 25 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New Polynomial-Time Algorithm around the Scaffolding
Problem

Tom Davot, Annie Chateau, Rodolphe Giroudeau, Mathias Weller

To cite this version:
Tom Davot, Annie Chateau, Rodolphe Giroudeau, Mathias Weller. New Polynomial-Time Algorithm
around the Scaffolding Problem. AlCoB 2019 - 6th International Conference on Algorithms for Com-
putational Biology, May 2019, Berkeley, United States. pp.25-38, �10.1007/978-3-030-18174-1_2�.
�lirmm-02047701�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02047701
https://hal.archives-ouvertes.fr

New Polynomial-Time Algorithm around the
Scaffolding Problem

Tom Davot1, Annie Chateau1,2, Rodolphe Giroudeau1, Mathias Weller3

1 LIRMM - CNRS UMR 5506 - Montpellier, France
2 IBC - Montpellier, France

3 LIGM, Bât Copernic - Champs-s/-Marne, France
{tom.davot,annie.chateau,rodolphe.giroudeau}@lirmm.fr,

mathias.weller@u-pem.fr

Abstract. We describe in this paper an approximation algorithm for the
scaffolding problem, which is part of genome inference in bioinformatics.
The aim of the problem is to find a maximum weighted collection of
disjoint alternating cycles and paths covering a particular graph called
scaffold graph. The problem is known to be NP-complete, and we de-
scribe further result concerning a special class of graphs aiming to be
close to real instances. The described algorithm is the first polynomial-
time approximation algorithm designed for this problem on non-complete
graphs.

1 Introduction

Motivation. We are interested here in an algorithmic problem occuring in the
production of genomes. Genomes are usually obtained by sequencing, wich pro-
duces a set of reads whose length and quality depend on the sequencing technol-
ogy. It is commonly known that short reads (typically hundreds of base pairs),
produced by second generation sequencing technology (Illumina), are of better
quality than long reads (thousands of base pairs), produced by third generation
sequencing technologies (PacBio or Oxford Nanopore) [6]. Those reads are then
assembled using a variety of tools, the most recent integrating very efficient hy-
brid strategies using both short and long reads [7]. However, databases are full of
"old genomes", produced before the development of third generation sequencing,
and "hard genomes" that escape sequencing in good conditions. In fact, most
of the genomes in databases consist as huge sets of chunks of sequences, called
contigs. These sets contain far more contigs than the real number of the chro-
mosomes of the corresponding organisms. Such fragmentation is observed even
for well-studied genomes. To the natural question "how to reduce this fragmen-
tation?", technological progress and costly re-sequencing is not the only answer
and computational exploitation of already available sequencing data is possible.

Scaffolding Problem. We focus here on the contig scaffolding problem which,
given a set of contigs, asks to infer the order and the orientation of the contigs
along the target genome, using a set of possibly inconsistent pairing information.
This information could be provided, for instance, by paired-end reads whose

two ends map to distinct contigs. Formally, it is possible to extract from this
information a set of relationships between the contigs, that may be inconsistent.
A survey on recent methods is available in [5]. The problem that we model
here is more general than those presented in the literature, and therefore allows
adaptation towards realistic modelization. We study the scaffolding problem as
an optimization problem in a graph called scaffold graph, obtained by mapping
of paired-end reads on de novo contigs. However, the present formulation is
not limited to this aspect, and may also consider other sources of information.
We consider that the scaffolding may obey genomic structural constraints, like
a fixed number of linear and circular chromosomes. In the past, we presented
preliminary results about the complexity of this problem and a first polynomial-
time approximation algorithm on cliques [1]. Those results were extended and
completed by another polynomial-time approximation algorithm [2], and by a
randomized approach [3]. Exact approaches have been explored [9], leading to
study sparse cases [8]. The contribution of the present paper is a continuation
of [4, 10], where special classes of graphs has been studied, from sparse to very
dense. Real instances are very sparse, but show some dense regions. Hence, we
are interested in graphs built from cliques separated by bridges (i.e. edges whose
removal disconnects the graph).

2 Notation and Problem Description

In this section, we formally define the Scaffolding problem. For a graph G,
we denote by V (G) and E(G) the set of vertices and edges of G, respectively. A
scaffold graph (G∗,M∗, ω) is a simple loopless graph G∗ with a perfect matching
M∗ and a weight function ω on the non-matching edges. The matching M∗

respresents the set of contigs and the function ω represents the confidence that
two contigs occur consecutively in the genomic sequence. An alternating path
(resp. alternating cycle) is a path (resp. cycle) such that its edges alternatively
belong to M∗ or not. The extremal edges of an alternating path must be in M∗.
The Scaffolding problem, whose decision version is NP-complete on general
graphs [2], is defined as follows:

(σp, σc)-Scaffolding (SCA)
Input: a scaffold graph (G∗,M∗, ω) and integers σp, σc.
Task: Find a collection S of σp alternating paths and σc alternating

cycles maximizing
∑
e∈S\M∗ ω(e)

The two integers σp and σc are used to model the genomic structure by rep-
resenting the number of linear and circular chromosmes, respectively. Let S be
a partial solution of Scaffolding, the cardinality of S is the number of al-
ternating paths and cycles which compose S. We denote by σp(S) and σc(S)
the number of alternating paths and alternating cycles of S, respectively. The
approximation algorithm used in the following is described in Algorithm 1. It
is known that this algorithm produces a solution for Scaffolding with an
approximation ratio of three in complete graphs [2].

2

Algorithm 1: Polynomial-time approximation algorithm for (σp, σc)-
Scaffolding Problem.

Data: A scaffold graph (G∗,M∗, ω), two integers σp and σc.
Result: A collection of σp alternating paths and σc alternating cycles or “False”

if no such collection exists.
// Initialization step

1 S ←M∗;
2 E ← E \M∗;
3 sort E by decreasing order of weight;
4 if not Feasibility((G∗,M∗), S, σp, σc) then return False;

// Main loop
5 while E 6= ∅ do
6 Let e = {u, v} be the first element in the ordered-list E;
7 E ← E \ e;
8 if Feasiblity((G∗,M∗), S ∪ {e}, σp, σc) then
9 R← set of edges of E incident to e;

10 S ← S ∪ {e};
11 E ← E \R;

12 return S;

To adapt Algorithm 1 for another class of graphs, we need to provide a dedicated
feasibility function. This function, given a partial solution S, indicates if it is
possible to build a solution to Scaffolding with the remaining edges. In this
paper, we use Algorithm 1 on a particular class of graphs defined as follows:
Definition 1. A connected cluster graph G is a graph which admits a decom-
position of its edges E(G) = E′ ∪ B such that the subgraph induced by E′ is a
disjoint union of cliques and each edge e ∈ B is a bridge of G.

An example of a connected cluster graph is given in Figure 1. Let G be a con-
nected cluster graph, for sake of simplicity, we designate by clique a connected
component of the subgraph induced by E′ and we denote by CC(G) the set of
cliques of G.

Fig. 1. Example of connected cluster
graph. The bridge edges are bold.

As the structure of a connected cluster
graph is close to a tree (that is, shrinking
each clique of G∗ into a single vertex leads
to a tree), we use a similar vocabulary: a
rooted connected cluster graph is a a con-
nected cluster graph where a clique r is des-
ignated as a root and in that case, the parent
of a clique is the clique connected to it on
the path to r. A child of a clique c is the
clique of which c is the parent. A vertex v of a clique c is a door of c if a child
of c is adjacent to v. The upper door of c is the vertex adjacent to the parent
of c. In the following, we will focus on scaffold graphs (G∗,M∗, ω) such that
G∗ is a connected cluster graph and M∗ ∩B = ∅. Since the decision version of
Scaffolding is NP-complete on cliques [2], it is also NP-complete on connected
cluster graphs.

3

3 Feasibility

In this section, we present an algorithm to determine if it is possible to construct
a solution of Scaffolding in a connected cluster graph. Its principle is to
construct and assemble some partial solutions in a bottom-up traversal of the
connected cluster graph. Instead of storing the feasible solutions, we store their
cardinalities.

Operations. Let G1 and G2 be two edge-disjoint subgraphs. We can build a
solution in the graph induced by V (G1) ∪ V (G2), from a solution in G1 and a
solution in G2, using four operations.
Definition 2. Let G1 and G2 be edge-disjoint subgraphs of G∗. Let S1 and S2 be
solutions of G1 and G2, respectively. Let S be a solution of G∗[V (G1)∪ V (G2)].
S is a composition of S1 and S2 if exactly one of the following operations occurs:
Merger: merge a path of S1 with a path of S2 in S.
Closing: close a path of S1 and a path of S2 into an alternating cycle in S.
Absorption: replace a non-matching edge vv′ of S2 by an alternating path of

S1, that is, S = S1 ∪ (S2 \ {vv′})∪ {uv, u′v′} where u and u′ are extremities
of a u-u′-path in S1. We call vv′ absorbent.

Juxtaposition: S is the disjoint union of S1 and S2 and none of the previous
operations are performed.

To implement these operations, we add edges of E(G∗) \ (E(G1) ∪ E(G2)) to S.
Note that a composition of two solutions does not always exist, except for the
juxtaposition operation. In the algorithm, we manipulate sets of solutions instead
of solutions. Thus, we can create a new set of solutions if all the solutions of the
two input sets are used in the resulting set.
Definition 3. Let G1 and G2 be two edge-disjoint subgraphs of G∗ and let S1
and S2 be sets of solutions of subgraphs G1 and G2, respectively. Then, we call
the set S = {S | ∃S1 ∈ S1,∃S2 ∈ S2 s.t. S is a composition of S1 and S2} the
complete composition of S1 and S2.

To ensure the possibility of building a complete composition from two sets of
solutions, it is useful to characterize a solution according to the operations we can
perform on it. Thus, given two subgraphs G1 and G2, we define four properties
on a solution S according to the operations on S.
Definition 4. Let G and G′ be two vertex-disjoint subgraphs of G∗ and let S be
a feasible solution of Scaffolding for (G,M∗, ω).
1. We call S closeable if S contains an alternating u-v-path and there is an

alternating4 u-v-path in G′ ∪ {u, v}.
2. We call S extensible by G′ if S contains a vertex v such that v is an extremity

of an alternating path and v has a neighbor in G′ .
3. We call S frozen to G′ if S is not extensible.
4. We call S absorbent to G′ if S contains a non-matching edge uv and G′

contains a matching edge u′v′ such that uu′, vv′ ∈ E(G∗).
4 we use here "alternating" in an abusive manner, meaning alternating matching edges
and non-matching edges, beginning and ending with non-matching edges

4

For simplicity, we sometimes omit to precise G′ and in this case G′ = G∗−V (G).
Note that all closeable solutions are also extensible. If a solution S is closeable
by a subgraph G′, then we can close an alternating path of S into an alternating
cycle by adding some edges of G′. If a solution S is extensible by a subgraph
G′, then we can add some edges of G′ in an extremity of an alternating path
of S without changing the cardinality of the solution. Finally, if a solution S is
absorbent to a subgraph G′, then we can replace an absorbent edge of S by a
path of length three without changing the cardinality of S. An example of the
different operations of Definition 4 is given in Figure 2.

v1

v2 v3

v4

v5
v6

G1

x1

y1

G2

x2 y2

G3

x3

y3

G4

x4y4

Fig. 2. The solution S is composed of a single al-
ternating path {v1, . . . , v6}. S is closeable by sub-
graph G3 = {x3, y3}: we can close the alternat-
ing path of S into an alternating cycle by adding
the edges v1x3, x3y3 and y3v6. S is extensible
by subgraph G2 = {x2, y2}: we can extend the
alternating path of S by adding the edges v6y2
and y2x2 without changing the number of paths
in S. S is absorbent to G4 = {x4, y4}: we can re-
place the edge v2v3 of S by the edges v2y4, y4x4
and x4v3 without changing the number of paths
in S. S is frozen to G1 = {x1, y1}.

Semantics. Since the number of possible solutions can be exponential, we just
store the possible cardinalities in the table entries, which is sufficient to answer
the question of feasibility. We recall that, if X,Y ⊆ N are two sets of integers,
then the sum of X and Y is defined as X + Y = {x + y | x ∈ X, y ∈ Y }. Note
that X +∅ = ∅.

Definition 5. Let S be a set of solutions and i, j ∈ N. Then, j is called eligible
with respect to (S, i) if there is a solution S ∈ S containing i alternating cycles
and j alternating paths.

Our dynamic programming table has the following semantics.

Semantics. Let S be a set of solutions and i ∈ N. A table entry [S, i] is the
set of all integers eligible with respect to the tuple (S, i). More formally, letting
Si = {S | S ∈ S ∧ σc(S) = i}, we define [S, i] =

⋃
S∈Si
{σp(S)}.

Let us highlight three particular values of [S, i]. For S = {∅}, we have [{∅}, 0] =
0 and, for each i > 0, we have [{∅}, i] = ∅. For an alternating path p, we have
[{p}, 0] = 1 and [{p}, i] = ∅ for each i > 0. Finally, for an alternating cycle c,
we have [{c}, 1] = 0 and [{c}, i] = ∅ for each i 6= 1. For simplicity, we denote by
[S] the vector ([S, 0], . . . , [S, σc]) and, for any operator � and any sets S1 and S2

5

of solutions, we define [S1] � [S2] as component-wise �, that is, [S1, i] � [S2, i] for
each i ∈ [0, σc].
Lemma 1. Let G1 and G2 be two vertex-disjoint subgraphs of G∗ and let S1
and S2 be sets of solutions of subgraphs G1 and G2, respectively. Let S be a set
of solutions of G∗[V (G1) ∪ V (G2)] such that S is a complete composition of S1
and S2.
1. If S is the set of solutions composed with a merger operation, then
∀i, j,[S, i+ j] = [S1, i] + [S2, j] + {−1}.

2. If S is the set of solutions composed with a closing operation, then
∀i, j,[S, i+ j + 1] = [S1, i] + [S2, j] + {−2}.

3. If S is the set of solutions composed with an absorption operation, then
∀i, j,[S, i+ j + 1] = [S1, i] + [S2, j] + {−1}.

4. If S is the set of solutions composed with a juxtaposition operation, then
∀i, j,[S, i+ j + 1] = [S1, i] + [S2, j].

Proof. Let S ∈ S, we denote by S1 and S2 the solutions of S1 and S2, respec-
tively, such that S is composed by S1 and S2. Now we prove the four statements
of the lemma.
1. ∀S ∈ S, since S1 and S2 have a common alternating path in S, we have
σp(S) = σp(S1) + σp(S2)− 1 and since no cycle is formed, σc(S) = σc(S1) +
σc(S2). Thus,∀i, j, [S, i+ j] = [S1, i] + [S2, j] + {−1}.

2. ∀S ∈ S, since one path of S1 and one path of S2 are closed into a single
alternating cycle, we have σp(S) = σp(S1)+σp(S2)−2 and σc(S) = σc(S1)+
σc(S2) + 1. Thus, ∀i, j, [S, i+ j + 1] = [S1, i] + [S2, j] + {−2}.

3. ∀S ∈ S, since S1 has an alternating path that is "absorbed" into a connected
component of S2, we have σp(S) = σp(S1)+ σp(S2)− 1 and since no cycle is
formed, σc(S) = σc(S1)+σc(S2). Thus,∀i, j, [S, i+j] = [S1, i]+[S2, j]+{−1}.

4. ∀S ∈ S since all paths and cycles of S1 and S2 are present in S, we have
σp(S) = σp(S1) + σp(S2)− 1 and since no cycle is formed, σc(S) = σc(S1) +
σc(S2). Thus,∀i, j, [S, i+ j] = [S1, i] + [S2, j] + {−1}.

We use Lemma 1 to define four applications juxtapose, merget, absorb, closet
which provide table entries for complete compositions "composed" with a juxta-
position, merger, absorption or closing operation, respectively. Although Lemma 1
is defined for two sets, we use a generalized version which can take as parameters
more than two sets. The functions merget and closet have a parameter t which
indicates the number of paths merged or closed during the operation. For exam-
ple, if we have three sets S1, S2, and S3 and it is possible to construct a single
alternating path in the resulting composition by taking one alternating path in
each set, then we use the function merge3({S1}, {S2}, {S3}). In addition, it is
sometimes possible to close a single alternating path into an alternating cycle
and in that case the function close1 is used. The four applications are defined
in Algorithm 7, Algorithm 8 and Algorithm 9 (in appendix). However, we must
ensure that the associated operation is feasible before using one this application.

The Algorithm. We now present a method to provide the feasibility function
needed by Algorithm 1. We suppose that a partial solution S is given. Let c be

6

a clique of G∗ and let S′ be the intersection of S and c. An alternating element
of c is either an alternating cycle of S′ or an alternating path of S′. We traverse
different types of subgraphs defined in the following way:
– Let v ∈ V (G∗), let C(v) be the set of children adjacent to v (possibly empty).

The subgraphG∗(v) is the union of v and all branches incident to v. Formally,
G∗(v) = G∗[{v} ∪

⋃
c∈C(v)

V (G∗(c))].

– Let e be an alternating element, the subgraph G∗(e) is the union of e and all
children incident to one of its vertices. Formally, G∗(e) = G∗[

⋃
v∈e

V (G∗(v))].

– Let c be a clique of G∗, and let dd′ be the matching edge of c incident to the
upper door of c. Let c′ = c \ dd′ be the subclique of c. For all x ∈ {c, c′}, the
subgraph G∗(x) is the union of x and all children incident to a vertex of x.
Formally, G∗(x) = G∗[

⋃
e∈M∗(x)

V (G∗(e))].

For each traversed subgraph G′, we use four different sets of solutions distin-
guishing solutions according to their properties.
Definition 6. Let S be a partial solution of G∗. Let x be a vertex, a partial
path, a subclique or clique of G∗ and let S′ be a solution of the subgraph G∗(x).
– S ∈ C(x)⇔ S′ is closeable and S ∩G∗(x) ∈ S′.
– S ∈ P(x)⇔ S /∈ C(x) and S is extensible and S ∩G∗(x) ∈ S′.
– S ∈ A(x)⇔ S is frozen and absorbent and S ∩G∗(x) ∈ S′.
– S ∈ F(x)⇔ S /∈ A(x) and S is frozen and S ∩G∗(x) ∈ S′.

The next paragraphs are dedicated to describing the algorithms to calculate the
table entries for the four types of subgraphs described above.

Vertex. Let v be a vertex of G∗. We show in this part how to compute the table
entries for the sets F(v) and P(v). Note that, since the edge between G∗(v)
and its parent is a bridge, the sets C(v) and A(v) are empty. Any solution S′

of G∗(v) can have at most one incident edge to v. If no edge of S ∩ G∗(v) is
incident to v, the idea is to construct the table entries by merging successively
the table entries of the children incident to v. For that, we use at each step an
intermediate graph Gi. Let Vi be the union of the i first children of v. Gi is the
subgraph of G∗ induced by v and all vertices in Vi. Otherwise, if one edge of
S ∩G∗(v) is incident to v, then any solution containing S belongs to P(v).
Lemma 2. For any vertex v, the values of the table entries provided by Algo-
rithm 2 are correct for the set F(v) and P(v).

Proof. First, if there is no child linked to v, thenG∗(v) is constituted by the single
vertex v. In that case, the only solution is that containing zero alternating cycle
and path and this solution is frozen. Thus, the initial values given to [F(v)] and
[P(v)] in the initialization step (i.e. lines 1 to 2) are correct. If it exists an edge uv
of E(G∗(v))∩S incident to v, then let cu be the clique containing u. A solution
of G∗(v) is necessarily composed by the juxtaposition of an extensible solution
of cu and any solution of the other children and this solution is extensible. Thus,
the assignments lines 9 and 12 are correct. Now suppose that uv does not exist.
Let ct ∈ C(v) be the clique considered at step t in the foreach loop. We suppose

7

Algorithm 2: compute_vertex
Data: A scaffold graph (G∗,M∗), a partial solution S and a vertex v.

1 [F(v)]← ∅; [P(v)]← ∅; [F(v), 0]← {0};
2 C ← {c1, . . . , ck}: list of children linked to v;
3 foreach ct ∈ C(v) do
4 compute_clique(ct);
5 [F ′]← [F(v)];
6 [P ′]← [P(v)];
7 if ∃uv ∈ E(G∗(v)) ∩ S then
8 if u ∈ ct then
9 [P(v)] ← juxtapose({P ′}, {P(ct)})

10 else
11 [P(v)] ← juxtapose({P ′}, {F(ct),P(ct)})

12 else
13 [F(v)] ← juxtapose({F ′}, {F(ct),P(ct)})
14 [P(v)] ←

∪
juxtapose({P ′}, {F(ct),P(ct)})
juxtapose({F ′}, {P(ct)})

that the values of [F ′] and [P ′] computed by the foreach is loop at the previous
step are correct for the graph Gt−1. We show that the values of [F(v)] and [P(v)]
computed in this step are correct for the graph Gt. Suppose also that value of
[F(ct)] and [P(ct)] provided by the function compute_clique(ct) are correct. Let
et be the edge linking the vertex v with the clique ct.
– A solution S of Gi is frozen if and only if none of the incident edge to v

is in S. Since no such edge belongs to any solution of G∗(ct), F(v) is the
complete composition of F ′(v) and the set of all solution of G∗(v) with the
juxtaposition operation. Thus, the assignment line 7 is correct.

– A solution S of G∗(v) is extensible if and only if S contains exactly one edge
incident to v. It is the case if the subsolution of S in Gt−1 is extensible or
if et belongs to S. Since et can belong to S if the subsolution S in G∗(ct)
is extensible and the subsolution of S is frozen, P(v) is then the union of
(1) the complete composition of P ′(v) and the set of all solution of G∗(v)
with the juxtaposition operation and (2) the complete composition of F ′(v)
and P(ct) with the juxtaposition operation. The addition of et extends an
alternating path and do not change its number of path. Thus, the assignment
line 8 is correct.

Alternating Element. Let c be a clique of G∗ and e be an alternating element of
c such that e does not contain the upper door of c. We show in this part how to
compute the table entries for the sets C(e),F(e) and P(e). If e is a u− v-path,
then the idea is to merge the computed table entries of u and v and juxtapose
the frozen solutions of the inner vertices. If e is an alternating cycle, then there
is no choice to do and the only solution containing S is frozen.

Lemma 3. For any alternating element e, the values of the table entries pro-
vided by Algorithm 3 are correct for the sets C(e),F(e) and P(e).

8

Algorithm 3: compute_alternating_element
Data: A scaffold graph (G∗,M∗), a partial solution S and an alternating

element e with vertices {v0, v1, . . . , vk}.
1 foreach v ∈ p do compute_vertex(v) ;
2 if e is an alternating cycle then
3 [F(e)] ← juxtapose({e}, {F(v0)}, . . . , {F(vk});
4 [C(e)]← ∅;[A(e)]← ∅; [P(e)]← ∅;

5 else
6 [Ie] ← juxtapose({F(v1)}, . . . , {F(vk−1});
7 [C(e)] ← juxtapose({e}, {F(v0)}, {F(vk)}, {Ie});
8 [F(e)] ←

∪
merge3({e}, {P(v0)}, {Pv(vk)}, {Ie});
close1({e}, {F(v0)}, {F(vk)}, {Ie});

9 [P(e)] ←
∪

merge2({e}, {P(u)}, {F(v)}, {Ie});
merge2({e}, {F(u)}, {P(v)}, {Ie});

Note that the only possibility to obtain an absorbent solution of G∗(e) is when e
is a path and become closed into an alternating cycle. However, suppose that an
absorption operation is done in the function compute_subclique. The resulting
solution can also be obtained by a closing operation with a solution in C(e).
Thus, to avoid recurrence, the value of [A(e)] is not provided.

Proof. Suppose that the values of the table entries provided by the function
compute_vertex are correct. First note that, for each inner vertex vt of e, the
subsolutions of G∗(vt) are necessarily frozen, then a solution of G∗(e) contains a
juxtaposition of frozen solutions of the inner vertices of e. If e is an alternating
cycle, then the only possible solution is obtained by the juxtaposition of frozen
solutions of the inner vertices and the alternating cycle e. Thus, the assignment
line 5 is correct. Suppose that e is a partial path. All possible values of the
juxtaposition of the frozen solutions of the inner vertices are assigned in the
table entry [Ie].
– A solution S′ of G∗(e) is closeable if and only if the degree of the extremities

of e are equal to one. Then, the subsolutions of S′ in G∗(v0) and G∗(vk)
are frozen. Alternatively, any juxtaposition of two frozen solutions of G∗(v0)
and G∗(vk) and the set Ie gives a closeable solution of G∗(e). Thus, the
assignment line 10 is correct.

– A solution S′ of G∗(e) is frozen if and only if the degree of the extremities of
e are equal to two. It is the case if (1) the subsolutions of S′ in G∗(v0) and
G∗(vk) are extensible or (2) the subsolutions of S′ in G∗(v0) and G∗(vk) are
frozen and e is closed into an alternating cycle. Alternatively, any extensible
solutions of G∗(v0) and G∗(vk) are merged by the addition of the edges of S
and. It gives a frozen solution of G∗(e). Similarly, the juxtaposition of two
frozen solution of G∗(v0) and G∗(vk) conjugated with the closing of e gives
a frozen solution of G∗(e). Thus, the assignment line 11 is correct.

– A solution S′ of G∗(e) is extensible and not closeable if and only if exactly
one vertex in {v0, vk} has degree one. Then, exactly one subsolution of S in
G∗(v0) or G∗(vk) is extensible. Alternatively, any juxtaposition of exactly

9

one frozen solution and one extensible solution of G∗(v0) and G∗(vk) gives
an extensible solution of G∗(e). Thus, the assignment line 12 is correct.

Subclique. Let c′ be a subclique of G∗. We show in this part how to compute the
table entries for the sets C,F ,A and P. The idea is to construct the table entry by
merging successively each table entry of the alternating elements of c′. For that,
we use at each step an intermediate graph Gi and three intermediate sets F+,A+

and P+. Let Ei be the i first alternating element of c′ and Vi =
⋃
e∈Ei

V (G∗(e)).
Gi is the subgraph of G∗ induced by Vi. At step i, a solution S′ ∈ F+ if and only
if (1) S′ is a solution of Gi, (2) S′ contains a set C 6= ∅ of closeable paths and
(3) S \C is frozen. The sets A+ and P+ are defined similarly (only the condition
(3) changes).
Lemma 4. For any subclique c′, the value of the table entries provided by Al-
gorithm 4 are correct for the sets C(c′),F(c′),A(c′) and P(c′).
Proof. First, note that if G∗(c′) is empty, then the only solution is that con-
taining zero alternating cycle and path and this solution is frozen. Thus, the
initial values given in the initialization step (i.e. lines 1−4) are correct. Now, let
et be the alternating element considered at step t of the foreach loop. Sup-
pose that the values of [F ′], [F+], [A′], [A+], [P ′] and [P+] computed by the
step t − 1 of the foreach loop are correct for the graph Gt−1. We show that
the values of the six previous table entries are correct for the next step. Sup-
pose that the values of the [C(et)], [F(et)] and [P(et)], provided by the function
compute_alternating_element are correct. Let S1 be a solution of Gt−1, S2 be
a solution of G∗(et) and S′ be a composition of S1 and S2.
– If S′ is composed by a juxtaposition operation, then S1 belongs to F ′,A′,P ′,
F ′+,A′+ or P ′+ and S2 belongs to C(et),F(et) or P(et).

– If S′ is composed by a merger operation then S1 belongs to P ′,F ′+,A′+ P ′+
and S2 belongs to C(et) or P(et).

– If S′ is composed by an absorption operation then S1 belongs to A′,A′+ and
S2 belongs to C(et).

– If S′ is composed by a closing operation then S1 belongs to F ′+,A′+ or P ′+
and S2 belongs to C′.

It exists then 31 different complete compositions. If S2 ∈ C(et) (resp. P(et) and
S′ is obtained by a closing operation (resp. merger operation), then S′ can be
closeable (resp. open), if S1 contains more than one closeable (resp. extensible)
path, or not if S1 contains a unique closeable (resp. extensible) path. Thus, the
complete compositions obtained by a closing operation or a merger operation
can belong to two of the six desired sets. However, we can solve this problem
and also reduce the number of complete composition to consider by ignoring
some composition. Let S1 be a solution of Gt−1, S2 be a solution of G∗(et) and
S′ be a composition of S1 and S2. S′ is ignored by the algorithm if a solution S′
with the same cardinality can be obtained with another composition.
1. If S′ is obtained by a closing operation (resp. merger operation) and S1

contains more than one closeable (resp. extensible) alternating path. Let p1
and p2 be two closeable paths (resp. extensible paths). Let S′1 be the solution
similar to S1 except that p1 and p2 had been closed in an alternating cycle

10

Algorithm 4: compute_subclique
Data: A scaffold graph (G∗,M∗), a partial solution S and a subclique c′.

1 [F(c′)]← ∅; [P(c′)]← ∅; [A(c′)]← ∅;
2 [F+]← ∅; [P+]← ∅; [A+]← ∅;
3 [F(c′), 0]← {0};
4 E ← {e1, . . . , ek} : list of alternating elements of c′;
5 foreach et ∈ E do
6 compute_alternating_element(et);
7 [F ′]← [F(c′)]; [P ′]← [P(c′)]; [A′]← [A(c′)];
8 [F ′+]← [F+]; [P ′+]← [P+]; [A′+]← [A+];
9

10 [F(c′)] ← juxtapose({F ′}, {F(et)}
11
12 [F+] ←

∪
juxtapose({F ′+}, {F(et)})
juxtapose({F ′,F+}, {C(et)})

13
14 [A(c′)] ←

∪
∪
∪

juxtapose({A′}, {F(et)})
merge2({P ′}, {P(et)})
absorb({A′}, {C(et)})
close2({F ′+,A′+}, {C(et)})

15
16 [A+] ←

∪
∪

juxtapose({A,A′+}, {F(et), C(et)})
merge2({P ′+}, {P(et)})
merge2({F ′+,A′+}, {C(et)})

17
18 [P(c′)] ←

∪
∪
∪
∪

juxtapose({P ′}, {F(et),P(et)})
juxtapose({F ′,A′}, {P(et)})
merge2({F ′+}, {P(et)})
merge2({P ′}, {C(et)})
close2({P ′+}, {C(et)})

19
20 [P+] ←

∪
∪

juxtapose({P ′+}, {F(et), C(et)})
juxtapose({F ′+,A′+, }, {P(et)})
juxtapose({P ′}, {C(et)})

21

22 end
23 [C(c′)] ← [F+] ∪ [A+] ∪ [P+]

(resp. merged in a single alternating path) in a previous step. We can obtain
a solution with the same cardinality than S by juxtaposing S′1 and S2.

2. If (1) S1 ∈ A′+, S2 ∈ P(et) and S′ is obtained by a merger operation, (2)
S1 ∈ P ′+, S2 ∈ C(et) and S′ is obtained by a merger operation or (3) S1 ∈
A′+, S2 ∈ C(et) and S′ is obtained by an absorption operation. Let p be the
closeable path of S1 that has be absorbed or merged during the composition.
Let S′1 be the solution similar to S1 except that all matching edges of p had
been absorbed or merged in previous steps. We can obtain a solution with
the same cardinality than S by juxtaposing S′1 and S2.

11

Thus, by the first item, after a closing operation, we suppose that the obtained
solution does not belong to F+(c

′),A+(c
′) or P+(c

′). Likewise, after a merging
operation between a solution in P ′ or P ′+ and a solution in P(et), the obtained
solution does not belong to P(c′) or P+(c

′). Then, the complete composition
of two sets S1 ∈ {F ′,A′,P ′,F ′+,A′+,P ′+} and S2 ∈ {C(et),F(et),P(et)} is a
subset of exactly one of the six desired set. The second item allows us to con-
sider only 28 compositions. Algorithm 4 assigns, for each of this 28 compo-
sitions, the value of its table entry to exactly one of the table entry among
[F(c′)], [A(c′)], [P(c′)], [F+(c

′)], [A+(c
′)] and [P+(c

′)]. The correct assignation of
a particular composition is easy to verify and we let the reader check the cor-
rectness of each particular assignation. Since each solution of Gt belongs to one
the six set and is a composition of one solution of Gt−1 and G∗(et), it suffixes
to conclude that the six table entries are correct for the graph Gt.

Finally, after the foreach loop, it remains to compute the value of [C]. The
sets containing a closeable paths are exactly F+,A+ and P+. Thus, it suffixes
to make the union of their table entries to obtain [C(c′)]. Thus, the assignment
line 23 is correct.

Clique. Let c be a clique of G∗ and d be the upper door of c. We show in this
part how to compute the table entries for the sets F(c) and P(c). Note that since
the edge between G∗(c) and its parent is a bridge, the sets C(c) and A(c) are
empty. Let e be the aternating element of c containing the upper door d. The
idea is to first compute the table entries for the graph G∗(e) and then merge the
obtained table entries to the table entries of the subclique. If e is an alternating
path and d is an extremity of e, we replace P(e) by two intermediate sets Pd
and Pd′ . Let S′ be a solution of G∗(e). S′ ∈ Pd if and only if S′ ∈ P(e) and
d is an extremity of an alternating path of S′. Likewise, S′ ∈ Pd′ if and only
if S′ ∈ P(e) and d is not an extremity of an alternating path of S′. Note that
P(e) = Pd ∪ Pd′ . In order to compute these two sets, we reuse the value of Ie,
computed in compute_alternating_element.
Lemma 5. For any clique c, the values of the table entries provided by Algo-
rithm 5 are correct for the sets F(c) and P(d).
Proof. Suppose e is an alternating path and the upper door d of c is an extremity
of a e. First, we compute the table entries for the sets C(e),F(dd′),Pd and Pd′ .
Suppose that the values of the table entries provided by
compute_alternating_element(p) are correct for the sets C(e) and F(e). It
remains to compute the table entries for the sets Pd and Pd′ . We recall that Ie
is the juxtaposition of all frozen solutions of the inner vertices of e.
– A solution S′ of G∗(e) belongs to Pd if and only if S′ belongs to P(e) and no

non-matching edge is incident to d in G∗(e). Thus, Pd is the juxtaposition
of e, Ie,F(d) and P(d′). The assignment line 5 is correct.

– Similary, a solution S′ of G∗(e) belongs to Pd′ if and only if S′ belongs to
P(e) and no non-matching edge is incident to d′ in G∗(e). Thus, Pd is the
juxtaposition of e, Ie,P(d) and F(d′). The assignment line 6 is correct.
Further, we show that the table entries computed for the set F(c) and P(c)

are correct.

12

Algorithm 5: compute_clique
Data: A scaffold graph (G∗,M∗), a partial solution S and a clique c.

1 d← upper door of c; e← alternating element of c containing d;
2 compute_subclique(c′); compute_alternating_element(e);
3 if e is an alternating path and d is an extremity of e then
4 d′ ← other extremity of e;
5 [Pd] ← juxtapose({e}, {F(d)}, {P(d′)}, {Ie})
6 [Pd′] ← juxtapose({e}, {P(d)}, {F(d′)}, {Ie})
7
8 [F(c)] ←

∪
∪
∪

juxtapose({F(e),Pd′}, {F(c′), C(c′),A(c′),P(c′)})
merge2({C(e),Pd′}, {C(c′),P(c′)})
absorb({C(e)}, {A(c′)})
close2({C(e)}, {C(c′)})

9
10 [P(c)] ←

∪
juxtapose({C(e),Pd}, {F(c′), C(c′),A(c′),P(c′)})}
merge2({C(e)}, {C(c′),P(c′)})

11 end
12 else
13 [F(c)] ←

∪
∪
∪

juxtapose({C(c′),F(c′),A(c′),P(c′)}, {C(e),F(e),P(e)})
merge2({C(c′),P(c′)}, {C(e),P(e)})
absorb1({A(c′)}, {C(e)})
close({C(c′)}, {C(e)})

14 [P(c)] ← ∅
15 ;
16 end

– A solution S′ of G∗(c) is frozen if and only if S′ contains an edge incident to
d. It is the case if the subsolution of S′ in G∗(e) belongs to F(e) or Pd′ or
if S is obtained by a merger operation, an absorption operation or a closing
operation. Thus, the assignment line 8 is correct.

– A solution S′ of G∗(c) is extensible if and only if S does not contains an edge
incident to d. It is the case if the subsolution of S in G∗(e) belongs to C(e)
or Pd or if S′ is obtained by a merger operation and d′ is an extremity of an
alternating path in the subsolution of S in G∗(e). Thus, the assignment line
10 is correct.
Now suppose that the upper door d of c is an inner vertex of e. In that case,

a subsolution S′ of G∗(c) is necessarily frozen. Then any feasible composition
of a solution of G∗(c′) and a solution of G∗(e) is a frozen solution and thus,
the assignment line 13 is correct. Similary, since no extensible solution of G∗(c)
exist, the assignment line 14 is correct.

3.1 Feasability function

Finally, we can now provide an answer to the feasibility of finding a solution for
Scaffolding problem by using Algorithm 6.
Corollary 1. Given a partial solution S, Algorithm 6 returns true if and only if
(G∗,M∗) can be decomposed into σp alternating paths and σc alternating cycles.
The time complexity of the algorithm is O(|V (G∗)| · σ2

c).

13

Algorithm 6: Feasibility
Data: A scaffold graph (G∗,M∗) a partial solution S and two integers σp, σc

1 root← root of G∗ ;
2 compute_subclique(root);
3 return σp ∈ ([C(root), σc] ∪ [F(root), σc] ∪ [A(root), σc] ∪ [P(root), σc])

Proof. Since G∗(root) = G∗, it exists a solution S with σp(S) = σp and σc(S) =
σc, if and only if S belongs to C(root) ∪ F(root),∪A(root) ∪ P(root). Thus the
return of the function indicates if such a solution exists and then the algorithm
is correct. Concerning the time complexity, the composition operations are in
(O)(σ2

c). Thus, without taking in account the reccursive calls, the time complex-
ity of Algorithm 2, Algorithm 3, Algorithm 4 and Algorithm 5 in one iteration
of a loop is O(σ2

c). In Algorithm 2, the number of iterations made by all calls of
this function depends on |CC(G∗)| G∗ and then the time complexity of all this
iterations is (O)(|CC(G∗)| · σ2

c). Similary we can show that the time complexity
of the iterations made by all calls of Algorithm 3, Algorithm 4 and Algorithm 5
are (O)(|V | · σ2

c), (O)(|M∗| · σ2
c) and (O)(|CC(G∗)| · σ2

c). Then, the time com-
plexity of all iterations in all function is (O)((|V)|+ |M∗|+ |CC(G∗)|) · σ2

c) and
since the number of matching edges and the number of cliques is bounded by
the number of vertices of G∗, we have a time complexity in O(|V (G∗)| · σ2

c).

4 Approximation Result

4.1 Notations and definitions

The algorithm presented in this section is an adaptation of the one described
in [2]. The original algorithm works in complete graph and we adapt it so that
it works in connected cluster graph. Let (G∗,M∗, ω) be a scaffold connected
cluster graph. The idea of the algorithm is to visit each non matching edge of
(G∗,M∗, ω) by decreasing order of weight and chose some of them to be part
of the solution S. We start by running Algorithm 6 on (G∗,M∗, ω). This run
allows us to both verify if a solution is feasible and to initialize the different
table entries. When an edge uv is visited, it can be added in S or removed from
(G∗,M∗, ω). When an edge uv is chosen, then all non-matching edges incident
to u or v are removed from the list of sorted edges. At each step, we must ensure
that we can build a solution with the remaining edges, that is, uv is added in S
if and only if we can build σp alternating paths and σc alternating cycles with
the remaining edges.

4.2 Optimization

At each step, we must run the Algorithm 6 in order to check if it possible to
construct a solution. However, it is not necessary to update all the table entries
at each step. In fact, when an edge uv is tested, it is only necessary to update
the table entries of the cliques containing u or v and then, update all the table
entries of the ancestors of this cliques.

14

4.3 Algorithm

Lemma 6. Algorithm 1 provides a solution for the (σp, σc)-Scaffolding in
path connected cluster graph with an approximation ratio of five and a time
complexity O(|V | · |E(G∗)| · σ2

c). The approximation ratio is tight.

Proof. We suppose that the entry of the algorithm is a scaffold graph (G∗,M∗, ω)
with non-negative weights and such that G∗ is path connected cluster graph. We
begin to prove that the algorithm is correct. First, since each time we add an
edge e to S, we remove from E all incident non matching edges to e, it is easy
to see that the set S induce only paths and cycles.

If it is not possible to build a solution from the graph, then the feasibility
condition is not verified and then the algorithm returns an error. Otherwise,
since we ensure that the feasibility condition is verified at each step, when the
algorithm terminates, then it builds σp paths and σc cycles.

Now, we prove the approximation ratio. Since they always to any solution, we
do not consider the edges of M∗ in what follows. Notice that, since there is, for
each path, one chosen edge less than the number of involved matching edges, and
for a cycle, the same number of chosen edge as the number of involved matching
edges, then the number of non-matching edges in every solution is exactly n−σp.

We denote by e1, . . . , em the edges of the graph, sorted in non-increasing
order. We denote by eA1 , . . . , e

A
n−σp

the edges of the solution SA given by Al-
gorithm 1, sorted by non-increasing order. In the same way, we denote by
eopt1 , . . . , eoptn−σp

the edges of an optimal solution Sopt for the problem, also sorted
in non-increasing order. Both sequences eA1 , . . . , eAn−σp

and eopt1 , . . . , eoptn−σp
are

clearly subsequences of e1, . . . , em. For an application ϕ : Sopt → SA, we define
both following inequations:

∀e ∈ Sopt, ω(e) ≤ ω(ϕ(e)) (1)

∀e ∈ SA, |ϕ−1({e})| ≤ 5 (2)

Inequation (1) indicates that ∀e ∈ E in an optimal solution, there exists an edge
ϕ(e) ∈ SA such that the weight of this latter edge is at least the weight of e.
Whereas Inequation (2) states that ∀e ∈ SA, we may associate e to at most four
edges of the optimal solution. In the following, we prove that it is possible to
define an application ϕ satisfying these inequations.

An edge eopti in an optimal solution could be not chosen by the algorithm for
four main reasons:

– It is eliminated because it belongs to R, when an edge eAj is chosen. In this
case, we have ω(eAj) ≥ ω(e

opt
i) because only edges appearing after eAj in the

ordered list can belong to R. When an edge eAj is chosen, it can eliminate
at most two edges of optimal solution by updating of the list of edges (see
Figure 3). We assign ϕ(eopti) = eAj in this case. Inequation (1) is satisfied by
construction, and Inequation (2) holds when considering only the optimal
edges which are eliminated by this way.

15

∈M∗ ∈M∗

∈ Sopt ∈ Sopt

∈ SA

Fig. 3. A greedy edge can eliminated up to two optimal edges by the update_edge
function.
– It is eliminated because its addition disconnects the graph and the number of

alternating cycles and alternating paths required to cover the graph becomes
too big. Such a case can appears in two cases.
• It closes a cycle. In that case, there exists at least one edge eAj in this cy-

cle, and since it has been chosen before the algorithm considers eopti , we
necessarily have ω(eAj) ≥ ω(e

opt
i). Thus, we assign ϕ(eopti) = eAj . Inequa-

tion (1) is satisfied by construction. The edge eAj has been already chosen,
may have eliminated at most two optimal edges, but Inequation (2) is
still satisfied.

• It closes a door d and one bridge dd′ incident to d is necessary to construct
a solution with the remaining edges. There exists a door d′′ which has
been closed by an edge eAj in a previous step and this closing forces dd′
to belong to the SA. Since closing a door increases by at most one the
minimum number of alternating paths required to cover the graph, the
closing of d′′ forces at most one bridge of G∗ to belong in SA. Thus, the
closing of d′′ prevents d and d′ from closing, two edges of Sopt can be
associated to eAj . Inequation (1) is satisfied by construction. The edge
eAj may have eliminated at most two optimal edges in R and prevent the
closing of a cycle, but Inequation (2) is still satisfied.

– It is eliminated because it try to merge two paths p1 and p2. If eopti is
not a bridge and p1 and p2 are a single-edge paths, then the number of
alternating cycles and paths are reached in S, that is σc = c, σp = p and
S = SA. Then we can find an edge eAj such that |ϕ−1(eAj)| = 0 and we
assign ϕ(eopti) = eAj . Inequations (1) and (2) are satisfied by construction.
Otherwise, the algorithm eliminates eopti because one of the merged path
must be closed into a cycle to reach the correct number of alternating cycles.
Otherwise, it exists an edge eAj in SA considered before eopti in the algorithm
such that |ϕ−1(eAj)| ≤ 3 (since otherwise the path would be already closed
into a cycle) and then we assign ϕ(eopti) = eAj . Inequations (1) and (2) are
satisfied by construction.

From the previous discussion and by Inequations (1) and (2), clearly we have:

ω(Sopt) ≤ ω(ϕ(Sopt)) ≤ 5× ω(SA).

The ratio is tight, as shown by the example depicted in Figure 4.3.

16

Concerning the complexity, the sort of the edges can be done inO(|V (G∗)|log|E(G∗)|).
The feasability function is called |E(G∗)| times. Thus, the time complexity of
the algorithm is O(|E(G∗)| · |V (G∗)| · σ2

c).

Fig. 4. The approximation ratio of five for the
greedy algorithm is tight. The matching edges
are bold, the dashed edges belong the approxi-
mate solution and the solid edges belong to the
optimal solution. G∗ is composed by the cliques
C1 = {a, b, c, d, e, f}, C2 = {g, h}, C3 = {i, j, k, l} and
C4 = {m,n, o, p}. All edges are valued by zero except
ac and the edges of Sopt. We suppose that σp = 3 and
σc = 0, and that the greedy algorithm choose first "the
wrong edge" ac. Consequently, the solution SA given
by the greedy algorithm is of weight 1, whereas an op-
timal solution would be of weight 5.

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

5 Conclusion

We presented in this paper the first polynomial-time algorithm approximating
the scaffolding problem on non-complete graphs. Using a dynamic programming
approach, we exploited the tree-like nature of connected cluster graph to extend
the feasibility function and the analysis of the approximation ratio. A natural
extension of this work would be to explore the practical aspects of this algorithm.
Since connected cluster graphs aim to model real instances, we intend to measure
in what extend this algorithm provides good results on them. We expect the ratio
on real instances to be close to one, as for the greedy algorithm on cliques [1].
We may also explore the possibility to exploit randomized algorithms framework
to improve this ratio.

References

[1] A. Chateau and R. Giroudeau. Complexity and Polynomial-Time Approximation
Algorithms around the Scaffolding Problem. In Proc. AlCoB ’14, volume 8542 of
LNCS, pages 47–58. Springer, 2014. ISBN 978-3-319-07952-3.

[2] A. Chateau and R. Giroudeau. A complexity and approximation framework for
the maximization scaffolding problem. Theoretical Computer Science, 595:92–106,
2015.

[3] Z. Chen, Y. Harada, E. Machida, F. Guo, and L. Wang. Better approximation al-
gorithms for scaffolding problems. In Daming Zhu and Sergey Bereg, editors,
Frontiers in Algorithmics: 10th International Workshop, FAW 2016, Qingdao,
China, June 30- July 2, 2016, Proceedings, pages 17–28. Springer International
Publishing, 2016.

17

[4] C. Dallard, M. Weller, A. Chateau, and R. Giroudeau. Instance guaranteed ratio
on greedy heuristic for genome scaffolding. In COCOA, volume 10043 of Lecture
Notes in Computer Science, pages 294–308. Springer, 2016.

[5] I. Mandric, J. Lindsay, I. I. Măndoiu, and A. Zelikovsky. Scaffolding algorithms.
In I. Măndoiu and A. Zelikovsky, editors, Computational Methods for Next Gen-
eration Sequencing Data Analysis, chapter 5, pages 107–132. Wiley, 2016.

[6] E. R. Mardis. DNA sequencing technologies: 2006-2016. Nat Protoc, 12(2):213–
218, Feb 2017.

[7] J. R. Miller, P. Zhou, J. Mudge, J. Gurtowski, H. Lee, T. Ramaraj, B. P. Walenz,
J. Liu, R. M. Stupar, R. Denny, L. Song, N. Singh, L. G. Maron, S. R. McCouch,
W. R. McCombie, M. C. Schatz, P. Tiffin, N. D. Young, and K. A. T. Silverstein.
Hybrid assembly with long and short reads improves discovery of gene family
expansions. BMC Genomics, 18(1):541, 07 2017.

[8] M. Weller, A. Chateau, and R. Giroudeau. On the complexity of scaffolding
problems: from cliques to sparse graphs. In Zaixin Lu, Donghyun Kim, Weili Wu,
Wei Li, and Ding-Zhu Du, editors, Combinatorial Optimization and Applications:
9th International Conference, COCOA 2015, Houston, TX, USA, December 18-
20, 2015, Proceedings, pages 409–423. Springer International Publishing, 2015.

[9] M. Weller, A. Chateau, and R. Giroudeau. Exact approaches for scaffolding. BMC
bioinformatics, 16(Suppl 14):S2, 2015.

[10] M. Weller, A. Chateau, C. Dallard, and R. Giroudeau. Scaffolding problems
revisited: Complexity, approximation and fixed parameter tractable algorithms,
and some special cases. Algorithmica, 80(6):1771–1803, 2018. doi: 10.1007/
s00453-018-0405-x. URL https://doi.org/10.1007/s00453-018-0405-x.

18

https://doi.org/10.1007/s00453-018-0405-x

A Appendix

A.1 Algorithms

Algorithm 7: juxtapose
Data: S1 = {S11 ,S12 , . . . }, . . . ,Sk = {Sk1 ,Sk2 , . . . }: sets of sets of solutions.

1 if k = 0 then
2 [S]← 0;
3 end
4 [I]← juxtapose(S2, . . . , Sk);
5 forall i ∈ [0, σc] do
6 forall j ∈ [0, σc − i] do
7 [S, i+ j]← [S, i] +

⋃
S∈S1 [S, j]

8 end
9 end

10 return [S]

Algorithm 8: merget or absorb
Data: S1 = {S11 ,S12 , . . . }, . . . ,Sk = {Sk1 ,Sk2 , . . . }: sets of sets of solutions,

t: number of paths to merge (t = 2 in the absorb function).
1 forall i ∈ [0, σc] do
2 forall j ∈ [0, σc − i] do
3 [S, i+ j]←

⋃
S∈S1 [S, i] +

⋃
S′∈S2 [S′, j] + {−(t− 1)}

4 end
5 end
6 if k 6= 2 then
7 [S]← juxtapose({S}, S3, . . . , Sk);
8 end
9 return [S]

Algorithm 9: closet
Data: S1 = {S11 ,S12 , . . . }, . . . ,Sk = {Sk1 ,Sk2 , . . . }: sets of sets of solutions,

t: number of paths to close.
1 forall i ∈ [0, σc] do
2 forall j ∈ [0, σc − i] do
3 [S, i+ j + 1]←

⋃
S∈S1 [S, i] +

⋃
S′∈S2 [S′, j] + {−t}

4 end
5 end
6 if k 6= 2 then
7 [S]← juxtapose({S}, S3, . . . , Sk);
8 end
9 return [S]

19

	New Polynomial-Time Algorithm around the Scaffolding Problem

