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Recurrence plots of time series generated by discrete fractional Gaussian noise (fGn) processes are
analyzed. We compute the probabilities of occurrence of consecutive recurrence points forming diag-
onals and verticals in the recurrence plot constructed without embedding. We focus on two recurrence
quantification analysis measures related to these lines, respectively, the percent determinism and the
laminarity (LAM ). The behavior of these two measures as a function of the fGn’s Hurst exponent
H is investigated. We show that the dependence of the laminarity with respect to H is monotonic
in contrast to the percent determinism. We also show that the length of the diagonal and vertical
lines involved in the computation of percent determinism and laminarity has an influence on their
dependence on H . Statistical tests performed on the LAM measure support its utility to discriminate
fGn processes with respect to their H values. These results demonstrate that recurrence plots are suit-
able for the extraction of quantitative information on the correlation structure of these widespread
stochastic processes. Published by AIP Publishing. https://doi.org/10.1063/1.5030522

Discrete fractional Gaussian noises are ubiquitous stochas-
tic processes depending on a single parameter, the Hurst
exponent H , which entirely describes their time cor-
relations. White noise is recovered for H= 0.5. The
variation with H of two remarkable features of their
recurrence plots (the determinism and the laminarity)
is analyzed by confronting exact probabilistic results in
infinite-size and finite-size simulation. This investigation
provides new results about recurrence quantification anal-
ysis from diagonal and vertical lines, presents a method-
ology yielding their analytical derivation for infinite-size
recurrence plots, and overall opens a novel research direc-
tion for the estimation of the exponent H .

I. INTRODUCTION

In 1987, Eckmann, Kamphorst, and Ruelle1 introduced
the concept of recurrence plots (RPs) to analyze data produced
by nonlinear dynamical systems. Few years later, recurrence
quantification analysis (RQA) was proposed by Zbilut and
Webber2,3 to extract quantitative information from recurrence
plots (RPs). Since then, many works have shown that several
measures can be derived from RPs4,5 which provide infor-
mation on the predictability, the stationarity, the cyclicites,
or the laminar nature of the underlying dynamics or process
generating the considered data.

After the recurrence rate (REC), the measures introduced
next were related to diagonal structures that are parallel to
the main diagonal of the RP. Among these measures, the per-
cent determinism (DET) is certainly the best acknowledged.
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DET is related to the predictability of the underlying process
generating the analyzed data.4

Some years later, Marwan et al.6 proposed new measures
derived from the vertical structures of RPs. In particular, a
measure inspired by DET was defined and called laminarity
LAM . The recurrence points forming these vertical lines are
related to the concept of sojourn points introduced by Gao.7,8

It has been shown that such vertical structures can be related
to intermittency phenomena and useful for the detection of
chaos-chaos or chaos-order transitions.4,6

Although RPs and RQA were first intended to investi-
gate deterministic chaotic dynamics, studies have shown that
they can also be used to explore data generated by stochastic
processes. More specifically, the measures derived from the
diagonal structures of the RPs have been shown to be related
to the time correlations of the considered random process (see
Refs. 4 and 9 and references therein).

In the present work, the statistical properties of RPs of
data generated by discrete fractional Gaussian noise (fGn) are
investigated. This stochastic process was introduced in the
seminal work of Mandelbrot and van Ness as the increment
process of fractional Brownian motion.10 Such processes have
been widely used to model random time series in several fields
such as biology, physics, or finance.11 They are characterized
by the so-called Hurst exponent H , which is the parameter
specifying the autocovariance of the process.

Extending a methodology introduced in a previous
paper,9 we compute the measures REC, DET , and LAM of
fGn processes RPs constructed without embedding (i.e., with
an embedding dimension equal to 1). The effect on these
measures of varying the H exponent is explored. The results
show that, unlike the DET measure, the laminarity LAM is
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a monotonic increasing function of H . These findings sug-
gest that the vertical structures of RPs of processes that can
be modeled by fGn can be used to characterize their time
correlations.

II. DEFINITIONS OF DET AND LAM MEASURES

In this section, the RP construction and the definitions of
DET and LAM indices are briefly recalled.

Let (xi) be a time series. The first step of the RP construc-
tion is to perform the time delay embedding procedure12–14 to
define the time delay vector xi of dimension d and using a
time delay τ :

xi = [xi, xi+τ , xi+2τ , . . . , xi+(d−1)τ ]T . (1)

Then using some norm (Euclidean or maximum norm in gen-
eral), all the distances between xi and xj are compared to a
given threshold (or radius) ε. The RP is simply the repre-
sentation of the so-called recurrence points corresponding to
locations (i, j) for which the distance between xi and xj is less
than ε. No dot is represented otherwise.

The first measure currently computed is the recurrence
rate REC, which is simply the rate of recurrence points. The
second measure is the rate of recurrence points forming lines
of length at least n that are parallel to the main diagonal
(defined by i = j). This so-called percent determinism DET
is given by4

DET(ε, n) =

Nv∑

k=n
kJk(ε)

Nv∑

k=1
kJk(ε)

, (2)

where Jk(ε) is the number of diagonal lines of length exactly
k and Nv is the size of the RP.

Similarly, one can define the rate of recurrence points
forming vertical lines of length at least n, namely, the lami-
narity LAM given by4,6

LAM (ε, n) =

Nv∑

k=n
kVk(ε)

Nv∑

k=1
kVk(ε)

, (3)

where Vk(ε) is the number of vertical lines of length
exactly k.

III. FRACTIONAL GAUSSIAN NOISE

Fractional Gaussian noise (fGn) is defined as the incre-
ment process of fractional Brownian motion (fBm) (see Refs.
10 and 11). It is a centered, stationary, and Gaussian process.
In the discrete-time case, the autocovariance function γ is
given by

γ (k) = σ 2

2

(|k + 1|2H − 2|k|2H + |k − 1|2H
)

(4)

for k ∈ Z and where σ 2 is the variance of the process (we con-
sider here σ 2 = 1) and H is the Hurst exponent (0 < H < 1,
H = 0.5 corresponding to white noise). Note that
γ (−k) = γ (k).

A classical approach for the simulation of fGn’s sample
paths is based on the Cholesky decomposition of the covari-
ance matrix �, whose (i, j) entry can be written �ij = γ (i − j)
due to covariance stationarity. This procedure is quite straight-
forward. Let L be the lower triangular matrix related to the
symmetric positive definite matrix � according to the equal-
ity � = LLT . Denoting η a N-dimensional column vector of
white Gaussian noise samples, a time series with the desired
fGn properties is obtained by computing x = Lη.11

Figure 1 shows the RPs of two sample paths of fGn
processes for two different values of the parameter H .

IV. THEORETICAL ANALYSIS

In this section, the methodology used to compute the the-
oretical values of the percent determinism and laminarity of
time series generated by discrete fGns is described. These the-
oretical counterparts are denoted DETth and LAMth. We should
emphasize at this point that the term theoretical in this con-
text indicates that the RQA measures correspond to theoretical
infinite RPs. Thus, one can refer to these theoretical quantities
as asymptotic. To achieve these computations, the derivation
of the probabilities of the occurrence of a diagonal or a vertical
line is necessary.

The methodology is based on a previous work for which
only diagonal lines were considered.9 It should be underlined
that this approach is not specific to fGns but is generic for the
analysis of the RP measures of any discrete-time stationary
Gaussian stochastic process.

Thus, in this section, we consider that x is a real-
valued, discrete time, wide-sense stationary, centered Gaus-
sian stochastic process, with unit variance. For the sake of
simplicity, the random variables and their realizations are
denoted with the same symbols.

For the rest of the analysis, we will consider the case of
RPs constructed without embedding. In this case, the vector
xi reduces to the scalar xi [see Eq. (1)].

In Secs. IV A–IV G, we will present the computations of
the theoretical probabilities:

• Pi,j: the probability of the occurrence of a recurrence point
at location (i, j) of the RP.

• Pn
i,j: the probability of the occurrence of a diagonal of length

n, starting from point (i, j).
• Qn

i,j: the probability of the occurrence of a diagonal of
length exactly n, starting from point (i, j).

• Tn
i,j: the probability of the occurrence of a vertical of length

n, starting from point (i, j).
• Un

i,j: the probability of the occurrence of a vertical of length
exactly n, starting from point (i, j).

The use of an embedding dimension equal to 1 is motivated
by technical aspects of the computation of probabilities Pn

i,j
and Tn

i,j. As it can be seen in Secs. IV B and IV E below,
considering an embedding dimension d > 1 introduces an
overlapping of the time delay vectors involved in the compu-
tation of these probabilities, which will result in a much more
complex formalization of the inequalities defining diagonal or
vertical lines. In addition, taking d = 1 automatically discard
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FIG. 1. Recurrence plots [(a),(c)] of unit-variance fGn sample paths [(b),(d)] with H = 0.20 and H = 0.80, respectively. The RPs were constructed without
embedding and using a threshold ε = 0.5.

the issue of the selection of a time delay, which is not straight-
forward for data generated by fGn processes. This point will
be discussed in Sec. VI.

By definition, DETth and LAMth can be expressed as func-
tions of Qn

i,j and Un
i,j. In the following, we will show that the

probabilities Qn
i,j and Un

i,j can be derived from the probabilities
Pn

i,j and Tn
i,j. Note also that in order to simplify the notations of

these probabilities, their dependence on the threshold ε is not
explicitly mentioned.

A. Computation of the probability Pi,j

In the case of an embedding dimension d = 1, the com-
putation of the probability of the occurrence of a recurrence
point at location (i, j) of the RP was addressed in a previ-
ous work.9 For a stochastic process x, with variance σ 2 and
autocovariance function γ , satisfying the above mentioned
conditions, it can be written

Pi,j = erf

(
ε

√
2αi,j

)

, (5)

with αi,j = 2
[
σ 2 − γ (i − j)

]
for i �= j. In the case i = j, we

simply get Pi,i = 1. For |i − j| large enough, the probability
Pi,j is independent of (i, j) and it provides an approximation of
the theoretical recurrence rate RECth.9 Thus, for |i − j| large
enough, Pi,j can be simply denoted P. The evolution of Pi,j as
a function of |i − j|, shown in Sec. V, provides a quantitative
support of this assumption.

B. Computation of the probability Pn
i,j

To compute Pn
i,j, a method developed in Ref. 9 for the

general case of a stationary Gaussian random process x is
applied. On a recurrence plot constructed without embedding,
Pn

i,j is the probability of the occurrence of n joint events given
by |xi − xj| � ε, |xi+1 − xj+1| � ε,. . . ,|xi+n−1 − xj+n−1| � ε.

If yn
i,j is an n-dimensional random vector given by

yn
i,j = (xi − xj, xi+1 − xj+1, . . . , xi+n−1 − xj+n−1)

T . (6)

Thus, Pn
i,j(ε) is the probability to have ‖yn

i,j‖∞ � ε, where
‖ · ‖∞ is the maximum norm.

Note that yn
i,j is the difference of two Gaussian random

vectors of dimension n, respectively, constituted of the ran-
dom variables xi et xj and their (n − 1) following variables.
Consequently, the random vector yn

i,j is also Gaussian as a vec-
tor composed of differences of joint normal components of the
process x.15,16

Let �i,j be the covariance matrix of the random vector
yn

i,j. The components of this matrix are defined by

	
i,j
k,l = 〈(xi+k−1 − xj+k−1)(xi+l−1 − xj+l−1)〉, (7)

for (k, l) ∈ {1, 2, . . . , n}2, where the brackets 〈·〉 denote expec-
tation.

Consequently, the probability density function (pdf) asso-
ciated with yn

i,j is given by the following multivariate Gaussian
function:

f n
i,j(y) = 1

(2π)n/2|�i,j|1/2
exp

[
−1

2
yT

(
�i,j)−1

y
]

, (8)

where |�i,j| is the determinant of the matrix �i,j.
The probability Pn

i,j to have a diagonal of n consecutive
recurrence points starting from a point (i, j) on the RP reads

Pn
i,j =

∫

M(ε)

f n
i,j(y)dy, (9)

with M(ε) = {y : y ∈ R
n, ‖y‖∞ � ε}.

In the generic case, this probability can not be calculated
analytically, but it can be estimated numerically. To achieve
this, the method proposed by Genz17 is used. A description of
this method can be found in the Appendix of Ref. 9.
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It can be numerically shown that Pn
i,j is approximately

independent of (i, j) for |i − j| � 1, i.e., for points (i, j) that
are not close to the main diagonal of the RP. This can be justi-
fied by the stationarity of the analyzed random process.9 This
will be illustrated in Sec. V and the dependence of Pn

i,j with
respect to |i − j| will be shown for different values of H .

C. Computation of the probability Qn
i,j

The computation of Qn
i,j can be achieved in the general

case and without any assumption on the nature of the pdf of
the stochastic process. It can be expressed as follows:

Qn
i,j = (Pn

i,j − Pn+1
i,j ) − (Pn+1

i−1,j−1 − Pn+2
i−1,j−1), (10)

where Pn
i,j is given by Eq. (9).

In order to compute the theoretical value DETth, we
also use the fact that Pn

i,j is approximately independent of
(i, j) for |i − j| � 1. Thus, the notations Pn

i,j and Qn
i,j can be,

respectively, replaced with Pn and Qn. Equation (10) then
leads to

Qn 	 Pn − 2Pn+1 + Pn+2, (11)

where Pn, Pn+1, and Pn+2 are estimated using Eq. (9) for
|i − j| � 1.

D. Computation of the theoretical percent determinism
DETth

After a normalization of the numerator and denominator
in the definition, Eq. (2), of the empirical DET , the following
expression for its theoretical (i.e., asymptotic) counterpart is
obtained:

DETth(ε, n) =

∑

k�n
kQk

∑

k�1
kQk

. (12)

For the numerical computation of DETth, a reasonable approx-
imation can be obtained by considering only the first terms of
the involved sums. This is a consequence of the fast vanishing
of probability Qk with k, especially for small ε values. A dif-
ferent and refined approximation can be derived by replacing
Qk with the expression given by Eq. (11). According to this
result, the numerator of DETth can be written

∑

k�n

kQk 	
∑

k�n

k(Pk − 2Pk+1 + Pk+2). (13)

If we detail the first terms of the involved sum, we get

∑

k�n

kQk 	 n(Pn − 2Pn+1 + Pn+2)

+ (n + 1)(Pn+1 − 2Pn+2 + Pn+3)

+ (n + 2)(Pn+2 − 2Pn+3 + Pn+4)

+ (n + 3)(Pn+3 − 2Pn+4 + Pn+5)

· · · ,

(14)

which leads to
∑

k�n

kQk 	 nPn − 2nPn+1 + nPn+2

+ (n + 1)Pn+1 − (2n + 2)Pn+2 + (n + 1)Pn+3

+ (n + 2)Pn+2 − (2n + 4)Pn+3 + (n + 2)Pn+4

+ (n + 3)Pn+3 − (2n + 6)Pn+4 + (n + 3)Pn+5

· · · .
(15)

Through this last expression, one can observe that the inter-
mediary terms Pn+2, Pn+3, Pn+4, . . . cancel out. Thus, an
approximation of the numerator of DETth can be written

∑

k�n

kQk 	 nPn − (n − 1)Pn+1. (16)

Consequently, for the denominator of DETth [see Eq. (12)],
we get

∑

k�1

kQk 	 P1. (17)

Note that P1 is, in fact, equal to the probability P, that
is, the theoretical recurrence rate [see Eq. (5)]. Finally, an
approximation of DETth is given by

DETth(ε, n) 	 nPn − (n − 1)Pn+1

P1
. (18)

E. Computation of the probability T n
i,j

The probability of the occurrence of a vertical of length n,
starting from point (i, j) corresponds to the joint events
defined by |xi − xj| � ε, |xi − xj+1| � ε,. . . ,|xi − xj+n−1| � ε.
Similar to the case of diagonal lines, we introduce a new
n-dimensional random vector zn

i,j defined by

zn
i,j = (xi − xj, xi − xj+1, . . . , xi − xj+n−1)

T . (19)

Consequently, Tn
i,j(ε) is the probability to have ‖zn

i,j‖∞ � ε.
Denoting �i,j the covariance matrix of the Gaussian

random vector zn
i,j, we have

�
i,j
k,l = 〈(xi − xj+k−1)(xi − xj+l−1)〉, (20)

for (k, l) ∈ {1, 2, . . . , n}2. The pdf associated with zn
i,j is also

given by a multivariate Gaussian function

gn
i,j(z) = 1

(2π)n/2|�i,j|1/2
exp

[
−1

2
zT

(
�i,j)−1

z
]

. (21)

Finally, the probability Tn
i,j to observe a vertical line of n recur-

rence points starting from a point (i, j) on the RP can be
written

Tn
i,j =

∫

D(ε)

gn
i,j(z)dz, (22)

with D(ε) = {z : z ∈ R
n, ‖z‖∞ � ε}.

As done for Pn
i,j, we exploit the fact that Tn

i,j is approx-
imately independent of (i, j) for |i − j| � 1. This will be
numerically validated in Sec. V where the dependence of Tn

i,j
as function of |i − j| is depicted for different values of H .
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F. Computation of the probability Un
i,j

The computation of the probability Un
i,j of the occurrence

of a vertical of length exactly n, starting from point (i, j), can
be performed thanks to the reasoning used for the case of
diagonals. Thus, we have

Un
i,j = (Tn

i,j − Tn+1
i,j ) − (Tn+1

i−1,j−1 − Tn+2
i−1,j−1). (23)

Once again, the fact that Tn
i,j is approximately independent of

(i, j), for |i − j| � 1, is used. Replacing the notation Tn
i,j with

Tn and Un
i,j with Un, we then get from Eq. (23)

Un 	 Tn − 2Tn+1 + Tn+2, (24)

where Tn, Tn+1, and Tn+2 are computed using Eq. (22) for
|i − j| � 1.

G. Computation of the theoretical laminarity LAMth

From Eq. (3) defining the empirical LAM , its theoretical
(i.e., asymptotic) counterpart can be defined by

LAMth(ε, n) =

∑

k�n
kUk

∑

k�1
kUk

. (25)

As for the theoretical percent determinism, this expression can
be simplified. Indeed, by replacing Un with the expression
given by Eq. (24) involving Tn, the following approximation
for the denominator of LAMth is obtained:

∑

k�n

kUk 	
∑

k�n

k(Tk − 2Tk+1 + Tk+2). (26)

After some algebra detailed in Eqs. (14) and (15) for the case
of diagonal lines and for the computation of DETth, we get

∑

k�n

kUk 	 nTn − (n − 1)Tn+1. (27)

Similarly, the denominator of LAMth is given by
∑

k�1

kUk 	 T1. (28)

The approximation of LAMth then can be written

LAMth(ε, n) 	 nTn − (n − 1)Tn+1

T1
. (29)

V. NUMERICAL RESULTS

In this section, we present the results of the computation
of the theoretical probabilities Pi,j, Pn

i,j, and Tn
i,j as a function

of |i − j| for different values of the parameter H and for n = 2
and n = 4. Then, we show the results of the numerical compu-
tations of the theoretical values RECth, DETth, and LAMth for
a range of H values (from 0.05 to 0.95) and compare them to
the empirical REC, DET , and LAM values obtained for simu-
lated paths of fGn processes. In the case of DETth and LAMth,
we also explore the effect of the diagonal and vertical minimal
length n on the obtained values.

The simulation of discrete fGn time series can be per-
formed through different methods.11,18 A classical approach
relies on the Cholesky decomposition of the covariance

matrix of the process. Alternatives are based on the so-
called Lowen’s circulant method,19 truncated symmetric mov-
ing average filters,20 or wavelet-based synthesis.21 For our
study, we performed simulations using these three approaches
and obtained very similar qualitative results. Thus, we only
present here the outcomes of the simulations based on the
Cholesky decomposition of the covariance matrix.

According to Eqs. (18) and (29), the computation of
DETth and LAMth relies, respectively, on the computation of
the probabilities Pn and Tn. These probabilities are estimated
thanks to Eqs. (9) and (22) for |i − j| � 1 and are obtained
through the integration of the multivariate Gaussian functions
defined by Eqs. (11) and (29). This can be achieved using the
approach proposed by Genz17 and detailed in the Appendix of
Ref. 9.

The covariance matrices involved in the functions defined
by Eqs. (8) and (21) were, respectively, denoted by �i,j

and �i,j. According to Eqs. (7) and (20), these matrices
are composed of terms that can be expressed through the
autocovariance function γ (defined in Sec. III) as follows:

	
i,j
k,l = 2γ (k − l) − γ (i − j + k − l) − γ (j − i + k − l),

(30)

�
i,j
k,l = 1 − γ [i − (j + l − 1)] − γ [(j + k − 1)− i] + γ (k − l),

(31)

for (k, l) ∈ {1, 2, . . . , n}2.
For the computations of RECth, DETth, and LAMth, we set

|i − j| = 500 and ε = 0.5. This value of the threshold radius
ε ensured large enough probabilities of occurrence of diago-
nal and vertical lines in almost all numerically explored cases
(values of H and n). Note that we consider zero-mean and
unit variance processes. This implies that the selected relative
radius corresponds to 50% of the standard deviation of the
theoretical process. This value was also selected according to
our previously published results regarding a sensitivity analy-
sis with respect to the threshold value.9 Indeed, for 1000-point
sample paths, the findings support that such value ensures reli-
able estimations of RQA measures, i.e., consistent with their
theoretical values and with low variability.

FIG. 2. Probability Pi,j as a function of |i − j| obtained for H values ranging
from 0.1 to 0.9, with a step of 0.1. The curves for H � 0.5 are almost identical
for largest values of |i − j|.
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Figure 2 shows the values of the probability Pi,j (which
provides an estimation of RECth) for |i − j| ranging from 0 to
500 for different values of the parameter H . Figures 3 and 4
show similar results for the probabilities Pn

i,j and Tn
i,j, respec-

tively, involved in the computation of DETth and LAMth, for
n = 2 and n = 4. The results depicted in these figures con-
firm the numerically observed asymptotic independence of the
theoretical probabilities of (i, j) for |i − j| � 500. Note that as
expected and unlike Tn

i,j, the probability Pn
i,j is equal to 1 for

|i − j| = 0, which corresponds to the main diagonal of the RP.
For the estimation of the empirical values of REC, DET ,

and LAM , we set the embedding dimension d = 1 and the
same threshold ε = 0.5. We excluded the main diagonal of
the RPs for these estimations (for Figs. 1 and 6, displaying
RPs, the main diagonal was not discarded). For each value
of H , these computations were performed for simulated time
series of 1000-point length. Thirty realizations of each process
were simulated in order to get statistics (mean and standard
deviation) of the REC, DET , and LAM values. We performed
the comparison between the theoretical and empirical RQA
(DET and LAM ) measures for three values of the diagonal
and vertical lines length, namely, n = 2, 3, 4.

The empirical RQA measures were obtained by means of
the Cross Recurrence Plot Toolbox developed by N. Marwan6

(available at http://www.agnld.uni-potsdam.de/∼marwan/
toolbox.php).

In Fig. 4, the empirical and theoretical values of REC,
DET , and LAM are depicted for H values ranging from 0.05
to 0.95 with a step of 0.05. For the empirical values, the mean

value of each measure (over thirty simulated sample paths)
is shown and the error bars correspond to the standard devia-
tions. This figure also shows these values for different values
of n (2, 3 and 4), namely, the minimal length of the diagonal
and vertical lines, respectively, considered for the computa-
tion of DET and LAM measures. As expected, the DET and
LAM values decrease with n. Note that, in Fig. 4, the scale for
the REC values is reduced in comparison to the scales used to
depict DET and LAM values.

In order to get a deeper insight into the potential discrimi-
native power of empirical LAM measure, which is monotonic
with respect to H , we also performed statistical tests. We used
a pairwise two-tailed Student’s test for independent samples
to compare, for all possible pairs of H values (19 values rang-
ing from 0.05 to 0.95), the sample means of LAM values
obtained from 30 simulated time series. The results for three
different values of n, namely, 2, 3, and 4, are presented in
panels (a), (b), and (c) of Fig. 5, in a graphical matrix form
using a 2-D binary plot where the white squares represent the
cases for which the null hypothesis of equality of means was
rejected. A black square is plotted when the null hypothesis
was not rejected. The significance level α value was set to 0.05
for these tests. The use of the Student test was supported by
checking the normality of each sample of 30 empirical LAM
values using the Kolmogorov-Smirnov test: for all H and
n values, we found that the null hypothesis of a normal under-
lying distribution was not rejected. In panels (d), (e), and (f)
of Fig. 5, we present the power of these statistical tests using
heatmap plots, for each value of n.

FIG. 3. Probabilities Pn
i,j [panels (a) and (c)] and Tn

i,j [panels (b) and (d)] as functions of |i − j| for H values ranging from 0.1 to 0.9, with n = 2 [(a) and (b)] and
n = 4 [(c) and (d)]. The value of probability Tn

i,j shown in panels (b) and (d) increases with H .

http://www.agnld.uni-potsdam.de/~marwan/toolbox.php
http://www.agnld.uni-potsdam.de/~marwan/toolbox.php
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0.4

FIG. 4. Empirical and theoretical REC (a), DET (b), and LAM (c) measures obtained for H values ranging from 0.05 to 0.95. In the case of DET and LAM , the
values obtained for n = 2, n = 3, and n = 4 are reported. The top-most curve corresponds to n = 2 and the bottom-most to n = 4. Note that the scale used to
depict REC values is reduced in comparison to the scales of DET and LAM .

VI. DISCUSSION

The computation of the theoretical RQA measures RECth,
DETth, and LAMth is directly related to the computation of the
probabilities Pi,j, Pn

i,j, and Tn
i,j [see Eqs. (5), (18), and (29)].

The results shown in Figs. 2 and 3 indicate that the setting of
|i − j| = 500 for the computation of RECth, DETth, and LAMth

ensures a very good approximation in almost all cases.
We also observe from Fig. 3 that the probability related

to the vertical lines Tn
i,j [shown in panels (b) and (d)] is more

FIG. 5. 2-D binary plots [(a)–(c)] and heatmap plots [(d)–(f)], respectively, displaying t-test results and their corresponding power for n = 2, 3, and 4 (from left
to right). These plots were obtained by comparing empirical LAM means for all possible pairs of H values ranging from 0.05 to 0.95. Note that the diagonal
black squares result from the comparison of two identical samples of LAM values and thus they do not convey a statistical meaning.
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relevant than Pn
i,j [depicted in panels (a) and (c), in which a

zoom is added] to distinguish H values lower than 0.5 to those
larger than 0.5 (H = 0.5 corresponds to the case of white
noise). This can be confirmed after an adjustment of the scale
of Pn

i,j to match the Tn
i,j scale.

The results displayed in Fig. 4 show that the theoretical
and empirical values of the three considered RQA measures
are very coherent. For the REC measure [Fig. 4, panel (a)],
we observe a moderate overestimation for H � 0.85. We also
observe a very stable value of the theoretical value RECth for
H � 0.80. For larger values of H , low-frequency components
(local trends) appear in the time series, inducing modifications
on the expected statistical properties, e.g., mean and standard
deviation, of the simulated sample paths. This could explain
the overestimation of the REC values of the simulated signals
with respect to their theoretical counterparts. This probable
explanation should be confirmed in the future by a dedicated
study. Note that the local trends induce white bands and less
homogeneous RPs, as apparent in the two RPs displayed in
Fig. 6, generated by two fGn sample paths, with H = 0.7 and
H = 0.9 (see also Ref. 4 and references therein regarding non-
stationarity issues).

We observe that the variability of the empirical DET
(quantified by the standard deviation) is, in general, lower than
the variability obtained for the LAM measure [see Fig. 4, pan-
els (b) and (c)]. We also note that the variability of DET is
decreased when the number of the minimal length n of the
considered diagonals is increased.

Figure 4 shows that unlike DETth, LAMth is monotonic.
The DET measure reaches a minimal value for H = 0.5,
which corresponds to white Gaussian noise. This is expected
as DET is positively correlated to the predictability of the
process. The statistical results displayed in Fig. 5 suggest
that the LAM measure computed for n = 2 can potentially

be used to distinguish different values of H (with a 0.05 step
resolution) when H � 0.5 [see Figs. 5(a) and 5(d)]. For n = 3
and n = 4, this would require higher values of H , namely,
H > 0.6 [see Figs. 5(b), 5(c), 5(e), and 5(f)]. As for a pos-
sible limitation coming from data length, and specifically for
the results of Fig. 4, simulations performed with 200-point
fGn sample paths provided consistent findings (not shown)
with those presented here using 1000-point length time series.
The main differences were a moderately larger overestima-
tion of the REC measure for values of H larger than 0.80
and an expected increase of the variability of the empirical
estimations. Concerning the results of the statistical tests, as
expected, the discriminative power of the LAM measure was
weakened so that the significant statistical differences were
only found for H values larger than 0.75.

In order to confirm our results regarding the potential
effect of the quality of the simulated fGn paths, we also inves-
tigated the RQA measures as functions of the a posteriori
estimated H values instead of using the preset theoretical H
values. To estimate these values of H , we used two classi-
cal methods, namely, detrended fluctuation analysis (DFA)
and an approach using a wavelet-based discrete second-order
derivative estimator (see, for instance, Refs. 22–26). We thus
obtained H for each 1000-point simulated path and then aver-
aged over the 30 realizations to get a unique statistic. The
dependence of the three considered RQA measures on these
estimated H values was similar and consistent with the one
based on the predefined H values. Actually, the estimated H
values are only slightly shifted with respect to the predefined
H values. The results of the second estimation method are
displayed in Fig. 7.

Few studies have addressed the theoretical derivation
of RQA measures for large classes of stochastic processes.
These studies had different objectives and were based on

FIG. 6. Recurrence plots [(a),(c)] of unit variance fGn sample paths [(b),(d)] with H = 0.70 and H = 0.90, respectively. The RPs were constructed without
embedding and using a threshold ε = 0.5.
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FIG. 7. Empirical and theoretical REC (a), DET (b), and LAM (c) measures obtained for H values ranging from 0.05 to 0.95. Values obtained for n = 2, 3, and
4 are reported for DET and LAM measures. The top-most curve corresponds to n = 2 and the bottom-most to n = 4. For the empirical estimations of the three
measures, the corresponding H values shown on x-axis were computed a posteriori using a wavelet-based discrete second-order derivative method, explaining
the slight horizontal shift between the points of the blue and red curves.

completely different methodological approaches than ours.
They were not specific to fGn processes. In Ref. 27, a
mathematical and statistical analysis of some specific RQA
measures (the k-recurrence rate, the percent determinism, and
the average length of diagonal lines) was performed. The
authors exploited correlation sums to analytically express the
asymptotic values of these measures and applied them to
i.i.d. processes, Markov chains, and autoregressive processes.
In another work, Schultz et al.28 derived approximations
of diagonal line based RQA-measures including the percent
determinism. The results were expressed in terms of pair-
wise proximity measures, which basically count the number of
pairs of neighboring states in the reconstructed phase space. In
the same line, Spiegel et al.29 extended this result to approxi-
mate the laminarity using a measure of stationary states of the
embedded trajectory in a phase space with distances defined
by maximum norm. In Ref. 30, fGn processes were investi-
gated through recurrence networks. The authors empirically
showed that these networks can be useful to analyze such
processes provided that the embedding dimension and delay
are properly selected. They also emphasized that selecting
the embedding dimension is not straightforward for fGn pro-
cesses. One advantage of our approach is that the embedding
dimension is set to 1 and thus no time delay is required to
construct the RPs.

Overall, our results establish an analytical relationship
between the main RQA measures and the covariance struc-
ture of a wide class of stationary Gaussian processes. These
findings demonstrate that measures extracted from RPs can
be exploited to identify and distinguish fGn processes. The
theoretical values of specific RQA measures can be used to
control the quality of the estimation of the H exponent.
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