J. Eckmann, S. Kamphorst, and D. Ruelle, Recurrence plots of dynamical systems, Europhys. Lett, vol.4, pp.973-977, 1987.

J. Zbilut and C. Webber, Embeddings and delays as derived from quantification of recurrence plots, Phys. Lett. A, vol.171, pp.199-203, 1992.

C. Webber and J. Zbilut, Dynamical assessment of physiological systems and states using recurrence plot strategies, J. Appl. Physiol, vol.76, pp.965-973, 1994.

N. Marwan, M. Romano, M. Thiel, and J. Kurths, Recurrence plots for the analysis of complex systems, Phys. Rep, vol.438, pp.237-329, 2007.

C. Webber and N. Marwan, Recurrence Quantification Analysis, 2015.

N. Marwan, N. Wessel, U. Meyerfeldt, A. Schirdewan, and J. Kurths, Recurrence plot based measures of complexity and its application to heart rate variability data, Phys. Rev. E, vol.66, p.26702, 2002.

J. B. Gao, Recurrence time statistics for chaotic systems and their applications, Phys. Rev. Lett, vol.83, pp.3178-3181, 1999.

J. Gao and H. Cai, On the structures and quantification of recurrence plots, Phys. Lett. A, vol.270, pp.75-87, 2000.

S. Ramdani, F. Bouchara, J. Lagarde, and A. Lesne, Recurrence plots of discrete-time gaussian stochastic processes, Physica D, vol.330, pp.17-31, 2016.

B. Mandelbrot and J. Van-ness, Fractional brownian motions fractional noises and applications, SIAM Rev, vol.10, pp.422-437, 1968.

J. Beran, Statistics for Long-Memory Processes, 1994.

N. Packard, J. Crutchfield, J. Farmer, and R. Shaw, Geometry from a time series, Phys. Rev. Lett, vol.45, pp.712-716, 1980.

F. Takens, Detecting strange attractors in turbulence, Dynamical Systems and Turbulence, pp.712-716, 1980.

H. Kantz and T. Schreiber, Nonlinear Time Series Analysis, 2004.

A. Papoulis and S. Pillai, Probability, Random Variables and Stochastic Processes, 2002.

B. Ramdani and L. , Chaos, vol.28, p.85721, 2018.

C. Rasmussen and C. Williams, Gaussian Processes for Machine Learning, 2006.

A. Genz, Numerical computation of multivariate normal probabilities, J. Comput. Graph. Stat, vol.1, pp.141-149, 1992.

J. Bardet, G. Lang, G. Oppenheim, A. Philippe, S. Stoev et al., Generators of long-range dependence processes: A survey, Theory and Applications of Long-Range Dependence, pp.579-623, 2003.

S. Lowen, Efficient generation of fractional brownian motion for simulation of infrared focal-plane array calibration drift, Methodol. Comput. Appl, vol.1, pp.445-456, 1999.

S. Stoev and M. Taqqu, Simulation methods for linear fractional stable motion and FARIMA using the fast Fourier transform, Fractals, vol.12, pp.95-121, 2003.

P. Abry and F. Sellan, The wavelet-based synthesis for the fractional brownian motion proposed by F. Sellan and Y. Meyer: Remarks and fast implementation, Appl. Comput. Harmon. Anal, vol.3, pp.377-383, 1996.

C. Peng, J. Mietus, J. Hausdorff, S. Havlin, H. Stanley et al., Long-range anti-correlations and non-Gaussian behavior of the heartbeat, Phys. Rev. Lett, vol.70, pp.1343-1346, 1993.

J. Moreira, J. Kamphorst, L. Silva, and S. Kamphorst, On the fractal dimension of self-affine profiles, J. Phys. A, vol.27, pp.8079-8089, 1994.

D. Delignieres, S. Ramdani, L. Lemoine, K. Torre, M. Fortes et al., Fractal analyses for 'short' time series: A re-assessment of classical methods, J. Math. Psychol, vol.50, pp.525-544, 2006.

P. Abry, P. Flandrin, M. Taqqu, and D. Veitch, Theory and Applications of Long-Range Dependence, pp.527-556, 2003.

J. Bardet, G. Lang, G. Oppenheim, A. Philippe, S. Stoev et al., Semi-parametric estimation of the long-range dependence parameter: A survey, Theory and Applications of Long-Range Dependence, pp.557-577, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00127926

M. Grendár, J. Majerová, and V. ?pitalský, Strong laws for recurrence quantification analysis, Int. J. Bifurcat. Chaos, vol.23, p.1350147, 2013.

D. Schultz, S. Spiegel, N. Marwan, and S. Albayrak, Approximation of diagonal line based measures in recurrence quantification analysis, Phys. Lett. A, vol.379, pp.997-1011, 2015.

S. Spiegel, D. Schultz, and N. Marwan, Approximate recurrence quantification analysis (arqa) in code of best practice, Recurrence Plots and Their Quantifications: Expanding Horizons, vol.180, pp.113-136, 2016.

Y. Zou, R. V. Donner, and J. Kurths, Analyzing long-term correlated stochastic processes by means of recurrence networks: Potentials and pitfalls, Phys. Rev. E, vol.91, p.22926, 2015.