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1 Economic Evaluation Unit, University Hospital of Montpellier, France
2 LIRMM, University of Montpellier, France

3 Espace-Dev, University of Montpellier, France

Abstract. It has been identified that reducing potentially avoidable
hospitalizations (PAHs) not only enhances patients’ quality of life but
also could save substantial costs due to patient treatments. In addition,
some recent studies have suggested that increasing the number of nurses
in selected geographic areas could lead to the reduction of the rates
of potentially avoidable hospitalizations in those areas. In the meantime,
health authorities are highly interested in solutions improving health care
services to reduce the potentially avoidable hospitalizations. The first ap-
proaches could be based on descriptive statistics such as actual rates of
potentially avoidable hospitalizations at the geographic area level. These
simple approaches have limitations since they do not consider other po-
tential factors associated to the high rates of potentially avoidable hospi-
talizations. Therefore, in this paper, we propose an approach using sup-
port vector machine for regression to select not only the geographic areas
but also the number of to-be-added nurses in these areas for the biggest
reduction of potentially avoidable hospitalizations. In this approach, be-
sides considering all the potential factors, we also take into account the
constraints related to the budget and the equality of health care access.
In our work, we specifically apply the approach on the Occitanie, France
region and geographic areas mentioned above are the cross-border living
areas (fr. Bassins de vie - BVs). As we aim at building a user-friendly
decision support system, the results of our work are visualized on spatial
maps. Although our work is on a specific region and geographic areas,
our approach can be extended at the national level or to other regions
or countries. Moreover, in this paper, the other methods for regression
are also introduced and evaluated as parts of our work.
Keywords. Data Mining, Support Vector Machine, Regression, Spatial
Maps, Potentially Avoidable Hospitalizations.

1 Introduction

Potentially avoidable hospitalizations (PAHs) are defined as hospital admissions
that could have been prevented [1]. In particular, these hospitalizations are in
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fact the consequence of the sudden aggravation of a chronic disease (diabetes,
heart failure, respiratory failure). These acute episodes could have been pre-
vented with timely and effective treatments and therefore the hospitalizations
could have been avoided [6]. Every year, in France, there are more than 700,000
preventable hospitalizations, associated with a cost of several hundred million
Euros for the Health Insurance [3, 7]. That means avoiding these hospital ad-
missions not only could enhance quality of live of the patients but also could
decrease substantial costs caused by patient treatments [2, 3].

There have been many previous studies on PAHs and the potential factors
that could be associated with high rates of PAHs [3–5]. Some of the recent stud-
ies in France have revealed that the higher (age-and-sex-standardized) rates of
PAHs are linked to higher mortality rates, lower density of acute care beds and
ambulatory care nurses, lower median income, and lower education levels [3, 4].
More specifically, these studies suggested that by increasing the number of nurses
at some geographic areas, the number of PAHs in these areas could be reduced
[3]. On the other hand, typically in France, the public health decision makers
can have influence on the factors related to health care such as the density of
physicians, nurses, or the density of hospital beds while socioeconomic determi-
nants such as income and education are not actionable inside the health system
sector. Specifically, both the national- and regional-level health authorities are
highly interested in enhancing the health care services in order to reduce the
number of PAHs.

In addition, the health system is subject to strong constraints. In particular,
they must provide quality care while controlling associated costs and ensuring
equality of access to the health care services. The latter states that all patient-
citizens must be able to benefit from the care they need, regardless of their
geographical and socioeconomic situation. Hence, being able to select geographic
areas in order to maximize the impact of an intervention is of high importance.
That gives birth to our work which aims at building a decision support system
that recommends the optimal actions targeting on the geographic areas while
considering the constraints.

In particular, the purpose of our work is to find the geographic areas to in-
crease the nurses for the biggest reduction of PAHs while not only integrating
socioeconomic constraints such as the available budgets as well as ensuring the
equal access to health care but also considering other potential determinants of
PAHs. The geographic areas we mention here are the cross-border living areas
(fr. Bassins de vie - BVs) which define the geographic areas in which the inhab-
itants have access to the most common equipment and services including trade,
education, health, etc. 1

In our approach, for every BV, we compare the predicted rates of PAHs before
and after trying to add new nurses. Our idea is that the BVs that return the
biggest reduction of these predicted values after trying to increase the number
of nurses could be the best ones for the actual nurse implementation. Since the

1 defined by French National Institute for Statistics and Economic Studies (INSEE)

2



rates of PAHs are the numeric values, so any regression method could be the
option for our approach.

In this paper, we present the method of support vector machine for regression
(SVR) and our approach of applying this method to find the BVs to add new
nurses. We also briefly introduce other regression methods and our evaluation
for the reason why we select SVR for our implementation.

Regarding the dataset of our work, the hospital discharge data and the poten-
tial determinants (variables) are aggregated at BVs (n = 201). This data is col-
lected from many sources including the French Ministry of Health, the National
Institute for Statistics and Economic Studies, the Regional Health Agency of
Occitanie, and French Health Insurance Fund ambulatory care claims database.
In particular, the data includes:

– The primary care supply and hospital supply data including the densities of
general practitioners, nurses, specialists, the densities of acute beds, travel
time to the closest emergency department, and acute care hospital and med-
ical group practice

– The socioeconomic data such as the median income, the unemployment rates,
the proportion of population having an education level equal or above the
baccalaureate, the proportion of population living in isolated rural areas, the
proportion of workers in the active population.

– The epidemiological data such as the rates of age and sex-adjusted all-cause
and premature mortality.

Because of the availability of the data, we first focus our work and the result
in the Occitanie region in France although our approach can be applied at the
national level or in other countries.

2 Related Works

As introduced in the previous section, to select the cross-border living areas
(fr. Bassins de vie - BVs) to add nurses for the biggest reduction of potentially
avoidable hospitalizations (PAHs), our approach is to compare the predicted
rates of PAHs before and after trying to add new nurses in those BVs. As these
predicted rates are numerical values, any regression method could be a solution
to our problem. In this section, we present several regression methods and our
evaluation regarding to our work.

2.1 Multilinear regression

Whenever we need a regression method, the first choice is often multilinear
regression because of its simplicity. In the multilinear regression, the predicted
value ŷ is a straight line presented as below:

ŷ = WX + b (1)
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in which W−1 and X ∈ Rd while y ∈ R.
In our work, these predicted values are the rates of PAHs:

ˆPAH = WX + b (2)

Moreover, W = (w1, w2, w3...) are the coefficient values corresponding to the
multi-dimension variable X = (x1, x2, x3...). Hence, we can extent Equation (2)
to the one below.

ˆPAH = w1x1 + w2x2 + ...+ b (3)

in which xi is variable of dimension i. For example, x1 stands for the density of
the nurses.

As we have introduced above, in our work, we compare the predicted PAH
values before ( ˆPAHb) and after ( ˆPAHa) trying to add new nurses for the biggest
reduction of these predicted PAH values. The reduction rate at each BV can be
mathematically presented by:

ˆPAHb − ˆPAHa = (w1x1 + w2x2 + ...+ b)b − (w1x1 + w2x2 + ...+ b)a (4)

As we only make changes on the density of nurses (represented by x1), Equation
(4) becomes:

ˆPAHb − ˆPAHa = (w1x1)b − (w1x1)a = w1(x1b − x1a) (5)

in which the density of nurses or the number of nurses per 10,000 people is
computed as:

x1b =
Number of nurses

Size of Population
∗ 10, 000 (6)

When we increase some nurses, for example A nurses, we have:

x1a =
(Number of nurses+A)

Size of Population
∗ 10, 000 (7)

Apply (6) and (7) into (5), we have:

ˆPAHb − ˆPAHa = −w1 ∗
A

Size of Population
∗ 10, 000 (8)

In addition, ( ˆPAHb − ˆPAHa) presents the difference between rates of PAHs
per 1,000 inhabitants. Therefore, the expected number of PAHs to be reduced
(ExpectedPAHReduction) is:

ExpectedPAHReduction = ( ˆPAHb − ˆPAHa) ∗ Size of Population
1, 000

(9)

Finally, applying (8) to (9), we have the result:

ExpectedPAHReduction = −w1 ∗ 10 ∗A (10)

4



Since Equation (10) will be applied for every BV, it indicates that the ex-
pected numbers of PAHs to be reduced are the same for every BV when we
increase the same number of the nurses. That is definitely not the answer we are
looking for.

On the other side, it should be noted that we do not compute the Expect-
edPAHReduction as the differences between the actual numbers of PAHs before
adding nurses and the predicted numbers of PAHs after adding nurses because
by with this approach the BVs to be selected for adding nurses are actually the
ones at which the differences (or the errors) between the actual values and the
predicted values of PAHs before adding nurses are the biggest. That does not
give us the right answer to our problem either.

2.2 K-nearest neighbors for regression

One of the other approaches for regression method is K-nearest neighbors. The
idea of this method in our work is that the predicted rates of PAHs ( ˆPAH)
of a BV can be computed from other BVs where we have the similarity in
all attributes such as the densities of nurses or the levels of education. These
similarity-in-attributes BVs are called neighbors. For example, the predicted
rate of PAHs of a BV equals the average value of rates of PAHs of its 5 (K=5)
nearest-neighbor BVs. One effective method to measure the similarity of the
BVs is to use euclidean distance for the values of the attributes of the BVs.

In our approach, at first we compute the predicted rates of PAHs for all BVs
before adding nurses. These values are ˆPAHb. Then for each BV, we try to add
new nurses, if at least one of its neighbors is changed, then we can have the
new predicted rate of PAHs for that BV, ˆPAHa. Finally, we select the BVs for
adding more nurses by the biggest reduction of the expected number of PAHs
(ExpectedPAHReduction).

ExpectedPAHReduction = ( ˆPAHb − ˆPAHa) ∗ Size of Population
1, 000

At the beginning, this approach looked promising to us, but it actually does
not work in our case because of the following limitations:

- When the dimension of the variables (the number of the attributes) is high,
then the neighbors will not be able to be changed if we just make small change
on one dimension (density of nurses in our case)

- Also regarding to the dimension of the variables, changing the size of dimen-
sion means changing the opportunities for the BVs to change the new predicted
rates of PAHs ( ˆPAHa). That leads to the unstable results in our work.

2.3 Neural networks for regression

Neural networks could be very promising to any problem regardless of classifica-
tion or regression. Suppose that if we deploy the neural network with only one
layer for regression, the predicted values will be in a linear formula:

ŷ = WX
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Fig. 1. Neural network two hidden layers for regression

in which xo equals 1 and wo equals b part if we compare this formula with the
multilinear formula we mentioned previously.

As explained in the multilinear regression case above, we cannot use the
neural network one layer regression to solve our problem. That means we need at
least one more hidden layer for our work (Fig. 1). Unfortunately, after trying with
different models: more hidden layers, different activate functions at the hidden
layers as well as applying different techniques such as L1, L2 regularization
or dropout to avoid overfitting, we have failed to get the better results for the
predicted rates of PAHs compared with the support vector machine for regression
(SVR) method (Table 1). Another negative point of neural networks is that they
work like “black boxes” on how a certain output is produced and therefore it is
very difficult to explain their outputs to others. Hence, at the time of this paper,
we think that the neural networks method is not the right method for our work.

2.4 Support vector machine for regression and evaluation

Support vector machine (SVM) has been applied widely in classification prob-
lems, but it can also be used as a regression method (SVR). The method was
introduced by Vapnik and his colleagues [8] and has been applied in many fields
such as financial forecasting [9]. More specifically, SVR can be applied to solve
both linear and non-linear regression problems [11, 12]. As explained in the mul-
tilinear regression section, the linear formula does not work in our case. On the
other hand, for the non-linear problems, the way the method works is to trans-
fer the original independent variables x into a new coordinate system ϕ(x) so
that in the new coordinate system the non-linear problems turn to the linear
problems (Fig. 2). In particular, in the new coordinate system, the formula to
compute the predicted values ŷ is shown in Equation (11) [9, 11, 12]:

ŷ =

N∑
i=1

(αi − α∗
i )ϕ(xi)ϕ(x) + b (11)

In practice, the number of the new dimensions of ϕ(x) is often very high or
even infinite. Hence, computing ϕ(x) from x becomes difficult or even unfeasible.
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Fig. 2. SVR for non-linear cases [12]

Therefore, a technique called kernel trick, K(xi, xj) = ϕ(xi)ϕ(xj), is applied
to directly compute ϕ(xi)ϕ(x) rather than computing all ϕ(x). Particularly, the
following kernel functions are often used:

Polynomial:
K(xi, xj) = (xi, xj)

d

Gaussian Radial Basic Function - RBF:

K(xi, xj) = exp

(
− ||xi − xj ||

2

2σ2

)
Related to our work, after testing all the kernel functions, we have found that

RBF returns the predicted values that are closest to the actual rates of PAHs. In
addition, comparing with the results from the other regression methods presented
previously, the predicted values by SVR using RBF are closest to the actual rates
of PAHs (Table 1). More specifically, Table 1 presents the performance of the
regression methods on our dataset in which we use both root-mean-square error
(RMSE) and mean-absolute error (MAE) values for the performance evaluations
[13]:

RMSE =

√√√√ 1

N

N∑
i=1

e2i

MAE =
1

N

N∑
i=1

|ei|

In both formulas above, ei (i = 1, 2, 3...N) are the errors (differences) between
the predicted values from the regression methods and actual (observed) values.
In our work, the predicted value of a BV is computed by using all the BVs except
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that BV as the training dataset. This approach requires us to repeat the training
for any BV. Clearly, this approach does not work for big datasets, but it is not
our case.

Table 1. Performance evaluations of regression methods on our dataset

Method RMSE MAE

SVR using RBF 0.98 0.76
Multi-linear regression 1.04 0.82
K-nearest neighbors 1.03 0.80
Neural networks 1.13 0.87

Based on this result and the analysis for the possible application of the re-
gression methods in our work mentioned above, we have agreed that the SVR
method is the best choice for our work.

3 Extracting BVs for adding nurses

As we mentioned briefly in the introduction, the purpose of our work is to select
the cross-border living areas (fr. Bassins de vie - BVs) in Occitanie, France region
for adding nurses for the most effective PAHs reduction. In particular, we select
these BVs by comparing the predicted rates of PAHs before and after trying to
add new nurses in every BV. The BVs to be selected are the ones that return
the biggest reduction of these predicted values. Hereafter we present the ideas
in details.

3.1 Possible constraints

The first thing we need to consider is that there are some constraints on the
number of nurses to be added. The first constraint should be the budget that the
health authorities can spend for the health service improvement. This constraint
indicates that the total number of nurses to be added in the whole region is
limited. Another constraint we must consider is to ensure equal access to health
care for the inhabitant living in the region. The later constraint can be defined by
(1) the maximum number of to-be-added nurses in each BV; and (2) making sure
that in the to-be-selected BVs, the densities of the nurses must not be greater
than a given threshold. The latter to make sure that we do not add nurses in
the BVs whose densities of nurses are already high. To sum up, we have three
possible constraints in our work as below:

– The maximum number of nurses in total that can be added into the whole
region. We denote this constrain as maxGlobal

– The maximum number of nurses that can be added in each BV. We denote
this constrain as maxLocal
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– The maximum density of nurses that can be reached in each BV. We denote
this constrain as maxLocalDensity

3.2 Best numbers of to-be-added nurses and the biggest PAH
reduction rates

Fig. 3. Process flow to find the biggest reduction rate of PAH per to-be-added nurse
and best number of to-be-added nurses in each BV

After defining the constraints, the second step is to find the best number of
nurses to be added in each BV. In particular, in this step, at each BV, we try
to add nurses one by one until we reach either the defined maxLocal or the
maximum density of nurses maxLocalDensity. Each time adding a nurse, we
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compute the reduction rate of PAHs per added nurse to identify at each BV
(1) the biggest reduction rate (denoted bestReductionRate); and (2) the best
number of to-be-added nurses (denoted bestNumber). The whole process is
described in the Figure 3.

In the process flow described in Figure 3, it should be noted that in our
work, the PAHs are the standardized rates per 1,000 people so that we need
to compute the number of PAHs to be reduced (variable PAH No changed in
Fig. 3) after increasing nurses in order to get the reduction rate of PAHs per
to-be-added nurse (rate). One important thing to note here is the SVM func-
tion (SVM(densityNurse)) that actually the SVR method we mentioned in the
previous section. We firstly train SVR model using the dataset of PAHs and its
potential determinants, then we can get the predicted rates of PAHs before and
after trying to add nurses to the BVs.

The final result of this step will return the list of all the BVs with their
information of bestReductionRate and bestNumber of to-be-added nurses.

3.3 BVs to be selected

Fig. 4. Process flow to select the BVs for adding more nurses
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After having the values of bestReductionRate for all the BVs, the task
to find BVs for adding new nurses becomes easy. More specifically, the BVs to
be selected are the ones whose bestReductionRate are the biggest. However,
to avoid the cases that in the BVs to selected, the actual rates of PAHs are
already small, we add one more condition to the BVs to be selected that we only
select a BV if its actual rate of PAHs is higher than its predicted rate of PAHs
(actualPAH ≥ predictPAH in Fig. 4). The process of finding BVs for adding
nurses is described in Figure 4. In this process, we firstly order the list of the
BVs descendingly by their bestReductionRate (function orderBVsByBestD-
eduectionRate in Fig.4). After that we select the top first BVs until either we
reach the maximum number of to-be-added nurses (maxGlobal) in the whole
region or we reach the last BVs in the list (reach the total number of BVs, nbBVs
in Fig.4). There is a note in Figure 4 that BV(Attr, index) function returns the
value of the attribute (Attr) of the BV associated with its index.

The output of this step is a list of the to-be-selected BVs (selectedBVs in
Fig. 4) for adding more nurses and the best number of to-be-added nurses in
each BV. There is a point that this algorithm might return the total number of
to-be-added nurses little more than the constraint on the maximum number of
can-be-added nurses in the whole region (maxGlobal). But this does not cause
any problem as we also know how many to-be-added nurses in every BV and
the decision makers can decide to either increase budget or adjust the number
of to-be-added nurses in the last BV in the selected list.

4 Results and evaluations

As mentioned in the previous section, the output of the algorithm is the list of
BVs where nurses should be added and the number of nurses to be added in order
to obtain the highest decrease in the number of PAH. For better visualization
for the decision makers, we rely on spatial maps. For example, the map below
(Figure 5) recommends the BVs to increase nurses (the darker colors indicate
stronger recommendation) and the optimal number of nurses to be added (the
labels in red) should be added in those BVs for the biggest reduction of PAH
according to the corresponding constraints.

Now let us compare our approach with two approaches using simple descrip-
tive statistic methods. The first map (Figure 6) indicates top 15 BVs recom-
mended by the actual rates of PAHs with the condition on the densities of nurses.
Specifically, the BVs recommended are the ones whose the actual rates of PAHs
are the biggest with the condition that the densities of nurses are smaller than
25 nurses per 10,000 inhabitants. Similarity, the other map (Figure 7) indicates
top 15 BVs recommended by the lowest densities of nurses with the condition
that the actual rates of PAHs are higher than 4.5 PAHs per 1,000 inhabitants.
As it can be seen through the maps, the BVs selected by approach using SVR
are different to the ones selected by the descriptive statistic methods.

In addition, as our algorithm also returns the rates of PAH reduction per
to-be-added nurse, we can assess the effectiveness of the approach using SVR
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Fig. 5. BVs to increase nurses and the best number of nurses to add for the biggest
reduction of PAH recommended by SVR

Fig. 6. BVs to increase nurses recom-
mended by the high rates of PAH

Fig. 7. BVs to increase nurses recom-
mended by the low densities of nurses

by comparing it with the two descriptive statistic methods. For example, in the
Table 2, if we increase 9 nurses (number of nurses - No Nurses in Table 2),
we expect the number of PAHs to be reduced is 6.3 (No PAHs in Table 2),
and therefore the rate of PAH reduction per to-be-added nurse is 6.3/9 = 0.7
(Reduction Rate in Table 2)

Although we can not compute the rates of PAH reduction per to-be-added
nurse for the descriptive statistic methods, but if we use the reduction numbers
of PAHs from the approach using SVR, we can have the rates of PAH reduction
per to-be-added nurse for the selected BVs as shown in Tables 3 and 4.
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Table 2. PAH reduction per to-be-added nurse by SVR

No Nurses No PAHs Reduction Rate

9 6.3 0.70
15 9.7 0.65
20 12.4 0.62
24 14.4 0.60
30 17.0 0.57

Table 3. PAH reduction per to-be-added
nurse recommended by high rates of PAHs

No
Nurses

No
PAHs

Reduction
Rate

9 2.47 0.27
14 5.30 0.38
19 6.09 0.32
24 7.80 0.32
30 9.54 0.32

Table 4. PAH reduction per to-be-added
nurse recommended by low densities of
nurses

No
Nurses

No
PAHs

Reduction
Rate

10 0.42 0.04
16 2.84 0.18
19 3.19 0.17
25 5.29 0.21
30 5.73 0.19

By comparing the results in the Table 2 with the results in the other Tables
(3 and 4), we can somehow confirm the effectiveness of the approach using SVR
for selecting the BVs to increase nurses.

5 Conclusions

In this paper, we have presented an application of machine learning to health
care services. In particular, after evaluating several regression methods includ-
ing multilinear regression, k-nearest neighbors, and neural networks, we have
chosen support vector machine for regression (SVR) as the best method for the
extraction of the list of the cross-border living areas (fr. Bassins de vie - BVs) to
recommend to the local health authorities for health care service improvement
in general and nurse incremental in particular. The method is able to point out
how many to-be-added nurses in each living area (BV) for the biggest reduction
of the number of potentially avoidable hospitalizations (PAHs). In addition, in
our approach, we take into account the constraints related to the budget (or the
maximum number of nurses to be added) and the equality of health care access
for the inhabitants in the region regardless of their geographical and socioeco-
nomic situation.

In our work, our approach is applied to the Occitanie region, but it can
be applied to other regions or extended at the national level or even to other
countries. Moreover, this approach could be applied to other health care policy
issues, such as the reduction of hospital readmissions or access to innovation. As
a result, our approach has led to a start-up project in France.
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In future works we plan to test new determinants of PAHs related to the
environment and weather conditions, such as pollution and temperature. These
variables have not been tested before, even though they are linked to the chronic
conditions subject to PAHs. Every time we have new data, besides applying SVR,
we will also test neural networks for the comparativeness for the best result.
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