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Blind use of tools = Hazard
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Lineup

Motivations
Blind use of tools = Hazard

FPA is an error-prone subject

Many many recent tools . . . but free space towards panacea

Prerequisites
Floating point arithmetic for dummies

Errors and measures

Accuracy vs. Precision: the rule of thumb

Motto: Don’t forget the problem and its data!

Tools
What tool for which question?

Tools: some well-known oldies

Tools: some works in progress
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Context and motivations

Sources of errors in numerical computing
Mathematical model

Truncation errors

Data uncertainties

Rounding errors

Rounding errors may totally corrupt a FP computation
Floating-point arithmetic approximates real one
Accumulation of billions of floating point operations

May compensate. . .
but very few are enough to ruin effort

Intrinsic difficulty to accurately solve the problem
Data dependency, condition
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Example: Schoolbook level

Evaluation of univariate polynomials with exact floating point coefficients
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Exact value

p(x) = (x − 2)9 around x = 2 in IEEE binary64
• expanded form

• developed polynomial + Horner algorithm

Interesting example!
Problem? No problem: exact data!

One problem + one algorithm + one precision
but different accuracy for different data

Algorithms:
the rich vs. the poor
the good vs. the ugly: summation
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Example: Industrial case

OpenTelemac2D simulation of Malpasset dam break (1959)

A five year old dam break: 433 dead people and huge damage

Triangular mesh: 26000 elements and 53000 nodes

Water flow simulation →35min. after break, 2sec. time step

Reproducible simulation? Accurate simulation?

velocity U velocity V depth H
The sequential run 0.4029747E-02 0.7570773E-02 0.3500122E-01
one 64 procs run 0.4935279E-02 0.3422730E-02 0.2748817E-01
one 128 procs run 0.4512116E-02 0.7545233E-02 0.1327634E-01
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Bitwise reproducibility failure: gouttedo test case

time step = 2

time step = 8
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Menu

1 Context and motivations

2 Prerequisite
FPA for dummies
Errors and Measures
Accuracy vs. Precision: The Rule of Thumb

3 Tools
Old Folks

Interval arithmetic
CADNA, verrou

Recent Tools
Herbgrind
FP Bench

4 Conclusion

5 References
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IEEE-754 floating point arithmetic (1985, 2008))

Discretisation (toy system) and precision

Normal floating point: x = (−1)s ·m · 2e = ± 1.x1x2 . . . xp−1︸ ︷︷ ︸
p bits of mantissa

×2e

Precision: 2u = 1+ − 1 = 2−p

0 1/4 1/2 1����� 2����� 4����� 7.5�������

Rounding, correct rounding and unit roundoff
◦(x) = x for x ∈ F, else ◦(x) = x(1 + e) with |e| ≤ u/2 (or u)
Correct rounding: best accuracy for +,−,×, /,√

x⊕ yx+ y

IEEE-754
binary32: u ≈ 5 · 10−8, p = 24, e ∈ {−126 . . . 127}
binary64: u ≈ 10−16, p = 53, e ∈ {−1022 . . . 1023}
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Floating Point Arithmetic is Error Prone

Counter intuitive FPA
Add is not associative •
Absorption: • (1 + u) + u 6= 1 + (u + u) •
Catastrophic cancellation: (1 + u)− 1 = 0 •
Order matters: • (1− 1) + u = u •
Exact subtraction x − y for 1/2 ≤ x/y ≤ 2 • (Sterbenz)
Error Free Transformations (EFT) for +, ×:

add: x + y = s + e,
sub: x × y = p + e,

everybody being computable FP values •
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Automatic Rounding Error Stuff is difficult

Track large errors?
Small local errors may have large global effect

catastrophic cancellation = 1 accurate add + 1 exact sub
Large local errors may have no global effect

error cancellations: r = (x + y) + z for x , y , z resp. computed by 1/u + 1,
−(1/u + 1), u yields exact r = u

Expression error depends on argument values
(x + y) + z is accurate except for catastrophic cancellation values

Motto: don’t forget the problem and its data!

Practical limitations: scaling and modularity effects
Tuning n FP operations between 2 precisions = 2n cases

f (t) + z with accurate f (t) = x + y is accurate except for catastrophic
cancellation values
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Errors and Measures: A Large Array

Errors
Forward error: x − x̂ , in the result space

Backward error: d − d̂ , in the data space, for identified d̂ such that f ( d̂) = f̂ (d)

Absolute vs. Relative error

Maximum vs. Average error

Error measures: ULPs [1], bits, significant digits [4], no dimension value, interval

Error bounds: proven vs. estimated vs. measured
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Accuracy vs. Precision: The Rule of Thumb (RoT)

RoT: Accuracy . Condition Number ×u
Forward error . condition × backward error

Backward stable in precision u: relative backward error ≈ u

Condition number

limδ→0 sup|∆x|≤δ
|∆y|
|y| /

|∆x|
|x| ,

with y + ∆y = f (x + ∆x) and y = f (x).

Differentiable f : |x||f
′(x)|

|f (x)| ,
[x||J(x)|
|f (x)|

Motto: depends both on problem f and data x

Example for summation:
cond(

∑
n xi ) =

∑
n |xi |/|

∑
n xi |

arbitrarily larger than 1/u when catastrophic cancellation in
∑

n xi
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Accuracy . Condition number ×u
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Numerical Accuracy Stuff: Aims, Methods and Tools I

How to verify or validate the accuracy of a FP computation?
Verify vs. validate

[M] Backward error analysis, probabilistic analysis, ad-hoc rounding error analysis

[T] Interval arithmetic, stochastic arithmetic, sensitivity analysis, static analysis
(+arithmetic models) , dynamic analysis (+bounds, +references), formal proof
assistants

How to identify the error sources?
[M] Numerical analysis vs. Rounding error analysis

[M/T] Algorithm/Program instructions vs. Input data range

[T] Shadow computation: random, stochastic, higher precision, EFT,“exact”, AD
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Numerical Accuracy Stuff: Aims, Methods and Tools II

How to improve the accuracy of a FP computation?
From accurate enough to correctly rounded for a given precision

[T] More hardware precision, extended precision libraries
[M/T] More accurate algorithms: expression order, other expression, EFT

Hand-made vs. Automatic rewriting tools

Tools: Cost, Efficiency and Tuning
Cost: reasonable computing time overheads for running solutions

Efficiency: sharp vs. overestimated bound, false positive ratio, non robust
optimization

Tuning: rewrite with a minimal precision for a given accuracy
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Numerical Accuracy Stuff: Aims, Methods and Tools III

How to recover the numerical reproducibility of parallel FP computation?
Reproducible enough (i.e. modulo validation) vs. bitwise identical

At least to debug parallel vs. sequential,
also to validate for production step, to certify for legal process

Reproducible algorithms, libraries vs. hand-made corrections
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Menu

1 Context and motivations

2 Prerequisite
FPA for dummies
Errors and Measures
Accuracy vs. Precision: The Rule of Thumb

3 Tools
Old Folks

Interval arithmetic
CADNA, verrou

Recent Tools
Herbgrind
FP Bench

4 Conclusion

5 References
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Interval Arithmetic (1966)

IA at a glance
• Data range or FP arithmetic → intervals + interval operation

A sure (•) but too conservative (•) propagation of absolute errors (•)
• Dependency problem, wrapping effect, variable decorrelation, conservative

inclusion of convex set; intervals containing zero
width([x]− [x]) = 2 width((x]),
tight function range: tight interval [F ([x])]

• Best computing flow driven convex set?
endpoint pair, center+radius, subdivisions, Taylor expansions, affine arithmetic,
zonotope, . . .

[xk+1] = R([xk ] for R = R(0, π/4) and x0 = [−ε, ε]
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Interval arithmetic

Interval RoT [2]

width(f (X )) ≤ λF (X )width(X ), where λf : Lipschitz-constant of f .

Interval sum: log10 width(sn) vs. log10 cond(sn) for sn = 1 [3]

Tools for Interval Arithmetic
IntLab (Rump), MPFI (Revol) and many other

20 / 27



Stochastic Arithmetic

Stochastic Arithmetic (1986, 1995)

•• Rounding errors are independent identically distributed (uniform) random variables
(•) + (CLT) Gaussian distribution around the exact result (•) of their global effect
• Estimation of the number of significant digits with very few values: N=3 samples

are enough

Tools: Cadna (UPMC)

Random IEEE rounding modes, synchronicity + computing zero → self validation

Practical tool at industrial scale: languages, parallelism, support

New stochastic numeric types + Library + source to source translator

×15-45 overhead: costly hardware rounding mode change

Tools: verrou (EDF)

Parametrized random rounding modes, asynchronicity,

×10-20 overhead, “no” warning, post-processing tests

Binary instrumentation (Valgrind), excluded parts (libm)
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Many recent tools (2013 →)

Proven bounds for snippets
Fluctuat (2005, 2013), FPTaylor (2015), Rosa/Daisy (2014,2017), ...

Abstract model of FPA, forward error: proven (•) but conservative (•)
• Small size targets: 10-20 LOC

Rewriting snippets
Herbie (2015), Salsa (2015)

• 10 LOC

Detecting candidate error causes
FPDebug (2011), Herbgrind (2018)

Dynamic analysis (Valgrind), shadow computation: MPFR

• False positive, overhead

Small size targets (•) . . . until Herbgrind: 300K LOC (•••)
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Herbgrind (2018)

• Dynamic analysis, binaries (Valgring)

• Large programs, different languages, libraries

• Numerical tricks detection: compensation, EFT

• Open platform: front-end to “small sized oriented tools”, ...

• Input range limitations

Steps
Detecting FP errors: exact shadow computation (MPFR) for every FP assignation
Collecting root cause information

selected error dependency chains, symbolic expression, input characteristics

Validation cases
Gram-Schmidt Orthonormalization, PID controller
GROMACS: molecular dynamics simulation

SPEC FPU, 42K LOC in C + 22K LOC in Fortan

TRIANGLE: accurate and robust mesh generator
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FPBench Project

A community infrastructure for cooperation and comparison
FPCore: description format for FP benchmarks
Benchmarks: suite drawn for published results

111 benchs (v1.1, oct. 2018)
FPTaylor (CPU. Utah), Herbie (PLSE, U. Washington) , Rosa (AVA, MPI-SWS,
Saarbrücken) , Salsa (LAMPS, UPVD)

Pros & Cons
• FPCore for fair comparison

• Small size cases, numerically safe case (worst 30% cases error = 5-6 bits)

Others benchmarks: SPEC FPU, Hamming’s book,. . .
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Conclusion

Numerical accuracy stuff: large and old subject, large literature, many tools but
free space for human expertise up to the ideal tools

Our Motto = hard issue to automatic tools

Herbgrind: a gap in recent developments?

Corsika: tuning to low precision FP formats → full benefit of SIMD speedup e.g. .
AVX512 = 16 × binary32
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Resources and References I

Recent resources
30+ tools listed by M. Lam (JMU):
https://w3.cs.jmu.edu/lam2mo/fpanalysis.html

FPBench: http://http://fpbench.org,
https://github.com/FPBench/FPBench

J.-M. Muller.

On the definition of ulp(x).
Technical Report RR-5504, INRIA, Feb. 2005.

A. Neumaier.

Interval Methods for Systems of Equations.
Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1991.

N. Revol.

Influence of the Condition Number on Interval Computations: Illustration on Some Examples.
in honour of Vladik Kreinovich’ 65th birthday, 2017.
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Resources and References II

J. Vignes.

Zéro mathématique et zéro informatique.
La Vie des Sciences, C.R. Acad. Sci. Paris, 4(1):1–13, 1987.
(In French).
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