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Complementary-Route Based ICR Control for Steerable Wheeled Mobile Robots

Mohamed Sorour1, Andrea Cherubini2, Abdellah Khelloufi3, Robin Passama2, Philippe Fraisse2

Abstract

Emerging industrial applications involving mobile manipulation in the presence of humans is driving attention to-
wards steerable wheeled mobile robots (SWMR), since these can perform arbitrary 2D planar trajectories, providing
a reasonable compromise between maneuverability (necessary for human avoiding algorithms) and effectiveness. In-
stantaneous center of rotation (ICR) based kinematic models and controllers are the most suited for such robots, as
they assure the existence of a unique ICR point at all times. However, unsatisfactory behavior do exist in numerous
applications requiring frequent changes in the sign of the angular velocity command. This is typically the case for
robot heading control: moving the ICR point from one border of the 2D ICR space to the other makes it pass by the
robot geometric center, where only pure rotations are feasible. This behavior is not desirable and should be avoided.
In this paper, we propose a novel complementary route ICR controller, where the ICR can go from one extreme to
the other by means of border switching in one sample period. Thanks to this approach, fast response to the velocity
commands is achieved with little steering motion. The new algorithm has been tested successfully in simulations and
experiments, and is more time efficient with far more satisfactory behavior than the state-of-art direct route based
controllers. These results have been also confirmed quantitatively, using a newly developed metric, the command
fulfillment index (CFI).

Keywords: Steerable mobile robot, pseudo-omni mobile robot, nonholonomic omnidirectional mobile robot.

1. Introduction

Steerable wheeled mobile robots employing tradi-
tional wheels are getting more popular in industrial
applications, due to their lower cost for a given load
carrying capacity as compared to fully omnidirectional
(holonomic) mobile robots (FOMR) employing swedish
or other non-conventional wheels [1]. Other promis-
ing holonomic alternatives employ fully powered castor
wheels [2, 3] or differential drive system with offset tur-
ret [4, 5]. However, since these are not yet commercially
available, they are not used in industrial automation.

Despite being non-holonomic, SWMR robots can
perform complex 2D planar trajectories, assuming cor-
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rect initial wheel orientation, followed by steer coordi-
nation (to maintain a unique ICR point throughout op-
eration). However, their kinematic structure has sev-
eral challenging research problems, the most critical of
which are: 1. proper steering coordination, to avoid
actuator fighting [6, 7, 8, 9], 2. avoidance of kine-
matic and representational singularities [7, 10, 11, 12,
13, 14, 15, 16], and 3. fulfillment of steer joint per-
formance limits while solving the previous problems
[13, 17, 18, 19, 20, 21, 22, 23]. Kinematic modeling
and control of SWMR is usually done either in the 2D
ICR space [13, 16, 20, 21] or in the 3D Cartesian space
[7, 10, 24, 25]. In [11, 26, 27], both are combined, since
the ICR space is best suited for steering coordination
(to avoid actuator fighting and wheel slippage) as it en-
sures the existence of a unique ICR point, while Carte-
sian space is utilized for robot speed control. Here, we
also use ICR-based steer coordination, and the focus of
this work is precisely to enhance ICR based controllers,
through the design of a complementary route strategy.

In applications requiring that some heading angle
is maintained (e.g., vision-based tasks where features
must stay in the field of view), or that the translation
verse changes, the ICR point is required to move long
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distances from one extreme of the workspace to the
other, usually passing by the robot geometric center,
where the feasible robot velocity is limited. In such sce-
narios, the state-of-art ICR based controllers will lead
to unsatisfactory behaviors.

To solve this problem, here we propose a compari-
son between the direct and complementary ICR routes,
the former (state-of-art approach) being the shortest
straight line connecting the current and desired ICR
points, while the latter (proposed here) connecting the
ICR extreme borders via a border ICR point that is cho-
sen to minimize the total ICR distance moved across
borders. The 4 borders here define the maximum values
that the ICR point is allowed to take on the x and y axes
of the geometrically centered robot frame. Instead of
moving directly to the desired ICR, the complementary
route will move first to the optimum border point lying
on the nearest border line, switch borders, for example:
from the +y to the −y border line in one sample period,
and finally move to the desired ICR point. A graphical
representation of such process is shown in Fig. 1.

In [20], the direct ICR route is stereographic pro-
jected onto a unit sphere, where moving between com-
plementary borders can be done at the pole of the unit
sphere. However, the authors do not provide any inves-
tigations on border switching nor simulations showing
the joint-space performance. To the best of the author’s
knowledge, the work presented in this paper is the first
connecting ICR borders to obtain more efficient SWMR
control.

One of the contributions of the method adopted here
is to provide a solution that is decoupled from the high
level command/perception controller. Here, the trajec-
tory planning does not need any prior knowledge of the
robot structure: only the current robot velocity and pose
will suffice to close the feedback loop. The error be-
tween the provided command and the actual capability
of the robot is handled locally thanks to the proposed
controller. In order to quantitatively assess the enhanced
performance, we introduce the command fulfillment in-
dex (CFI) that is based on the robot velocity error vector,
and we use it to compare the direct and complementary
route controllers.

In this work, the authors extend the kinematic control
framework of [26] so that it:

1. can handle sign variations in the rotational speed
commands, that are frequent in orientation (head-
ing) control applications,

2. has better responsiveness (assessed via the CFI),
3. demands less steering motion (in terms of both ve-

locity and acceleration).
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Figure 1: We bound the robot’s 2D ICR space by 4 border
lines corresponding to xb = ±R∞ and yb = ±R∞ defined in
the robot frame F b with origin at the robot center. An ICR
point moving from the current to the desired value can follow
a direct route (in red), or a complementary one (in green).

In the rest of the paper, Section II presents the neces-
sary background on the kinematic model and controller.
The complementary ICR route based controller is de-
tailed in Section III. The complementary/direct route
decision making algorithm is presented in Section IV.
Experiments are depicted in Section V. Conclusions are
finally given in Section VI.

2. Relevant Background

In this section, we briefly recall the SWMR kinematic
model detailed in [25] and based on the pioneer works
[24, 28, 29, 30, 31], together with the discontinuity ro-
bust ICR controller [26] that will be used in this paper.

2.1. Cartesian Space Kinematic Model
The schematic of a SWMR is shown in Fig. 2 for a

4 wheeled robot. However, the model is generic for any
SWMR with N ≥ 3 wheels. Let F I = (oI | xI , yI , zI)
be the inertial frame, F b = (ob | xb, yb, zb) the mobile
base frame, with origin ob located at the base geomet-
ric center, F hi = (ohi | xhi, yhi, zhi) the ith hip frame (i =

1, . . . ,N), attached to the fixed part of the steering joint,
and related to the base frame by a fixed transformation
matrix, and F si = (osi | xsi, ysi, zsi) the steering frame,
attached to the movable part. The hip and steering
frames share the same origin, with relative orientation
βi (the steering angle). Frame Fwi = (owi | xwi, ywi, zwi)
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is attached to (but not rotating with) the ith wheel, as-
signed such that xwi points along the heading of the
wheel, which rotates about ywi by the driving angle φi.
All the frames have the z axis pointing upwards. Let the
mobile base pose w.r.t. the inertial frame define the 3×1
task space coordinates ξ =

[
x y θ

]T
. A left super-

script is added to indicate the frame in which the pose is
expressed, for instance Iξ and bξ denote the robot pose,
expressed in the inertial and base frames respectively.
To lighten the notation in the sequel, unless otherwise
specified, the left superscript is omitted for vectors ex-
pressed in the base frame.

Applying the rolling with no slipping and the no lat-
eral skidding kinematic constraints to the ith wheel ve-
locity vci =

[
vti vni 0

]T
at the ground contact point

oci (expressed in the wheel frame Fwi), with vti and vni

respectively the ith tangential and normal velocities, we
obtain [26]:

β̇i =
−g(βi)ξ̈

d g(βi)
dβi
ξ̇
, (1)

φ̇i =
1
rw

f (βi)ξ̇ +
d
rw
β̇i, (2)

f (βi) =
[
c(βi) s(βi) d − hyic(βi) + hxis(βi)

]
,

g(βi) =
[
−s(βi) c(βi) hxic(βi) + hyis(βi)

]
,

where hxi = ±b and hyi = ±a denote the position of
the ith hip frame origin ohi in the base frame, a, b ∈ R+,
c(∗) and s(∗) short hand cos(∗) and sin(∗), d and rw are
the wheel offset and radius respectively. The no skid-
ding constraint imposes restrictions on the robot mo-
tion (wheels cannot move sideways), and forces the ex-
istence of a unique ICR point, around which the base
and all wheels must rotate. From such constraint, we
construct the kinematic constraint matrix G(β) as:

G(β)N×3 =
[
g(β1)T ... g(βN)T

]T
. (3)

Equations (1) and (2) represent the SWMR inverse ac-
tuation kinematic model (IAKM). To compute the task
space velocity response from the joint space velocity
measurements, we need the odometry model, i.e., the
forward actuation kinematic model (FAKM):

ξ̇ = F+
(ρ)(β̂)(rw

ˆ̇φ − d ˆ̇β), (4)

F(β̂)N×3 =
[
f (β̂1)T ... f (β̂N)T

]T
.

In (4), the hat symbol ˆ indicates a measurement value
and F+

(ρ)(∗) denotes the damped pseudo-inverse of F(∗)
[32, 33], evaluated using:

F+
(ρ)(∗) = (FT (∗)F(∗) + δ2I3×3)−1FT (∗),

Figure 2: Schematic model of a four wheeled steerable robot.

with δ ∈ R, the damping factor, and I3×3 the 3D identity
matrix.

Remark 1. In (2), there is a relationship with the steer-
ing velocity β̇i since this wheel structure is off-centered.
However, without loss of generality, we can assume that
the driving velocity φ̇i is independent of the steering (the
constant d/rw can be automatically handled by low level
controllers, since it will not result in any robot motion).
In light of this, from a deeper look at (1), (2), and (4), we
can see two separate systems, one for steering, the other
for driving, and each depending on the required robot
velocity/acceleration. Although the steering system can
change the robot configuration, and as such the feasi-
ble velocity direction (the direction of the robot velocity
vector), if φ̇ = 0, no motion will occur. Similarly, the
driving system can change the magnitude of the robot
velocity along the direction corresponding to the cur-
rent steer configuration, but alone (i.e. when β̇ = 0), it
cannot change the robot velocity direction.

2.2. Motion Discontinuity Robust ICR Controller

The enhanced motion-discontinuity robust controller
framework originally introduced in [26] is depicted in
Fig. 3, with the colored blocks representing the ad-
ditions detailed in this paper. Such controller was
developed to handle the velocity commands discon-
tinuities that are frequent in human-robot collabora-
tive/cooperative scenarios. The desired 3D Cartesian
space robot motion (ξ̇∗, and ξ̈∗) is generated by a high
level controller (out of scope here). This is then mapped
to the 2D ICR space, and the output desired ICR motion
(ICR∗, and ˙ICR∗), along with the current ICR coordi-
nates ICRcurr are fed to the ICR Point Velocity con-
troller. This outputs a reference signal ICRre f that is

3



High Level 
Task Controller

Mapping the 3D 
Cartesian Space 
Commands to the
2D ICR Space

Steer Configuration to
ICR Point Coordinates

ICR Point
Velocity
Controller

Kinematic 
Singularity 
Treatment

QP Optimization 
to Obtain the 
best Feasible ICR 
Point Respecting 
the Steer Joint 
Limits

ICR Point 
to Steer Joint 
Coordinates

STEERABLE
WHEELED
MOBILE
ROBOT

One Sample
Time Border
Switching
Algorithm

Forward 
Actuation
Model

3D Cartesian 
Space Velocity 
Controller

Inverse 
Actuation
Model

Direct or
Complementary
Route Decision

Section IV

S
e
ct

io
n
 I
II
.B

,D

Semantic 
Layer of the 
Complement-
-ary ICR Route 
Algorithm

Section III.C

Figure 3: Motion-discontinuity robust controller [26] with the complementary controller additions shown in colored blocks.

then used by a quadratic programming (QP) optimiza-
tion algorithm to decide the ”next sample time” ICR co-
ordinates ICRnext that will minimize the quadratic cost
error: ‖ICRre f − ICRnext‖

2
2 while respecting the joint

limits (formulated as linear constraints). We use ICRre f

rather than ICR∗ in the cost function, to obtain a smooth
behavior since the former is error-dependent. The cor-
responding steer joint reference signal βre f is then eval-
uated (while fixing all numeric issues) and differenti-
ated, to obtain the β̇re f that is sent to the robot low level
controller. At the same time, a decoupled 3D Cartesian
space robot velocity controller is implemented. Its ini-
tial output ξ̇re f (init) is projected onto the null space of the
”next sample time” kinematic constraint matrix G(βre f )
from (3), to obtain the feasible control signal ξ̇re f that
is compatible with the ”next sample time” robot config-
uration. The reference wheel rate φ̇re f is then obtained
using the IAKM from (2). For more details about each
of the non colored blocks in Fig. 3, the reader is referred
to our previous work [26].

The main goal of the ICR motion controller in [26]
was to drive the ICRcurr to the desired one ICR∗ via
the controller output ICRre f . Instead, the work in hand
aims at manipulating the desired signal ICR∗, so that
ICRre f follows a complementary route instead of the
direct one – whenever the former is found to be more
time efficient. Such algorithm is summarized in 3 main
blocks (colored) in Fig. 3, namely: Direct or Comple-
mentary Route Decision (detailed in Sect. 4), Seman-
tic layer of the complementary ICR route (Sect. 3.3),
and One sample time border switching (Sections 3.2 and
3.4).

3. Complementary ICR Route

In this section, the complementary ICR route algo-
rithm is described/formulated. First, we show the dif-
ference with the direct route algoritmlm, which in some
situations can have longer length. Then, we formulate
a QP optimization problem, to find the shortest com-
plementary route from current ICRcurr to desired ICR
ICR∗. We then describe in detail how to implement the
algorithm in conjunction with the discontinuity-robust
ICR controller recently developed in [26].

3.1. Complementary Versus Direct Routes

The direct and complementary ICR routes are de-
picted in Fig. 4 (upper) in red and green, respectively.
The direct is the shortest direct straight line connection
between the current point ICRcurr, and the desired one
ICR∗. The complementary, on the other hand, is a con-
catenation of two successive straight lines (detailed in
next section) via the border lines, defined below.

Definition 1. R∞ ∈ ]0,∞[ is a parameter representing
the radius of curvature at infinity of the path followed
by the robot, corresponding to pure translation motion.
It serves as an upper limit to the values allowed for the
x and y components of the ICR.

Remark 2. Setting R∞ to a value other than ∞ will re-
sult in non pure translation motion: there will always
exist a rotation velocity component. Shall the desired
command correspond to pure translation, the controller
proposed in this work will provide the necessary correc-
tive action.
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Definition 2. A border line defines a bound (upper or
lower) to the accessible workspace of the ICR in any of
the F b coordinates. As such, there exist 4 border lines:
x = ±R∞ and y = ±R∞.

Definition 3. A border point is any point belonging to
a border line.

Definition 4. The border is the perimeter of the square
constructed from the 4 border lines.

For the particular pair of ICRcurr and ICR∗ shown in
Fig. 4 (upper), the complementary route is the shortest
and as such is expected to be time optimal. The ICR bor-
der point ICRbor =

[
Xbor Ybor

]T
used to construct the

complementary route belongs to the border line y = R∞,
although any ICRbor belonging to the 4 border lines can
be used as well. Furthermore, there exist infinite points
satisfying y = R∞, each resulting in a complementary
route, as shown in Fig. 4 (middle), where the blue and
magenta lines represent alternative solutions. This re-
flects the need to choose the optimal (shortest) comple-
mentary route, which in this example (and for this par-
ticular border line), is represented by the green line. In
order to find the ICRbor corresponding to the shortest
complementary route (refer to Fig. 4 lower), we use
quadratic programming.

The feasible domain is the perimeter of the square
border (constructed from the 4 border lines) as depicted
in Fig. 4 (lower). To compute the shortest complemen-
tary route, we divide the domain in four QP formula-
tions subject to constraints, each representing one of the
border lines, shown in Fig. 4 (lower) with different col-
ors. The general formulation is given by:

minimize
ICRi(bor)

f (ICRi(bor)) =

‖ICRcurr − ICRi(bor)‖
2
2

+ ‖ICR∗ − ICR′i(bor)‖
2
2,

subject to
i=[1,2,3,4]

ciICRi(bor) = (−1)iR∞,

(5)

where ‖ ∗ ‖22 is the squared Euclidean norm, ICRi(bor) is
the ICR border point corresponding to the shortest (lo-
cal minimum) complementary route using the ith bor-
der line, ICR′i(bor) = −ICRi(bor) and c1,2 =

[
1 0

]
,

c3,4 =
[
0 1

]
indicate the constraint vectors. The set

of analytic solutions to the optimization problem in (5)
(recall that 1 local optimum solution will exist for each
of the linear constraints) can be expressed as:

Xbor ∈ {Xopt, Xopt,R∞,−R∞},

Ybor ∈ {R∞,−R∞,Yopt,Yopt},
(6)

x-axis

y-axis
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ICR route
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ICR route - part#1
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Figure 4: Illustrative scheme showing the complementary
route versus the direct ICR routes (upper), the optimal com-
plementary ICR route (green) among other possible routes
(magenta and blue) satisfying one constraint y = R∞ (mid-
dle), and the global optimum complementary route (magenta)
among the four local optima, each satisfying one straight line
constraint (bottom).
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with Xopt = (Xcurr − X∗)/2, and Yopt = (Ycurr − Y∗)/2.
Finally, we compute the index j corresponding to lower
cost fmin, to obtain the global minimum:[

fmin| j
]

= min
i=[1,2,3,4]

({
[
f (ICRi(bor))|i

]
})

ICRbor = ICR j(bor).
(7)

Using (7), we find the ICRbor corresponding to the
shortest complementary route (colored magenta in Fig.
4, lower) among the infinite points lying on the square
shaped border.

3.2. One Sample Period ICR Border Switching
To maintain unique ICR existence (in accordance

with the steer joint configuration) at all times, the ICR
must switch border in one sample period. To do this,
we must comply with the restrictions on the value of
R∞, dependent on the maximum change in steering an-
gle that can be done in one sample time (δβmax in Fig.
5) which is in turn related to the robot hardware (ac-
tuator) constraints. On the other hand, R∞ is limited
to certain range of upper values, since the optimization
algorithm run by the motion discontinuity-robust con-
troller will have limited freedom in the feasible region
at ICR points far from the robot center moving at high
ICR velocity ˙ICRre f (refer to Fig. 6). In such cases,
the feasible region for ICRnext will be confined to move
towards the ICR space borders, a favorable behavior for
the complementary route motion, but not for the nor-
mal (most usual) operating conditions. To avoid such
inconvenience, we introduce the extended version R∞(e)
which is used only for complementary (not for direct)
route execution.

Definition 5. R∞(e) = {x ∈ R+ : R∞ < x < ∞}, is an
extended value of the upper limit allowed for the ICR
components, so that border switching can be performed
in one sample period.

Definition 6. Border switching is a joint space op-
eration where the steer joints are reconfigured from
M(ICRbor) to M(−ICRbor), where M : ICR 7→ β is
a coordinate mapping from the ICR space to the steer
joint space.

From the geometry of the green triangle in Fig. 5,
R∞(e) can be evaluated in the worse case scenario as:

R∞(e) ≥ b ∗ tan
(
π − δβmax

2

)
+ oband

δβmax = min({β̇max ∗ ts, β̈max ∗ t2
s }),

(8)

where β̇max and β̈max denote the maximum steering ve-
locity and acceleration characteristics of the robot and

x-axis

y-axis

longest st. line 
connecting a steer
axis and the robot
geometric center

Figure 5: Evaluating the minimum value of R∞(e) in the worse
case scenario (biggest change in steer joint δβ) to be able to
perform border switching in one sample period. The mobile
base schematic is magnified w.r.t. the ICR border lines for
illustrative purposes.

oband is a positive (hand tuned) scalar offset. For fur-
ther clarification, R∞ is usually selected in the range of
10 ∼ 20 m, whereas R∞(e) as computed using (8) along
with the robot and controller parameters provided in Ta-
ble 1, evaluates to ≈ 31 m at sampling time ts = 0.025 s
(or ≈ 192 m at ts = 0.01 s).

3.3. Route Planning

To implement the complementary ICR route, we first
evaluate its time efficiency with respect to that of the
direct route, using a quantitative metric (detailed in the
next section). Once the route is verified as being more
time efficient, the complementary enable flag Fce is set
to 1 allowing its execution. Such route requires the fol-
lowing set of 4 consecutive steps S = {S 1, . . . , S 4} with
S 1: moving to the optimum border point ICRbor at R∞,
S 2: extending the border lines to R∞(e), S 3: switching
border in one sample period, S 4: retracting the border
lines back to R∞. At this step, the complementary route
algorithm is disabled (Fce = 0) and the direct route is
then utilized finally to the desired ICR∗. The elements
of the Boolean set S are initialized to 1 at the beginning
of the complementary route execution. These steps are
implemented by manipulating the modified ICR desired

6



point ICR∗mod, and the ICR controller gain λ as follows:

∀S 1 ∧ Fce ∧ (|ICRerr(c)| > cth) :ICR∗mod = ICRbor,

λ = λn,
(9)

Otherwise : S 1 = 0,

∀S 1 ⊕ S 2 ∧ Fce ∧ (|ICRerr(e)| > eth) :ICR∗mod = ICRbor ∗ re,

λ = λe,
(10)

Otherwise : S 2 = 0,

∀S 1 ⊕ S 2 ⊕ S 3 ∧ Fce ∧ (ICRcurr , ICR′bor) :{
ICR∗mod = ICR′bor ∗ re, (11)

Otherwise : S 3 = 0,

∀S 1 ⊕ S 2 ⊕ S 3 ⊕ S 4 ∧ Fce ∧ (|ICR′err(c)| > cth) :ICR∗mod = ICR′bor,

λ = λn,

Otherwise : (12)
ICR∗mod = ICR∗,
S 4 = 0,
Fce = 0.

In the above, re = R∞(e)/R∞ is the extension ratio,
ICRerr(c) = ICRbor − ICRcurr, and ICRerr(e) = ICRbor ∗

re − ICRcurr are the complementary and extended er-
ror vectors respectively, eth, and cth are the correspond-
ing positive scalar thresholds. Two positive scalar gains
λe, and λn are used for the extended and normal ICR
motion controllers respectively. Finally, ICR′err(c) =

ICR′bor − ICRcurr. Equations (9 - 12) represent the se-
mantic core (planning) of the complementary route al-
gorithm, with the high level desired signal ICR∗ modi-
fied to ICR∗mod based on the choice of ICR route to fol-
low. The modified desired signal will be used by the
ICR controller [26] (refer to Fig. 3):

˙ICRre f = ˙ICR∗ + λICRerr,

ICRerr = ICR∗mod − ICRcurr.
(13)

3.4. Automatic Joint Space Border Switching

In (11), we modify the desired ICR so that it is on the
complementary border, but the actual border switching

is done in the steering joint space. We switch by first
checking if the ICR∗mod and the ICRcurr satisfy:

(|X∗mod ± R∞(e)| ∧ |Xcurr ∓ R∞(e)|)∨
(|Y∗mod ± R∞(e)| ∧ |Ycurr ∓ R∞(e)|) ≤ oband. (14)

This simply indicates that at least one component (X or
Y) of both the desired and current ICR points is in the
opposite border band. Then, the complementary steer
joint variables corresponding to ICR′bor = −ICRbor are
evaluated using the SWMR geometric model:

β′i(bor) = arctan 2
(
− Ybor − hyi,−Xbor − hxi

)
−
π

2
. (15)

However, we are interested in the minimum change in
steering angle to achieve the border switch, which can
be obtained by first computing the required steering
change δβi(bs) using (15) and the current steer joint co-
ordinates:

δβi(bs) = PosB(β′i(bor)) − PosB(βi(curr)), (16)

PosB(δβi(bs)) =

δβi(bs) + 2π, ∀δβi(bs) < 0
δβi(bs) − 2π, ∀δβi(bs) ≥ 2π

,

where PosB(∗) is a function that guarantees that the out-
put angles are positive and bounded in the range [0, 2π[.
The minimum change is then obtained from (16) as fol-
lows:

δβi(bs)(min) =


δβi(bs) − 2π, if δβi(bs) > 3π/2
δβi(bs) − π, if δβi(bs) > π/2
δβi(bs) + 2π, if δβi(bs) < −3π/2
δβi(bs) + π, if δβi(bs) < −π/2

. (17)

Finally, the 4D vector δβ(bs)(min) is added to the current
steer position vector to conclude the border switching
phase:

βre f = βcurr + δβ(bs)(min). (18)

4. Direct OR Complementary

In order to select the best route, here defined as the
one that is more time efficient, we need an estimate of
the total time required by each. To do this we use the
Jacobian relating the steering velocity to that of the ICR
point:

˙ICRmax = J+
(ρ)(ICRcurr) ∗ β̇max, (19)

J(ICR) =
[
J1 . . . JN

]T
, (20)
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x-axis

y-axis

MPO700 
SWMR

Figure 6: Variation of the maximum ICR velocity with robot’s
ICR position, featuring the Neobotix-MPO700 industrial mo-
bile robot approximately to scale, with R∞ = 10m.

Ji =

 −Ỹ

X̃2 + Ỹ2 + δ3

X̃

X̃2 + Ỹ2 + δ3

 ,
where Ỹ = (Y − hyi), X̃ = (X − hxi), with δ3 ∈ R+ a
damping factor. We obtain the Jacobian matrix in (19)
by substituting by ICRcurr in the general relation (20).
Fig. 6 shows the evolution of ‖ ˙ICRmax‖2 over the entire
R∞ bounded ICR space, computed using (19) with the
parameters of the Neobotix MPO-700 mobile robot pro-
vided in Table 1. As depicted, among equal length direct
and complementary routes, the latter will be more time
efficient. Both routes are then divided into an equal,
even number of samples 2 ∗ np, np ∈ Z+, and at each,

˙ICRmax is computed using (19) and used to estimate the
time required by each route as follows:

Td =

2∗np∑
k=1

S d

‖J+
(ρ)(ICRk(d)) ∗ β̇max‖

,

Tc =

np∑
k=1

S c

‖J+
(ρ)(ICRk(c)) ∗ β̇max‖

(21)

+
S ′c

‖J+
(ρ)(ICR′k(c)) ∗ β̇max‖

,

ICRk(d) = ICRcurr +
k

2 ∗ np
∗ ICRerr,

ICRk(c) = ICRcurr +
k
np
∗ ICRerr(c),

ICR′k(c) = ICR′bor +
k
np
∗ (ICR∗ − ICR′bor),

with Td, and Tc are the time duration estimates, S d =

0.5 ∗ ‖ICRerr‖/np, S c = ‖ICRerr(c)‖/np, and S ′c =

x-axis

y-axis
elliptic
footprint

Figure 7: The intersection of the direct ICR route with the
elliptic footprint of the mobile robot should favor the use of
the complementary route.

‖ICR∗ − ICR′bor‖/np the distance increments for the di-
rect, complementary part#1, and part#2 routes respec-
tively (refer to Fig. 4, upper). It is worth noting that the
estimates provided by (21) are not exact and are only
useful for comparison purposes, since the error driven
ICR controller will not provide maximum ICR velocity
during the whole route.

Remark 3. The complementary route described in this
work is simply a straight line route passing by the 2D
ICR space borders, parameterized by R∞. We assume
it is time optimal with respect to the straight line di-
rect route even if it is longer in length, since it moves
the ICR away from the robot geometric center. As such,
much higher ICR velocities are achievable and longer
ICR distances can be covered in shorter time with less
steering, as depicted in Fig. 6. Although higher order
routes (e.g., splines) could be used, here we focus on a
simpler first order (straight line) route.

In some cases, even if the complementary ICR route
is found more time consuming than its direct counter-
part, it is preferable to use it. In particular when the di-
rect route will pass by/near singular configurations, trig-
gering the singularity avoidance algorithms [26], that
will consume time. Moreover, in the neighbourhood of
singular configurations or at the robot geometric cen-
ter, usually the feasible region for the ICRnext is very
small, and it might happen (although rarely if controller
parameters are tuned well) that no feasible solution is
found. In practice, such situation occurs when the di-
rect route passes by the robot footprint. To affect the de-
cision in such cases, we construct an elliptic footprint,
light red in Fig. 7, with geometric center coincident
with the robot frame, and semiaxes lengths w, and h
(values chosen arbitrarily), formulated as:

x2/w2 + y2/h2 = 1. (22)
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The intersection points Pint(1,2) =
[
xint(1,2) yint(1,2)

]T
of

such footprint with the direct route formulated as y =

md ∗ x + bd, are:

xint(1,2) =
−w2mdbd ± wh

√
K1 − b2

d

K1
,

yint(1,2) =
h2bd ± whmd

√
K1 − b2

d

K1
,

where K1 = w2m2
d + h2. Then, we use the discrimi-

nant D = K1 − b2
d to determine whether the direct route

intersects the designed footprint or not (D ≥ 0 if inter-
section occurs). Afterwards, we add a biasing factor Tb

that is activated only if both the current and desired ICR
points are outside the ellipse. Such biasing condition is
checked by substituting by ICRcurr, and ICR∗ in (22)
and formulated as:

Cb =

1 if
(X2

curr

w2 +
Y2

curr

h2 ≥ 1
)
∧

(X∗2

w2 +
Y∗2

h2 ≥ 1
)

0 otherwise.

Finally, the total time duration comparison is done us-
ing:

Fce =

1 if (Tc ≤ Td + l(D)CbTb) ∧ ˙ICR∗ , 0
0 otherwise,

(23)

where l(∗) is a logic function:

l(D) =

1 ∀D > 0
0 ∀D ≤ 0.

In (23), condition ˙ICR∗ , 0 ensures that we evaluate
both routes and update the flag Fce automatically only if
a change in the desired ICR motion is detected. Flag Fce

is the output of the ”direct or complementary” decision
making algorithm (red colored block in Fig. 3).

5. Experiments

In this section, we describe/perform two experiments.
The first (simulation) will show how the proposed com-
plementary route controller can enhance the perfor-
mance of the SWMR in response to diverse discontinu-
ous velocity commands. To this end, we introduce the
command fulfillment index as performance (quantita-
tive) evaluation metric. The second experiment will fea-
ture a common application, where the mobile base must
avoid obstacles while maintaining a particular heading

angle so that a target is always in the vision cone. We
show that the general performance is greatly enhanced
with the proposed controller. Both the vision based con-
troller and the obstacle avoidance algorithm are out of
the scope of this work and consequently not detailed
here, and the reader is referred to [34] for more infor-
mation on these. The QP optimization has been imple-
mented using the QuadProg++ library [35].

5.1. Command Fulfillment Index (CFI)

To compare the output velocity commands ξ̇re f of
the two controllers (employing direct or complementary
routes) we introduce the CFI (dimensionless quantity)
metric. This is defined as:

CFI = 1 −
‖ξ̇∗ − ξ̇re f ‖2

2‖ξ̇max‖2
, (24)

where ξ̇max =
[
ẋmax ẏmax θ̇max

]T
is the maximum

robot velocity (characteristic of the robot hardware).
Note that the CFI does not depend on the estimated
(from joint space measurements) robot velocity, since
the low level (joint dynamics) control is out of the scope
of this work. Instead, we aim at evaluating how near the
”feasible” controller output velocity command ξ̇re f is to
the desired one ξ̇∗. For SWMR, the value 0 < CFI < 1
will be closer to 1 as the quality of the controller in-
creases. Also note that the same values of both the de-
sired ξ̇∗ and maximum ξ̇max velocities are used in com-
paring both controllers, so only ξ̇re f depends on the con-
troller.

It is worth noting that the best CFI values are ex-
pected for a fully omnidirectional robot. However, it
will not maintain CFI = 1 at all times being subject to
discontinuous velocity commands: a sudden drop in the
CFI value will happen once a new desired ICR point is
demanded (see Fig. 10c, and Fig. 9c). It is generally ex-
pected that a FOMR will converge faster than a SWMR.
Note that the CFI formulation in (24) depends on the re-
sponse time of both the steering and driving joints. The
FOMR structure has an advantage since it does not need
steering. On the other hand, a SWMR structure has an
advantage in the driving joint thanks to its conventional
wheels that are generally expected to respond faster (to
reach a discontinuously commanded drive speed) than
omnidirectional (or Swedish) ones, due to their lim-
ited velocity/acceleration capabilities [36], and frequent
slippage [37]. This argument implies that for applica-
tions subject to frequent discontinuous velocity com-
mands, the SWMR structure may be equivalent or even
out-perform the FOMR one.
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5.2. Discontinuous Velocity Commands Simulation

To evaluate the proposed controller against discon-
tinuous robot velocity commands in different situations,
we should be able to set those commands in the ICR
space. To this end, we use the kinematic relation be-
tween the 3D Cartesian velocity space and the 2D ICR
space (refer to Fig. 2):

v∗ =

[
ẋ∗

ẏ∗

]
=

[
Y∗θ̇∗

−X∗θ̇∗

]
, (25)

where X∗ and Y∗ are the components of each of the nine
desired ICR points shown in Fig. 8, and a constant ro-
tational velocity θ̇∗ = 0.05 rad s−1 is applied throughout
the simulation. Each of the 9 velocity commands is ap-
plied for a duration of 5 seconds. The 3D Cartesian
velocity vector ξ̇∗ =

[
v∗T θ̇∗

]T
is then sent to the con-

troller architecture shown in Fig. 3. The desired ICR
points used (shown in Fig. 8), are selected arbitrarily to
excite the controller in different situations, to show both
the strengths and weaknesses. The controller parame-
ters used throughout the simulations are shown in Table
1, with R∞ < R∞(e) < ∞ values chosen as suggested in
3.2.

Simulation results for the complementary route con-
troller and for the conventional one are shown in Fig-
ures 10 and 9 respectively. The first command ICR∗ =[
0 R∞

]T
, applied during t = [0, 5[s (t is the simulation

time), shown in Fig. 8 requires no steering as it con-
forms with the initial steer joint configuration. Among

Table 1: Robot and Controller parameters used in the experi-
ments.

a 0.19m b 0.24m
rw 0.09m δ 0.001
δ1 1−9 V̇max 10m/s
λn 7.7 Rzone 0.015m
β̈max 25rad./s2 ts 25ms

w 0.4m h 0.3m
ẋmax 0.5m/s ẏmax 0.5m/s
ẍmax 0.5m/s2 ÿmax 0.5m/s2

R∞(e) 33m eth 0.1R∞
δ3 0.01 np 50
d 0.045m R∞ 10m
βth 0.005rad. β̇max 2rad./s
Kp 2 λe 30
θ̇max 0.5rad./s θ̈max 0.5rad./s2

cth 0.05R∞(e) Tb 3s

x-axis

y-axis

Figure 8: Desired (discontinuous) ICR points used in simula-
tion. The relative dimensions of the mobile base schematic as
well as the points are drawn at approximately 1 : 1 scale for
clarification. The initial steer joint configuration corresponds
to the equivalent ICR point of the first velocity command vec-
tor.

numerous reasons, the motivation behind the first com-
mand is to show that even if no steering is required (the
same case as in FOMR), the CFI is not equal to 1 (Fig.
10c, 9c) since it depends on how fast the required driv-
ing velocity can be reached, and in that spirit it is ex-
pected that the SWMR might out-perform the FOMR
structure at some motion requirements, due to the lim-
ited performance capabilities [36, 37] of such non con-
ventional wheel types.

The second command ICR∗ =
[
0 −R∞

]T
, applied

during t = [5, 10[ s, requires ICR motion from one ex-
treme of the ICR space to the opposite in the conven-
tional (direct) controller. The ability to perform such
discontinuous velocity command in short time is the
core motivation behind this paper, since it is very com-
mon in heading control applications. In such applica-
tions, a small heading variation will result in a sign
change for the rotational velocity, that in turn causes
big jumps in the corresponding ICR. The X component
of the desired and reference ICR points, for the com-
plementary and direct routes is shown in Fig. 10a, 9a
respectively. Similarly, the Y component is shown in
Figures 10b and 9b. Recall that the reference ICR point
is a feasible signal that can be performed by taking into
account the robot maximum performance limits. By
comparing in Fig. 10b, 9b the Yre f output by both con-
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X∗

Xre f

(a)

Y∗

Yre f

(b)

CFI

(c)

AA
0.097

AA
0.509

AA
0.406

AA
0.383
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0.07

AA
0.024

AA
0.006

AA
0.047

AA
0.008

β̇1
β̇2
β̇3
β̇4

(d)

β̈1
β̈2
β̈3
β̈4

(e)

Figure 9: Simulation results employing the direct route (con-
ventional) controller with (a), (b) the x, and y components
respectively of the desired and reference (output of the con-
troller) ICR points (in meters), (c) the command fulfillment in-
dex (dimensionless), (d), (e) the steering velocity (in rad/s) and
acceleration (in rad/s2) respectively. The values in (c) indicate
the area above graph (proportional to the error in robot veloc-
ity) at each discontinuous velocity command. In all plots, the
abscissa represents the simulation time instant (in seconds).

trollers, we clearly see the enhanced performance us-
ing the complementary route, where converging to the

X∗

Xre f

(a)

Y∗

Yre f

(b)

CFI

(c)

AA
0.097

AA
0.194

AA
0.201

AA
0.174

AA
0.07

AA
0.039

AA
0.006

AA
0.03

AA
0.008

β̇1
β̇2
β̇3
β̇4

(d)

β̈1
β̈2
β̈3
β̈4

(e)

Fce

(f)

Figure 10: Simulation results of the complementary route con-
troller with (a) to (e) as described in Figure 9 and (f) the time
instants at which the complementary route algorithm is active.
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Figure 11: V-REP scene of the sensor-based navigation sce-
nario, featuring the Neobotix-MPO700 mobile robot navigat-
ing to a target while performing obstacle avoidance. The sim-
ulated visual cone applies a constraint on the heading of the
robot so that the target is always seen by the robot, as is com-
mon in vision-based navigation. Here we apply such con-
straint to show the utility of the proposed controller. F t =

(ot, xt, yt, zt) denotes the target object frame.

Y∗ took only a fraction of a second (0.2s), whereas in
Fig. 9b, the direct route took much longer to converge
(2.27s).

The third ICR∗ =
[
7 6

]T
, and fourth ICR∗ =[

−6 −6
]T

commands applied during t = [10, 15[ s,
t = [15, 20[ s respectively, correspond to the exam-
ple given earlier in Fig. 4 to enhance paper cohesion.
These commands confirm the superior performance of
the complementary route (refer to Figures 9 and 10) in
terms of the convergence time of both the X and Y com-
ponents of ICRre f . The 4 commands just described fea-
ture large discontinuous jumps in the desired ICR point,
in which cases the performance of the complementary
route clearly surpasses that of the direct route in terms
of lowering both the time of convergence and the total
Cartesian velocity error. The latter is evident from the
smaller area above curves of the CFI plots in Fig. 10c
as compared to Fig. 9c.

The fifth command ICR∗ =
[
−0.5 −0.5

]T
, applied

during t = [20, 25[ s, lies in the same quadrant as the
fourth. Consequently, there is no advantage in using
the complementary route; this is automatically detected
using (21), and the direct route is used. The sixth com-
mand ICR∗ =

[
0.5 0.5

]T
, applied during t = [25, 30[

s, aims at testing the elliptic footprint avoiding algo-
rithm. By comparing Figures 9, and 10 we see that the
ICRre f converging time for both is almost the same, al-
though the CFI is lower in case of the direct route. This
can be adjusted by lowering the value of the penalty fac-
tor Tb in (23). Instead, here, its value is intentionally
left high enough (3s) to bias the decision in favor of the
complementary route for two reasons. First: in prac-

Figure 12: Snapshots of the real sensor-based navigation ex-
periment employing the complementary route ICR controller.

tice, when the desired velocity is near the current one
(especially near the robot geometric center), a small in-
crease in the error does not tragically affect the applica-
tion in hand. Second: avoiding ICR motion in the robot
footprint region lowers the chances of triggering singu-
larity avoidance algorithms, minimizing the steering as
shown by comparing Figures 10d, 10e with Figures 9d,
9e, which is generally favorable.

The seventh ICR∗ =
[
1 0

]T
, and eighth ICR∗ =[

−1 0
]T

commands applied during t = [30, 35[ s,
t = [35, 40[ s respectively, show that the complementary
route can be as efficient for small ICR jumps near the ge-
ometric center as it is for the far points in the ICR space.
In moving from the seventh to the eighth, the conver-
sion time duration is approximately 2.5s and 1s for the
direct and complementary routes respectively. The cor-
responding areas above the CFI curve are 0.047s, and
0.03s in the same order. Finally a pure rotation ve-
locity command ICR∗ =

[
0 0

]T
is applied during

t = [40, 45[ s. In Fig. 10f, the periods in which the com-
plementary route algorithm is active are shown. Dur-
ing the rest of the simulation period, the direct route
is active, better explaining the proposed algorithm as a
correcting module to enhance the overall performance.
Aside better CFI values and shorter convergence time of
ICRre f to the ICR∗, the proposed controller reduces the
required steering velocity and acceleration, as clearly
shown in Figures 9d, 9e, 10d and 10e,.

5.3. Sensor-based navigation

The performance evaluation detailed in previous sub-
section (Fig. 10, and Fig. 9) is a mere quantitative com-
parison. It shows that the complementary route con-
troller outperforms the direct route one. Yet, in practice,
the direct route controller may fail in several applica-
tions or provide unsatisfactory behavior at best. Here,
we describe/perform one of these applications, where
a mobile robot is required to move to a relative pose
with respect to a visible target, while avoiding several
static obstacles on its way. During this task, the robot
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Figure 13: Simulation results of sensor-based navigation em-
ploying the complementary route controller.
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Figure 14: Simulation results of sensor-based navigation em-
ploying the direct route (conventional) controller.
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has to maintain a certain heading angle with respect to
the target to keep it within its field of view. A V-REP
simulation of such application is shown in Fig. 11.

We have chosen a simple obstacle configuration for
two reasons. First, the sensor-based navigation con-
troller has been detailed and validated (in more com-
plex scenarios) in [34], and is out of scope in this paper.
Second, a simple scenario is preferable, to highlight the
effect of the two controllers on the robot motion. In fact,
the discontinuous ξ̇∗ output by the sensor-based naviga-
tion controller (the the ”high level task controller” of
Fig. 3) causes frequent sign changes of either compo-
nent of the desired ICR. This phenomenon will make
the direct route less satisfactory, independently from the
obstacle configuration.

The discontinuous velocity commands ξ̇∗ are shown
in Figures 13a and 14a for the complementary and di-
rect route controllers, respectively. In Figures 13b and
14b, we show the output of the respective controllers.
As seen, the complementary route approach is more re-
sponsive and converges more quickly to the desired sig-
nal. However, during the time period t = [2, 5[ s in
Fig. 13b, the complementary route algorithm is less sat-
isfactory in terms of following the desired robot veloc-
ity. Hence, during this period, the direct route is ac-
tivated. The cause is visible in Figures 13c and 13d,
that show the X and Y components of the ICR∗ and
ICRre f signals, respectively. During this time period,
ICR∗ is near the robot geometric center (values of X∗,
and Y∗ closer to 0). Consequently, the direct route is
more time efficient according to (21), and since the sig-
nal is highly discontinuous, the direct route controller
output ICRre f , does not have enough time to converge
to ICR∗. It is worth noting that, whenever a new discon-
tinuous velocity command is requested, all robot veloc-
ity components are affected until they converge to their
corresponding desired values. This is because, in con-
trast with FOMR structured robots, the robot velocity
components are coupled.

The X and Y components of ICR∗ and ICRre f sig-
nals for the direct route controller are shown in Figures
14c and 14d, respectively. By comparing these figures
with their complementary route counterparts, the poor
responsiveness of the first is evident, especially at pure
heading control during the time period t = [25, 48[ s.
The controller output ICRre f takes longer to converge
to ICR∗. This is reflected on the longer simulation time
required to reach the desired relative pose with respect
to the target (48 instead of 33 seconds).

The command fulfillment index is shown in Fig. 13e,
and 14e respectively in the usual order, along with the
evolution of its moving average value CFI computed

using:

CFI =

Ns∑
0

CFI
Ns

,

where Ns = t/ts is the number of sampling instances
(points) at time t. The CFI metric quantitatively shows
the enhanced responsiveness discussed earlier for the
complementary route controller. Recall that the area
above the CFI curve (in hashed blue and red colors
in the respective figures) is directly proportional to the
robot velocity error.

In Figures 13f and 14f, we show the steering velocity
for each controller. It is evident that the proposed algo-
rithm is less demanding in terms of steering joint mo-
tion, apart from the issue encountered during the time
period t = [2, 5[ s, where the direct route controller was
activated.

Finally, this application scenario has been performed
experimentally using the Neobotix-MPO700 industrial
mobile robot equipped with laser scanners. The test us-
ing the direct route controller suffered severe vibrations
due to the excessive steering required (refer to Fig. 14f)
and is considered as a failure. On the other hand, the
complementary route controller test was performed suc-
cessfully, as shown in the video supplied with this pa-
per4, snapshots of which are provided in Fig. 12.

6. Conclusion

In this paper, a complementary route based ICR con-
troller is introduced. Its performance against the con-
ventional ICR controller is compared quantitatively us-
ing a novel evaluation metric, the Command fulfillment
index. The two controllers are also compared in two
case studies. The first features simple discontinuous ve-
locity signals applied at low frequency for a detailed
investigation of both controllers behavior. The second
is a practical application (sensor-based navigation) in
which command discontinuity occurs at much higher
frequency. The complementary route ICR controller
shows superior results in all the performed tests.
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