N
N

N

HAL

open science

Measurement and Generation of Diversity and
Meaningfulness in Model Driven Engineering

Adel Ferdjoukh, Florian Galinier, Eric Bourreau, Annie Chateau, Clémentine
Nebut

» To cite this version:

Adel Ferdjoukh, Florian Galinier, Eric Bourreau, Annie Chateau, Clémentine Nebut. Measurement
and Generation of Diversity and Meaningfulness in Model Driven Engineering. International Journal
On Advances in Software, 2018, 11 (1/2), pp.131-146. lirmm-02067506

HAL Id: lirmm-02067506
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02067506
Submitted on 14 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02067506
https://hal.archives-ouvertes.fr

Measurement and Generation of Diversity and
Meaningtulness in Model Driven Engineering

Adel Ferdjoukh

LS2N & University of Nantes, France
adel.ferdjoukh @univ-nantes.fr

Abstract—Owning sets of models is crucial in many fields,
so as to validate concepts or to test algorithms that handle
models, model transformations. Since such models are not always
available, generators can be used to automatically generate sets
of models. Unfortunately, the generated models are very close to
each others in term of graph structure, and element naming is
poorly diverse. Usually, they badly cover the solutions’ space.
In this paper, we propose a complete approach to generate
meaningful and diverse models. We use probability simulation
to tackle the issue of diversity inside one model. Probability
distributions are gathered according to domain quality metrics,
and using statistical analysis of real data. We propose novel
measures to estimate differences between two models and we
provide solutions to handle a whole set of models and perform
several operations on these models: comparing them, selecting
the most diverse and representative ones and graphically observe
the diversity. Implementations that are related to difference
measurement are gathered in a tool named COMODI. We applied
these model comparison measures in order to improve diversity
in Model Driven Engineering using genetic algorithms.

Index Terms—Model Driven Engineering; Intra-model Diver-
sity: Inter-model Diversity; Meaningfulness of Models; Counting
Model Differences.

I. INTRODUCTION & MOTIVATIONS

The present paper is an extended version of the paper that
the authors published in ICSEA’2017 conference [1].

The increasing use of programs handling models, such as
model transformations, more and more increases the need
for model benchmarks. Elements of benchmarks are models
expected to respect three quality criteria at the same time. First,
they must be as representative as possible of their domain-
specific modelling language. Then, they have to be diverse
in order to chase the potentially rare but annoying cases
where programs show a bad behaviour. Finally, they must
be meaningful and close to hand-made data in some aspects.
The difficulty of finding real test data that fulfil all these
requirements, and in sufficient quantity to ensure statistical
significances, leads to consider the automated generation of
sets of models. Many approaches and tools can be used in
this purpose: Ferdjoukh et al. [2], Sen et al. [3], Cabot et al.
[4], Gogolla et al. [5].

Florian Galinier

Eric Bourreau, Annie Chateau
and Clémentine Nebut

IRIT, University Paul Sabatier,
Toulouse. France
florian.galinier @irit.fr

Lirmm, CNRS & University
of Montpellier, France
lastname @lirmm.fr

We distinguish two different concepts of diversity. Intra-
model diversity ensures that the elements contained in a single
model are sufficiently diverse. For example, when generating
a skeleton of a Java project, we verify that there are many
packages in the project. The packages should contain diverse
numbers of classes. Classes should contain fields and methods
of diverse types, etc. Inter-model diversity forces two models
taken as a pair to be as different as possible. With a possible
extension to a whole set of models. The combination of
these two different kinds of diversity guarantees both the
well coverage of the meta-model’s solution space and the
meaningfulness of the generated models.

Intra-model diversity is linked to the concept of mean-
ingfulness for models. Thus in the previous example, let us
consider that the classes of a Java project are all concentrated
in one package. We estimate that this project is not well-
formed or meaningful. In practice, this kind of project does
not respect Object Oriented Programming quality criteria,
because its reusability is poor. In this paper, we propose to
use probability distributions related to domain-specific quality
metrics to increase the intra-model diversity.

One of the main issues when attempting to produce different
models, is to state in what extent, and according to which
criteria, the models are actually “different”. The most natural
way to formalize this notion, is to define, and use metrics
comparing models, and measuring their differences.

Determining model differences is an important task in
Model Driven Engineering. It is used for instance in repos-
itories for model versioning. Identifying differences between
models is also crucial for software evolution and maintain-
ability. However, comparing models is a difficult task since
it relies on model matching. This latter can be reduced
to graph isomorphism that is an NP-intermediate problem
(No polynomial algorithm is known for Graph isomorphism
problem, but it has not been proven NP-complete. The more
general sub-graph isomorphism problem is NP-complete.) [6].
Kolovos et al. [6] draw up an overview of this issue and give
some well-known algorithms and tools for model comparison.
Most of these approaches compare only two models between
them and find their common elements. This is insufficient for

the problem of diversity improving because differences have to
be measured and a whole set of models has to be considered.

In this work, we propose a distance-based approach to
measure model differences and we provide solutions to handle
sets of models in order to compare them and to extract the most
representative models. A human readable-graphical viewing is
also given to estimate the diversity of a set of models.

We consider models, which are conform to meta-models,
according to the Ecore/EMF formalization [7]. Model genera-
tion is performed using GRIMM [2], [8], [9], [1] and it is based
on Constraint Programming [10]. Basically, GRIMM reads a
meta-model and translates all elements of the meta-model into
a Constraint Satisfaction Problem (CSP). A CSP solver is
then used to solve the obtained constraint network, leading to
one or more models, which are conform to this meta-model,
and meeting a given set of additional parameters describing
the characteristic of desired models. Constraint Programming
provides a deterministic behavior for the generation, it is
then difficult to encode diversity directly in the heart of the
tool. Other model generation tools can be coupled with our
approach. For example, during our experiment we also used
models that have been generated using PRAMANA tool (Sen
et al. [3]). We investigate in this work the use of genetic
algorithms, so as to diversify an obtained set of models (the
preliminary elements for the approach can be found in [11]).

In summary, our contributions are: (1) an approach for in-
creasing intra-model diversity based on probability simulation
(2) two case studies to show the efficiency of the previous
method (3) novel metrics measuring model differences using
distances coming from different fields (data mining, code
correction algorithms and graph theory) and adapted to MDE
(Model Driven Engineering) (4) solutions to handle a whole
set of models in order to compare them, to extract the most
representative models inside it and to give a graphical viewing
for the concept of diversity in MDE (5) A tool implementing
these two previous contributions (6) an application of these
distance metrics in improving inter-model diversity in MDE
using a genetic algorithm.

The rest of the paper is structured as follows. Section II
relates about previous literature. Section III presents GRIMM,
our methodology and tool for automated generation of models.
Section IV describes how we face the issue of intra-model
diversity in MDE. Two case studies show the efficiency of
the previous approach (Section V). Section VI details the
considered model comparison metrics. Section VII details the
solutions for handling a set of models (comparison, selection
of representative model and graphical viewing). The tool
implementing these contributions is described in Section VIII.
An application of our method to the problem of inter-model
diversity in MDE is shown in Section IX. Section X concludes
the paper.

II. RELATED WORK

This section draws a state of the art of the topics related to
the work we presented in our paper. Related work is divided

into three parts. Each part relies on one important contribution
of this paper.

A. Meaningful models

We give here a short list of approaches for model generation.
Many underlying techniques have been used. Cabot et al.
[12] translate a meta-model and its OCL constraints into
constraint programming. In [13], Mougenot et al. use random
tree generation to generate the tree structure of a model. Wu
et al. [14] translate a meta-model into SMT (Satisfiability
Modulo Theory) in order to automatically generate conform
models. In [15], Ehrig et al. transform a meta-model into
a graph grammar, which is used to produce instances. The
advantages and drawbacks of our original approach relatively
to the other generating methods have been discussed in [8].

Nevertheless, only two approaches have treated the problem
of meaningfulness of generated models. In [13], authors use
a uniform distribution during the generation process and add
weights in order to influence the frequency of appearance of
different elements. In [14], authors describe two techniques
to obtain relevant instances. The first one is the use of
partition-based criteria, which must be provided by the users.
The second one is the encoding of common graph-based
properties. For example, they want to generate acyclic graphs,
i.e., models.

B. Model comparison

The challenging problem of model comparison was widely
studied, many techniques and algorithms were proposed for
it. Two literature studies are proposed in [6] and [16]. Among
all the techniques, we describe here the techniques that are
close to the model distance algorithms we propose, in both
comparison and objective.

Falleri et al. [17] propose a meta-model matching approach
based on similarity flooding algorithm [18]. The goal of this
approach is to detect mappings between very close meta-
models to turn compatible models, which are conform to these
meta-models. The comparison algorithm detects two close
meta-models. A transformation is then generated to make the
models of the first meta-model conform to the second one.
However, in such kind of work, the similarity between models
cannot be detected without using the names of elements:
lexical similarities are propagated through the structure to
detect matchings. Our approach is more structural.

Voigt and Heinze present in [19] a meta-model matching
approach. The objective is very close to the previous approach.
However, the authors propose a comparison algorithm that is
based on graph edit distance. They claim that it is a way
to compare the structure of the models and not only their
semantics as most of techniques do.

C. Diversity of models

Cadavid et al. [20] present a technique for searching the
boundaries of the modeling space, using a meta-heuristic

size parameters CSP solution
reader > reader
Meta-model > E v
) - Meta-model Value conform
OCL constraints - translator generator models
Size parameters —> e + e#
OoCL Meta-model
translator instantiator
CSP generator Model builder

Fig. 1. Steps for model generation using GRIMM tool.

method, simulated annealing. They try to maximize cov-
erage of the domain structure by generated models, while
maintaining diversity (dissimilarity of models). In this work,
the dissimilarity is based on the over-coverage of modeling
space, counting the number of fragments of models, which
are covered more than once by the generated models in the
set. In our work, the objective is not to search the boundaries
of the search space but to select representative and diverse
elements in the whole search space.

More recently, Batot et al. [21] proposed a generic frame-
work based on a multi-objective genetic algorithm (NSGA-
I) to select models sets. The objectives are given in terms
of coverage and minimality of the set. The framework can
be specialized adding coverage criterion, or modifying the
minimality criterion. This work of Batot et al. confirms the ef-
ficiency of genetic algorithms for model generation purposes.
Our work is in the same vein but focuses on diversity.

Sen et al. [22] propose a technique on meta-model frag-
ments to ensure that the space of solutions is well-covered. The
diversity is obtained by diversifying the possible cardinalities
for references. For example, if a reference has cardinality
1..n, 3 different configurations are considered: 1, 2 and n. To
generate a model, the different configurations for all references
are mixed.

Hao Wu [14] proposes an approach based on SMT (Satis-
fiability Modulo Theory) to generate diverse sets of models.
It relies on two techniques for coverage oriented meta-model
instance generation. The first one realizes the coverage criteria
defined for UML class diagrams, while the second generates
instances satisfying graph-based criteria.

Previous approaches guarantee the diversity relying only on
the generation process. No post-process checking is performed
on generated model sets to eliminate possible redundancies or
to provide a human-readable graphical view of the set.

ITII. BACKGROUND: GRIMM TOOL

GRIMM (GeneRating Instances of Meta-Models) is a model
generation approach and tool. Its goal is the automated genera-
tion of instances that conform to ecore meta-models. It is based

on Constraint Programming (CSP) [10]. Schema on Figure 1
shows the steps for model generation using GRIMM tool.

A. Input

Meta-model is written using the Ecore formalization. It mainly
contains classes, attributes and references (links between two
classes). A class can have one or more subclasses and also one
or more super-classes. A reference between two classes can
be bi-directional or unidirectional only. Some references are
compositions. One class of the meta-model plays the leading
role of root class. It has the particularity of being linked to all
other classes by composition relations (directly of transitively).

OCL constraints are additional constraints that come with a
meta-model. They help to disambiguate some elements of the
meta-model. OCL is a first order logic language. In our work
we are considering only invariants and not all the types of OCL
constraints. The area of OCL our tool can handle is large but
not complete. We can process simple OCL constraints on one
or more attributes, many operations on collections and some
typing operations. It is also possible using CSP to take into
account some complex and nested OCL constraints.

Size Parameters fix the size of desired generated models.
These parameters are chosen by the user. He fixes the number
of instances for each class and unbounded references and also
can give the domain of values for an attribute.

B. Processing

Size parameters reader This module of our tool reads a
file containing all the size parameters given by a user and
verifies their well-formedness. It also does some inference
when information is missing (for attributes values and for
unbounded references).

Meta-model translator The goal of this step is to create a
Constraint Satisfaction Problem (CSP) to solve the model
generation problem. This module uses the previous size pa-
rameters and translates each element of the meta-model (class,

attribute, link, inheritance) into its equivalent in CSP. Much
more details about the translation process can be found in [2],

[8].

OCL translator This step is devoted to the translation of OCL
constraints into CSP. The CSP obtained in the previous step
is completed to integrate OCL. Many constructions of the
OCL language are taken into account. Simple and complex
constraints with one or more attributes are handled. Many
widespread operations on collections or on types are also
considered. In addition, processing of some nested constraints
is possible using Constraint Programming. Translation of OCL
constraints is detailed in [8].

CSP solver It is a program that solves CSP. Its goal is to
quickly find a solution satisfying all the constraints at the same
time, yielding difficulties when trying to generate diverse and
different solutions. Indeed, a CSP solver is designed to quickly
find a solution without considering its intrinsic quality or a
global vision of all the possible solutions. In other words,
although a solution is correct for a CSP solver, it is not
necessarily a meaningful model.

CSP solution reader Once a solution is found, GRIMM reads
this solution and extracts the values for the model’s elements:
inheritance, links and attributes.

Value generator The values of some elements are missing after
the previous step. Because CSP handles only integer variables.
For other data types: enumerations characters, strings and
floats, post-processing is needed. This steps is then crucial
to get a complete model.

Meta-model instantiator This final step gathers all information
of previous step and builds a valid and conform model.

The result of this process is the generation of instances for
meta-models. GRIMM tool is able to produce two different
outputs:

o xmi model files, that can be used for testing model
transformations.

e dot is a format for creating graphs. Our tool uses its own
syntax, so models can be graphically visualized in pdf or
png.

The following sections describe contributions for improving

the meaningfulness and the diversity of generated models.

IV. INTRA-DIVERSITY OF MODELS

One remaining issue is related to the meaningfulness of
generated models. Indeed, we have to produce models that are
as realistic as possible, regarding to the data they are supposed
to simulate. We propose to use intra-model diversity to achieve
this goal.

The declarative approach (CSP) is intrinsically determin-
istic, since the solver follows a deterministic algorithm to
produce a unique solution. The CSP solver can easily pro-
duce thousands of solutions, but they are often far from the

reality. In other words, it is impossible using a combinatorial
approach, such as CSP, to express the meaningfulness. It is
more a probabilistic concept.

Generation process is enriched with various parameters. We
exploit the flexibility of CSP and the fact that some elements
of the real models follow usual probability distributions. These
distributions are simulated and, a priori, injected to the CSP,
in order to produce generated models closer to real ones.

For better results, probability distributions are not arbitrary.
They are domain-specific. Indeed, we observe, that many
quality metrics are encoded in the meta-models. For example,
in Java meta-model, we find an unbounded reference (0..x)
between class and method. It determines the number of
methods belonging to a given class. This number is fixed by
the CSP solver according to user’s choice. In real models, the
number of methods per class is diverse, not constant, and there
exist related quality metric [23] and code smells [24]. Our idea
is to exploit the metrics, that are encoded in the meta-model,
to improve the meaningfulness of generated models.

Schema on Figure 3 shows the steps for generation of
meaningful models, by exploiting domain specific metrics, and
related probability distributions.

A. Input

Probability distributions on links formally define the diversity,
while linking class instances inside the generated models. For
each reference, identified as related to a quality metric, the user
defines a probability law (normal, exponential, etc). This law is
then used to fix the number of target elements for each class
instance. Figure 2 illustrates the diversity, while linking the
elements of a model. In the left side, we can see a theoretical
model without any diversity. Each circle is always linked to 2
squares. The right side shows a model, in which each circle
is linked to a different number of squares.

ot
b0t

bt

Fig. 2. Tllustrating the diversity while linking elements in a model.

O—>U

O—0

Probability distributions on attributes concern the most im-
portant attributes in a meta-model. For example, in the Java
meta-model, the visibility of fields and methods is important.
Indeed, object-oriented programming promotes encapsulation.
This means that most of fields are private and most of methods
are public. The probability laws determine here the value
of attribute visibility for each created field and method. A
probability is defined for each possible value, and simulation
will choose adequate values and assign them to class instances.

; w| size parameters Meta-model
Size parameters > - €4 Meta-model [>» instantiator
— - - Probability - a Value
Pmb?g'r:g)d":‘t' ~ Sampler [generator
6# models
Meta-model Probability dist. | Probability
translator (Attributes) > sampler
OCL constraints > tragsﬁla_tor CSP solution
reader
CSP generator Model builder

Fig. 3. Steps for meaningful model generation using GRIMM tool.

The parameters for probability distributions are very im-
portant for the generation process. Our approach allows the
user to choose them arbitrary. Nevertheless, we think that it
is preferable to infer them by conducting an empirical study
over existing data, or to use domain quality metrics.

B. Probability sampler

Generating samples of well-known probability distributions
is a way to add randomness to the deterministic CSP solving
process. The idea is to get models that have more diversity in
their elements’ degrees and their attributes’ values in order to
cover a lot of possible values. For example, when generating
UML models, we want to generate a package, which has 5
classes, another one with 7 classes and so on.

Figure 4 shows the basic operation with which we can
sample all usual probability distributions whatever they are
continuous or discrete. Thus, to generate a sample of a random
variable X we need its cumulative function F(X) and a sample
of uniform values u. Result values x are obtained by an
inversion of F: u = F(x) = x=F~(u).

Previous method is then adapted to each probability distri-
bution we want to sample.

Discrete distribution on a finite set For all discrete distri-
bution, are given the probabilities of a finite set of values. The
cumulative function is then deduced from the accumulation of
probabilities and a sample can be easily generated.

Inverse cumulative function method This method is used
for continuous distribution if their inverse cumulative function
is easily computable. This method is used to simulate the
exponential distribution (¢(A)).

Normal distribution: Box Muller transform Sometimes,
inverting a cumulative function is difficult. In these cases,
special algorithms are used. For example, a normal distribution
(N (u,0)) does not have a known inverse function, so previous
method is useless. However, many other methods exist to

Fig. 4. Simulation of random values x given a cumulative function F(X) of
a random variable X and uniform u

simulate a normally distributed sample. Our implementation
uses Box Muller algorithm.

For a more complete overview about probability and simu-
lation, please refer to [25].

This section described the method we use to improve the
meaningfulness of generated models. We exploit domain-
specific quality metrics, and the simulation probability dis-
tributions to achieve our goal.

V. CASE STUDIES

This section experimentally shows that using probabil-
ity distributions improves the meaningfulness of generated
datasets. We consider two case studies, one from Software
Engineering area and the other from Bioinformatics.

A. Java code generation

One of the main objectives of our approach is the generation
of benchmarks of test programs for different applications,
such as compilers or virtual machines. In this experiment,
we generate realistic and relevant skeletons of Java programs
using real code measurements. We choose Java for facility to
find real programs to collect desired measurements. However,
our method can be applied to any programming language.

We collected 200 real Java projects coming from two corpus
(Github and Qualitas corpus [26]. For more heterogeneity, we

TABLE 1. Chosen code metrics with their theoretical probability
distribution. €: Exponential distribution, A’: Normal distribution.

Metric ~» Theoretical distrib.
Class/Package ~» g(ﬁ)
Methods/Type ~~ 8(7—56)

Attributes/Type ~» AN(3.46,2.09)

Constructor/Type ~~ A[(0.73,0.26)
Sub-Classes/Classe ~» &(g5y 2 5)
% Interface/Package ~» €(gyqpr 0 1)

Parameters/Methods ~~ A((0.87,0.25)

chose projects having different sizes (big project for qualitas
corpus and smaller ones from github) and different origins
(well-known software such as Eclipse, Apache or ArgoUML
and also small software written by only one developer).
We measured metrics related to their structure, such as the
percentage of concrete classes/ abstract classes, the average
number of constructors for a class, the visibility of fields and
methods, etc [23]. To measure these metrics we used an open
source tool called Metrics [27]. After that, we use R software
[28] to compute histogram of each metric in order to deduce its
theoretical probability distribution. Table I gives the different
metrics and their theoretical probability distributions. Figures
5 and 6 show two examples of real corpus histograms.

According to these metrics, we automatically generate Java
programs having the same characteristics as the real ones.
To achieve this goal, we design a meta-model representing
skeletons of Java projects and we adjoin some OCL constraints
(about 10 constraints have been added to the Java meta-model
we designed). For example:

« All classes inside a package have a different name.
o A class cannot extend itself.

Finally, 300 Java projects are generated using three versions
of our approach. Then, we obtain four corpus:

1) Projects generated by GRIMM but without OCL.

2) Projects generated by GRIMM plus OCL.

3) Projects generated by GRIMM plus OCL and probability
distributions (denoted GSRIMM in figures).

4) Real Java projects.

We compare, for these four cases, the distributions of
constructors per class and the visibility of attributes in Figures
5 and 6.

We observe that the two first versions without probability
distributions give results that are very far from the characteris-
tics of real models. On the other hand, introducing simulated
probability distributions leads to substantial improvement. We
see that the distribution of the number of constructors and
the visibility of attributes (Figures 5,6) of generated models
are close to real ones. Moreover, these results are always
better when adding probabilities for all other measurements
presented in Table 1.

GRIMM (-OCL) GRIMM

10 20 30 40 50 60
60

1

=3

5

I -
|1 | | | -

0.00 0.05 0.10 0.15 0.20 10 12 14 16 18 20

Constructors per Class Constructors per Class

GSARIMM Real Corpus

0

2.0
Conslruclors per Class

0

20 30 40
10 15 20 25

10

C-I

Conslruclors per Class

Fig. 5. Comparing the number of constructors per class in Java projects.

GRIMM (-OCL) GRIMM

40 60 80
0 0

20

< private public protec. package e private public protec. package

GSIRIMM

e private public protec. package

Real Corpus

50
50

40

30
30 40

20
20

10
10

e private public protec. package

Fig. 6. Comparing the visibility of attributes in Java projects.

Despite these encouraging results, some threats to the
validity of this experiments can be given. A first one is a
construction threat related to the chosen metrics. Indeed, a lot
of metrics can be found in the literature. In our experiment we
choose only those related to the structure of a project. There
is a second internal threat concerning real Java corpus. They
may not be sufficiently representative of all the Java projects
even if they come from a well-known corpus and a famous
repository.

B. Scaffold graphs generation

Scaffold graphs are used in Bioinformatics to assist the
reconstruction of genomic sequences. They are introduced
late in the process, when some DNA sequences of various
lengths, called contigs, have already been produced by the
assembly step. Scaffolding consists in ordering and orienting

the contigs, thanks to oriented relationships inferred from the
initial sequencing data. A scaffold graph is built as follows:
vertices represent extremities of the contigs, and there are
two kind of edges. Contig edges link both extremities of a
given contig (strong edges in Figure 8), whereas scaffolding
edges represent the relationship between the extremities of
distinct contigs. Contig edges constitute a perfect matching
in the graph, and scaffolding edges are weighted by a confi-
dence measure. Those graphs are described and used in the
scaffolding process in [29] for instance. The scaffold problem
can be viewed as an optimisation problem in those graphs,
and consists in exhibiting a linear sub-graph from the original
graph. Therefore, it can be considered as well as a model trans-
formation, when models conform to the Scaffold graph meta-
model given in Figure 7, that we designed. Producing datasets
to test the algorithms is a long process, somehow biased by the
choices of the methods (DNA sequences generation, assembly,
mapping), and there does not exist a benchmark of scaffold
graphs of various sizes and densities. Moreover, real graphs
are difficult and expensive to obtain. Thus, it is interesting to
automatically produce scaffold graphs of arbitrary sizes, with
characteristics close to the usual ones. In [29], the authors
present some of these characteristics, that are used here to
compare the GRIMM instances vs. the "hand-made” graphs.

B ScaffoldGraph [

0..*| contigs

0..*y edges
nodecont | [H Contig |edgecont H Edge 1.
1 '1 = weight : Elnt
2| nodes 1| contigedges
Nedges

H Node cn nc| B ContigEdge

o label : EString 2

Enodes

Fig. 7. A meta-model for the scaffold graphs.

The probability distribution chosen to produce the graph
emerges from the observation that the degree distribution in
those graphs is not uniform, but follows an exponential dis-
tribution. We compare several datasets, distributed in several
classes according to their sizes:

1) Graphs generated by GRIMM plus OCL.

2) Graphs produced by GRIMM plus OCL and probability
distributions (denoted GSRIMM in figures).

3) Real graphs of different species, described in [29].

For each real graph, 60 graphs of the same size are auto-
matically generated. 30 graphs are naively generated using the
original GRIMM method [8], [2], and 30 others are generated
after the simulating of probability distribution. These models
are then compared in term of visual appearance (Figure 8),
degree distribution (Figure 9) and according to some graph
measurements (Table II).

We see in Figure 8 three models (scaffolds graphs) cor-
responding to the same species (monarch butterfly). More

GSIRIMM

Fig. 8. Three Scaffold graphs corresponding to the same species (monarch
butterfly). Strong edges represent contig edges, other edges are scaffolding
edges.

precisely, it refers to mitochondrial DNA of monarch butterfly.
The naive method generates a graph that does not look like
the real one. This graph is too weakly connected, and the
connected parts have a recurring pattern. This is not suitable
for a useful scaffold graph. Whereas, introducing probabilities
provides graphs having shapes close to reality. Thus, both real
graphs and generated graphs (with probability distribution) are
strongly connected, and more randomness can be observed in
the connections and the weights of edges.

Figure 9 compares the degree distributions for three scaffold
graphs of the same species. We see that generating with
probabilities gives a distribution very similar to the distribution
in the real graph.

Table II compares the three benchmarks of scaffold graphs
(naive generation, generation with probabilities and real
graphs) according to some graph measurements. We can
observe again, that the graphs generated with probabilities are
closer to real graphs than the naively generated graphs in all
cases. The measurements on the naive graph suffer from a
lack of diversity and randomness. Indeed, the minimal and the
maximal degree are the same for all generated models. This, of
course, does not reflects the reality. Notice also that it was not
possible with the naive generation method to generate largest
graphs corresponding to largest genomes.

This section presented two different case studies, to show
how we exploit domain-specific metrics, for improving mean-
ingfulness of generated models. The following sections are
devoted to the second aspect of our contributions. It describes
the approach we developed to increase inter-model diversity.

gRIMM -
5
=}
@
=3
A=l
f=3
=3 vy
=l
=}
<+
g % | I
f=3
N
=
o =
| o
4 [[
Degree

Degree

80

GARIMM Real Graph

60

40

20

i Degree

-

Fig. 9. Comparing the degree distribution between a real scaffold graph and its equivalent generated ones (168 nodes and 223 edges).

TABLE II. Comparing graph metrics on real scaffold graphs and average for 60 generated ones for each species.

Graph size Measurements
GRIMM generation | GARIMM generation Real graphs
Species | nodes | edges min/max h-index min/max h-index min/max h-index
degree degree degree
monarch | 28 33 1/9 3 1/ 4.6 4.06 1/ 4 4
ebola | 34 43 1/9 3 1/4.83 4.60 1/5 4
rice | 168 223 1/9 8 1/6.03 5.93 1/ 6 5
sacchr3 | 592 823 1/9 10 1/7 6.76 1/7 6
sacchr12 | 1778 | 2411 — — 1/7.53 7 1/10 7
lactobacillus | 3796 | 5233 — — 1/ 8.06 7.8 1/12 8
pandora | 4092 | 6722 — — 1/ 8.23 7.96 1/7 7
anthrax | 8110 | 11013 — — 1/ 83 8.03 1/7 7
gloeobacter | 9034 | 12402 — — 1/ 8.46 8 1/12 8
pseudomonas | 10496 | 14334 — — 1/ 8.43 8 1/9 8
anopheles | 84090 | 113497 — — 1/ 8.96 9 1/ 51 12

VI. MEASURING MODEL DIFFERENCES

Brun and Pierantonio state in [30] that the complex prob-
lem of determining model differences can be separated into
three steps: calculation (finding an algorithm to compare
two models), representation (result of the computation being
represented in manipulable form) and visualization (result of
the computation being human-viewable).

Our comparison method aims to provide solutions to com-
pare not only two models between them but a whole set of
models or sets of models. The rest of this section describes
in details the calculation algorithms we choose to measure
model differences. Since our method aims to compare sets of
models, we took care to find the quickest algorithms. Because
chosen comparison algorithms are called hundreds of time to
manipulate one set containing dozens of models.

As a proof of concept, we consider here four different
distances to express the pairwise dissimilarity between models.
As stated in [31], there is intrinsically a difficulty for model
metrics to capture the semantics of models. However, formaliz-
ing metrics over the graph structure of models is easy, and they
propose ten metrics using a multidimensional graph, where the
multidimensionality intends to partially take care of semantics
on references. They explore the ability of those metrics to
characterize different domains using models. In our work, we
focus on the ability of distances to seclude models inside a
set of models. Thus, we have selected very various distances,
essentially of 2 different area: distances on words (from data

mining and natural language processing) and distances on
graphs (from semantic web and graph theory). Word distances
have the very advantage of a quick computation, whereas
graph distances are closer to the graph structure of models.
As already said, an interesting feature is the fact that all those
distances are, in purpose, not domain-specific, not especially
coming from MDE, but adapted to the latter.

A. Words distances for models

We define two distances for models based on distances on
words: the hamming distance and the cosine distance. The first
one is really close to syntax and count the number of difference
between two vectors. The second one is normalized and
intends to capture the multidimensional divergence between
two vectors representing geometrical positions.

1) From models to words: We define the vectorial rep-
resentation of a model as the vector collecting links and
attributes’ values of each class instance, as illustrated on
the model of Figure 10. At the left-hand-side of the figure
is an example of meta-model. At the right-hand-side of the
figure are two models conform to this meta-model, and their
vectorial representation. The obtained vector from a model m
is composed of successive sections of data on each instance
of m, when data is available. Each section of data is organized
as follows: first data on links, then data on attributes. When
there is no such data for a given instance, it is not represented.
In the example of Figure 10, instances of B, which have

al:A a2:A
=2 f=
A
f:EInt
23 Y
B
instance al instance a2
a=(5,40, 2, 43,6 1
Meta-model [Rg) ’ 3299,
links attributes links aftributes

instance al instance a2
) b=(6,53, 3, 47,0, 1)
— ~ ——

links attributes links attributes

Fig. 10. Two small models and their vectorial representation.

no references and no attributes, as imposed by the meta-
model, are not directly represented in the vectors. However,
they appear through the links attached to instances of A.
An attribute is represented by its value. A link from an
instance i to an instance j is represented by the number of
the referenced instance j. Each instance of a given meta-class
mc, are represented by sections of identical size. Indeed, all
the instances of mc have the same number of attributes. The
number of links may vary from an instance to another, but
a size corresponding to maximal cardinality is systematically
attributed. This cardinality is either found in the meta-model
or given in the generation parameters. When the actual number
of links is smaller than the maximal number of links, O values
are inserted.

2) Hamming distance for models: Hamming distance com-
pares two vectors. It was introduced by Richard Hamming in
1952 [32] and was originally used for fault detection and code
correction. Hamming distance counts the number of differing
coefficients between two vectors.

The models to compare are transformed into vectors, then
we compare the coefficients of vectors to find the distance
between both models:

a =G, 4 0 2, 4 3, 6, 1
b =@, 5 3 3, 4 17, 0 1
d@ab)= 1+ 1+ 1+ 1+ 0+ 1+ 1+ O
= 6
8

Richard Hamming’s original distance formula is not able
to detect permutations of links, which leads to artificially
higher values than expected. In our version, we sort the vectors
such as to check if each link exists in the other vector. In
the previous example, the final distance then equals to %.
The complexity is linear in the size of models, due to the
vectorization step. Notice also that this distance implies that
vectors have equal sizes. This is guaranteed by the way we

build those vectors.

3) Cosine distance: Cosine similarity is a geometric mea-
sure of similarity between two vectors, ranging from -1 to
1: two similar vectors have a similarity that equals 1 and
two diametrically opposite vectors have a cosine similarity of
—1. Cosine similarity of two vectors a and b is given by the
following formula:

n
Z a,-.b,-
i=1

oW
i=1 i=1

After a vectorization of models, cosine similarity is then
used to compute a normalized cosine distance over two
vectors [33]:

a.b _
[lal|.]1]]

Cs(a,b)

I_CS(aab)

CD(a,b) =)

Again, the time complexity of the computation is linear in
the size of models.

4) Levenshtein distance for models: Levenshtein distance
[34] (named after Vladimir Levenshtein) is a string metric
used to compare two sequences of characters. To summarise
the original idea, a comparison algorithm counts the minimal
number of single-character edits needed to jump from a
first string to a second one. There exist three character edit
operations: addition, deletion and substitution.

Our customized Levenshtein distance is based on the vec-
torial representation of a model. Each character in original
distance is replaced by a class instance of the model. So,
we count the minimal cost of class instance edit operations
(addition, deletion or substitution) to jump from the first model
to the second one.

First, a vectorial representation of a model is created ac-
cording to the class diagram given in Figure 11. Then, we
determine the cost of each one of the three edit operations
over instanceOfClass objects. instanceCost method gives
the cost to add or to delete an instanceOfClass. It counts
the number of edges and the number of attributes of this
instance. substituCost method gives the cost to substitute
an instance by another one. To determine the substitution cost,

InstanceOfClass

type: string Link
id: int

links: list<Link>

attributes: list<string> targetID: int

targetType: string

instanceCost(): float
substituCost(i2): float

Fig. 11. Class diagram for instanceOfClass and Link to build a vectorial
representation of a model.

we count the number of common links and attributes. Thus,
two instanceOfClass are exactly equal if they have the same
type, their links have the same type and all their attributes have
the same values.

Finally, Levenshtein algorithm [34] is applied and a metric
of comparison is computed. Our comparison metric gives the
percentage of common elements between two models.

B. Centrality distance for models

Centrality is a real function that associates a value to each
node of a graph [35]. This value indicates how much a node
is central in this graph, according to a chosen criterion. For
example, in a tree, the highest value of centrality is given to
the root of the tree, whereas the smallest values are associated
to the leaves. A centrality function C is defined by:

C: E—R"
v C(v)

Many usual centrality functions exist. The simplest one, the
degree centrality, associates to each node its degree. Among
the well-known centrality functions, we can cite: betweenness
centrality, closeness centrality, harmonic centrality, etc.

In this paper, we propose a novel centrality function adapted
for MDE and based on eigenvector centrality. This centrality
was also used in the first published version of PageRank
algorithm of the Google search engine [36]. In PageRank,
eigenvector centrality is used to rank the web pages taken as
nodes of the same graph.

1) From models to graphs: Centrality functions are defined
on graphs, and models could be considered as labelled and
typed graphs. Our graph representation of models is obtained
as follows:

« Create a node for each class instance (central nodes).

o Create a node for each attribute (leaf nodes).

« Create an edge from each class instance to its attributes.

o Create an edge for each simple reference between two
class instances.

« Create two edges if two class instances are related by two
opposite references.

« Create an edge for each composition link.

Tables III and IV summarize and illustrate these transfor-
mations rules. Real numbers ¢, r and ¢ represent the weights
assigned to composition links, reference links and attributes.

TABLE III. NODES TRANSFORMATION RULES.

Graph element

TABLE IV. EDGES TRANSFORMATION RULES.

Model element

f=val

Model element Graph element

>

‘a

f=value

Y
-

r
SH==RNORO

2) Centrality measure: Our centrality is inspired from
pagerank centrality and adapted to models, taking into ac-
count class instances and their attributes, links between classes
(input and output) and types of link between two classes
(simple references, two opposite references or compositions).
For a given node v of the graph, we denote by N(v) the set
of its neighbors. The following function gives the centrality
of each node v:

~—

chy= y L

X w(v,u).
uENT(v) deg(u) (i)
w(v,u) gives the weight of the link between node v and
u, determined by the kind of link between them (attribute,
reference or composition). The weight of a link can be given
by the user or deduced from domain-based quality metrics.
For instance, Kollmann and Gogolla [37] described a method
for creating weighted graphs for UML diagrams using object-
oriented metrics.

3) Centrality vector: The centrality vector C contains the
values of centrality for each node. The previous centrality
function induces the creation of a system of n variables equa-
tions: C(v;) =c1C(vi) +c2C(v2) +...+ciC(vi)+...+cnC(vy).

C=0.001,

Meta-model

C=0.461

('7(1‘(701
) b
fl=vl

C=0.381 [facva

Fig. 12. Centrality vector computed for an example model and its equivalent graph.

To compute the centrality vector C we must find the
eigenvector of a matrix A whose values are the coefficients of
the previous equations: C = AC, where A is built as follows:

0 if (v;,vj) ¢ Graph,
w(vi,vj)
N(vi)

Aij = .
Y otherwise.

After building matrix A, we use the classical algorithm of
power iteration (also known as Richard Von Mises method
[38]) to compute the centrality vector C.

The result centrality vector has a high dimension (see
example on Figure 12). To reduce this dimension therefore
improve the computation’s efficiency, we group its coefficients
according to the classes of the meta-model. Then the dimen-
sion equals to the number of classes in the meta-model.

4) Centrality distance: Roy et al. proved in [39] that a
centrality measure can be used to create a graph distance. Here,
the centrality vectors C4 and Cp of two models A and B are
compared using any mathematical norm: d(A,B) = ||C4 —Cg||-

C. Discussion

We use in previous paragraphs representations of models,
which could be discussed. Indeed, there are potentially many
ways to vectorize models, and we choose one highly com-
patible with our tool. Since CSP generation already provides
a list of classes attributes and links, we simply used this
representation as entry for the metrics. Again, transforming
models into graphs and trees may be done through several
ways. We arbitrarily choose one way that seemed to capture
the graph structure. Our goal here, was to test different and
diversified manners to represent a model and proposed some
distance between them, not to make an exhaustive comparison
study between quality of representation versus metrics. This
study will be done in future works.

VII. HANDLING SETS OF MODELS

In this section, we propose an automated process for han-
dling model sets. The purpose is to provide solutions for
comparing models belonging to a set, selecting the most
representative models in a set and bringing a graphical view
of the concept of diversity in a model set.

This process helps a user in choosing a reasonable amount
of models to perform his experiments (e.g., testing a model
transformation). Moreover, using our approach, the chosen
model set aims to achieve a good coverage of the meta-model’s
solutions space.

If there are no available models, a first set of models is
generated using GSRIMM tool [9]. These generated models
are conform to an input meta-model and respect its OCL
constraints. When probability distributions related to domain-
specific metrics are added to the process, intra-model diversity
is improved. Our goal is to check the coverage of the meta-
model’s solutions space. In other words, we want to help a user
to answer these questions: (1) how to quantify the inter-model
diversity? (2) Are all these models useful and representative?
(3) Which one of my model sets is the most diverse?

A. Comparison of model sets

Distance metrics proposed in Section VI compare two
models. To compare a set of models, we have to compute pair-
wise distances between models inside the set. A symmetrical
distance matrix is then created and used to quantify the inter-
model diversity. It is noticeable that, thanks to the modularity
of the approach, this step can be replaced by any kind of
dataset production. For instance, if the user already has a set
of models, it is possible to use it instead of the generated one.
Moreover, another distance metric can be used instead of the
metrics we propose.

B. Selecting most representative models

Our idea is that when a user owns a certain number of
models (real ones or generated ones), there are some of them,
which are representative. Only these models should be used
in some kind of tests (e.g., robustness or performance). Most
of other models are close to these representative models.

We use Hierarchical Matrix clustering techniques to select
the most representative models among a set of models. The
distance matrix is clustered and our tool chooses a certain
number of models. In our tool, we use the hierarchical clus-
tering algorithm [40], implemented in the R software (hclust,
stats package, version 3.4.0) [41]. This algorithm starts by
finding a tree of clusters for the selected distance matrix as
shown in Figure 13. Then, the user has to give a threshold
value in order to find the appropriate value. This value depends

on the diversity the user wants. For example, if the user wants
models sharing only 10% of common elements, then 90% is
the appropriate threshold value. This value depends also on the
used metric. Thus, Levenshtein distance compares the names
of elements and the values of attributes, leading to choose
a smaller threshold value (for the same model set) than for
centrality distance, which compares only the graph structure
of the models.

Using the clusters tree and the threshold value, it is easy
to derive the clusters, by cutting the tree at the appropriate
height (Figure 13). The most representative models are chosen
by arbitrarily picking up one model per cluster. For instance,
3 different clusters are found using the tree of clusters in
Figure 13. Clone detection can also be performed using our
approach by choosing the appropriate threshold value. Indeed,
if threshold equals to O, clusters will contain only clones.

TABLE V. AN EXAMPLE OF DISTANCE MATRIX (HAMMING) FOR

10 MODELS.

m my m3 my ms me my mg my mio
my 0 12 27 27 27 26 46 44 45 39
my 12 0 27 26 27 27 45 45 43 40
m3 27 27 0 18 17 16 46 45 46 39
my 27 26 18 0 18 18 45 44 45 40
ms 27 27 17 18 0 18 45 43 44 38
me 26 27 16 18 18 0 45 44 46 40
my 46 45 46 45 45 45 0 36 36 41
mg 44 45 45 44 43 44 36 0 34 37
mg 45 43 46 45 44 46 36 34 0 39
mio 39 40 39 40 38 40 41 37 39 0

0 45
L L

threshold = 80%

30 35
A
n; T

mio —

mg
mg

Distance
25

20
|

15

A T

ms
my

1

L
my
me

Fig. 13. Clustering tree computed form matrix in Table V.

C. Graphical view of diversity

Estimating diversity of model sets is interesting for model
users. It may give an estimation on the number of models
needed for their tests or experiments and they can use this
diversity measure to compare between two sets of models.

When the number of models in a set is small, diversity can
be done manually by checking the distance matrix. Unfortu-
nately, it becomes infeasible when the set contains more than

an handful of models. We propose a human-readable graphical
representation of diversity and solutions’ space coverage for a
set of models.

Fig. 14. Voronoi diagram for 10 models compared using Hamming distance.

Our tool creates Voronoi tessellations [42] of the distance
matrix in order to assist users in estimating the diversity or
in comparing two model sets. A Voronoi diagram is a 2D
representation of elements according to a comparison criterion,
here distances metrics between models. It faithfully reproduces
the coverage of meta-model’s solutions space by the set of
models. Figure 14 shows the Voronoi diagram created for the
matrix in Table V. The three clusters found in the previous step
are highlighted by red lines. We use the Voronoi functions of
R software (available in package tripack, vi.3-8).

VIII. TOOLING

This section details the tooling implementing our contri-
butions. All the algorithms and tools are in free access and
available on our web pages [43].

Our tool for comparing models and handling model sets
is called coMODI (COunting MOdel Differences). It consists
in two different parts. The first one, written in java, is used
to measure differences between two models using the above
4 metrics. The second part, written in bash and R, provides
algorithms for handling model sets (comparison, diversity
estimation and clustering).

A. Comparing two models

It is possible to measure the differences between two models
using COMODI. For that you just need to give as input two
models and their ecore meta-model. Out tool supports two
different formats: dot model files produced by GRIMM and
xmi model files. COMODI supports all xmi files produced by
EMF of generated by GRIMM, EMF2CSP or PRAMANA tools.

The first step is to parse the input models into the ap-
propriate representation (graph or vector). Then, the above
distance algorithms are applied. COMODI outputs different
model comparison metrics in command line mode. Process
of coMODI is described in Figure 15.

B. Handling a set of models

Our tool is also able to handle sets of models and produce
distance matrices, perform clustering and plot diagrams and

Centrality distance
Hamming distance

> Levenshtein distance

Fig. 15. Comparing two models using COMODI tool.

give some statistics. The input of the tool is a folder containing
the models to compare and their ecore meta-model. The
supported formats for models are the same as described above
(xmi and dot).

Xmi or
dot models

4 4
‘ Diversity Graphical vie@
A

i

4 3
—»‘ Representative Model selection

Measuring differences

Fig. 16. Handling a set of models using COMODI tool.

After parsing all the models into the appropriate repre-
sentation for each metric, distance matrices are produced by
pairwise comparison of models. R scripts are called to perform
hierarchical clustering on these matrices. This allows us to
select the most representative models of that folder. Voronoi
diagrams are plotted and can be used to estimate the coverage
of the folder and to compare the diversity of two folders.
COMODI prints also some simple statistics on models: closest
models, most different models, etc. These steps are shown in
Figure 16.

IX. APPLICATION: IMPROVING DIVERSITY

The main contributions of this paper - distances between
models, representative model selection to improve diversity -
were used in a work in bioinformatics (named scaffolding)
[44]. A genetic approach is paired with GSARIMM model gen-
eration tool to improve the diversity of a set of automatically
generated models. Figure 17 shows how we start from a
GRIMM model set (left) with few difference between them,
to GSRIMM (center) with a better distribution due to the
probability sampler, to something very relevant by using a
genetic approach (right) based on these model distances in
order to improve diversity.

We want to address the following question: do proposed
distances and process of automated models selection help to
improve the diversity and the coverage of generated models.
We chose one meta-model (Figure 7) modeling a type of

graphs involved in the production of whole genomes from
new-generation sequencing data [29]. Hereinafter, we give the
experimental protocol:

o Generate 100 initial models conforming to the scaffold
graph meta-model using GARIMM tool [9].

o Model the problem of improving diversity using genetic
algorithms (GA). Our modeling in GA can be found in
[11].

o Run 500 times the genetic algorithm. At each step, use
model distances and automatic model selection to choose
only the best models for the next step.

o View final results in terms of model distances and meta-
model coverage using Voronoi diagrams.

The whole process induces the creation of up to 50,000
different models. Each following figures required about 3h CP
to be computed.

Curves on Figure 18 show the evolution of hamming
and cosine distance while the genetic algorithm is running
(minimum, maximum and mean distance over the population
at each generation). We can observe that both cosine distance
and hamming distance help to improve diversity of generated
models. The quick convergence of both curves (around 100
iterations of GA) is a good way to check the efficiency of both
models distances. We observe that the worst case in the final
population is better than the best case in the initial population,
thus we reached a diversity level that we did not obtained in
the initial population obtained with GSIRIMM.

We introduce several improvements to describe the fitness
function used in genetic selection [11] and improve median
value for final population from 0.7 up to 0.9 for Hamming and
from 0.11 to 0.15 for maximum with Cosinus distance. Figure
19 compares the models produced by the different distances.
Red (resp. blue) dotplots represent the distribution of distances
on the final population computed using Hamming distance
(resp. Cosine distance). On the left, models are compared
using Hamming distance, on the right, they are compared using
Cosine distance. We remark that different distances do not
produce the same final models. Indeed, we can observe that
the best selected models for Hamming distance obtain lower
scores when compared using Cosine distance, and vice versa.
Other experimental results show that our four model distances
can be used in a multi-objective genetic algorithm since they
treat different constructions of the meta-model. Results are
better on the final model set in terms of diversity and coverage,
than when only one kind of distance is used.

Figure 20 shows two Voronoi diagrams of 100 models. The
first one is computed on the initial set of models, the second
on the set of models generated after the 500" iteration of
the genetic algorithm. We kept the same scale to visualize
the introduced seclusion. Here we can see the insufficient
solutions’ space coverage of the first Voronoi diagram. After
running the multi-objective genetic algorithm, we observe a
better coverage of the space. At the end of the process, we
obtain 100 very distinct models.

[Slyeele]

0.12

0.1

tance

1S

8:1072

E6-1077

Cosine d

11072

2:1072

0 100 200 300 100 500 0 100 200 300 400 500
Genetic Algorithm step Genetic Algorithm step

Fig. 18. Minimum, average and maximum hamming and cosine distance
while running the genetic algorithm.

0.15

0.8

0.6

0.4 -

0.2

Fig. 19. Comparison of best selected models pairwise distances distributions.

X. CONCLUSION

This paper gathers contributions developed, in order to
complete a project (tool and methodology) named GRIMM
(GeneRating Instances of Meta-Models). The topic of these
contributions is improving the inherent quality of automati-
cally generated models. We investigated the relation between
the quality of the generated models and the concept of diver-
sity. Our claim is that increasing the diversity when generating
models, will improve their quality and usefulness, because
generated models are becoming closer to real models.

We distinguish two different aspects of diversity, which
are solved separately: intra-model diversity and inter-model
diversity.

A. Intra-model diversity

The goal of intra-model diversity is to enrich the diversity
inside a model. It is obtained by injecting randomness during
the generation process. Element naming, linking objects be-
come less systematic and naive. Obtained models are closer
to real models, i.e., meaningful. We propose to use probability
distributions, that are related to domain-specific quality met-
rics. Parameters for probability laws can be chosen by users,

Fig. 20. Solutions’ space coverage of the initial set of models (left)
compared to the last iteration (500"") of the genetic algorithm (right).

but they are preferably gathered by a statistical study of real
data. Domain knowledge is also used when real data is rare.

We observed a substantial improvement of meaningfulness
when simulated probabilities samples are added to the model
generator. New generated instances have characteristics very
close to real models, improving their usefulness for testing
programs. This is especially interesting when data is rare,
difficult or expensive to obtain, as for scaffold graphs.

B. Inter-model diversity

Inter-model diversity tries to maximize the diversity of a
set of models. The idea is to cover as much area in solutions’
space as possible, in order to get the best diversity ever. In our
work, we propose to use model comparison and then genetic
algorithm to achieve this goal.

Counting model differences is a recurrent problem in Model
Driven Engineering, mainly when sets of models have to be
compared. This paper tackles the issue of comparing two
models using several kinds of distance metrics inspired from
distances on words and distances on graphs. An approach and
a tool are proposed to handle sets of models. Distance metrics
are applied to those sets. Pair of models are compared and a
matrix is produced. We use hierarchical clustering algorithms
to gather the closest models and put them in subsets. Our tool,
COMODI, is also able to choose the most representative models
of a set and give some statistics on a set of models. Human
readable graphical views are also generated to help users in
doing that selection manually.

First, sets of non-diverse models are automatically generated
using, for example, GRIMM tool. Then, COMODI is coupled
to a genetic algorithm to improve the diversity of this first set
of models.

C. Future work

One interesting future improvement to GRIMM is to become
a tool for assisting model designers, by giving quick and
graphically viewable feedback during the design process. At
the moment, it generates models that are close to real ones
and graphical visualization is possible. Nevertheless, error
detection is still poor, and it is a restriction for a large
diffusion. Currently, we work on improving the interaction
between the tool and the user. New features are added to the
process of model generation in order to detect instantiation
failures, and to correct them, or to help the user to do the
correction. Guiding the user is done by interpreting the output
of the CSP solver to understand the origin of any faced
problem.

D. Application

The problematic of handling sets of models and the notion
of distance is also involved in many other works related to
testing model transformations. All these issues are interesting
applications to the contributions of this paper. For example,
Mottu et al. in [45] describe a method for discovering model
transformations pre-conditions, by generating test models. A
first set of test models is automatically generated, and used
to execute a model transformation. Excerpts of models that
make the model transformation failing are extracted. An expert
then tries manually and iteratively to discover pre-conditions
using these excerpts. Our common work aims to help the
expert by reducing the number of models excerpts and the
number of iterations to discover most of pre-conditions. A set
of models excerpts is handled using COMODI and clusters of
close models are generated. Using our method, the expert can
find many pre-conditions in one iteration and using less model
excerpts.

REFERENCES

[11 A. Ferdjoukh, F. Galinier, E. Bourreau, A. Chateau, and C. Nebut,
“Measuring Differences To Compare Sets of Models and Improve
Diversity in MDE,” in ICSEA, International Conference on Software
Engineering Advances, 2017, pp. 73-81.

[2] A. Ferdjoukh, A.-E. Baert, A. Chateau, R. Coletta, and C. Nebut, “A
CSP Approach for Metamodel Instantiation,” in IEEE ICTAI, 2013, pp.
1044-1051.

[3] S. Sen, B. Baudry, and J.-M. Mottu, “Automatic Model Generation
Strategies for Model Transformation Testing,” in ICMT, International
Conference on Model Transformation, 2009, pp. 148-164.

[4] C. A. Gonzalez Pérez, F. Buettner, R. Clariso, and J. Cabot, “EMFtoCSP:
A Tool for the Lightweight Verification of EMF Models,” in FormSERA,
Formal Methods in Software Engineering, 2012, pp. 44-50.

[5] F. Hilken, M. Gogolla, L. Burgueifio, and A. Vallecillo, “Testing models
and model transformations using classifying terms,” Software & Systems
Modeling, pp. 1-28, 2016.

[6] D. S. Kolovos, D. Di Ruscio, A. Pierantonio, and R. F. Paige, “Different
models for model matching: An analysis of approaches to support model
differencing,” in CVSM@ICSE, 2009, pp. 1-6.

[7]1 D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse
Modeling Framework 2.0. Addison-Wesley Professional, 2009.

[8] A. Ferdjoukh, A.-E. Baert, E. Bourreau, A. Chateau, and C. Nebut,
“Instantiation of Meta-models Constrained with OCL: a CSP Approach,”
in MODELSWARD, 2015, pp. 213-222.

[91 A. Ferdjoukh, E. Bourreau, A. Chateau, and C. Nebut, “A Model-Driven
Approach to Generate Relevant and Realistic Datasets,” in SEKE, 2016,
pp. 105-109.

[10] F. Rossi, P. Van Beek, and T. Walsh, Eds., Handbook of Constraint
Programming. Elsevier Science Publishers, 2006.

[11] F. Galinier, E. Bourreau, A. Chateau, A. Ferdjoukh, and C. Nebut,
“Genetic Algorithm to Improve Diversity in MDE,” in META, 2016,
pp. 170-173.

[12] J. Cabot, R. Clarisd, and D. Riera, “Verification of UML/OCL Class Di-
agrams using Constraint Programming,” in ICSTW, IEEE International
Conference on Software Testing Verification and Validation Workshop,
2008, pp. 73-80.

[13] A. Mougenot, A. Darrasse, X. Blanc, and M. Soria, “Uniform Random
Generation of Huge Metamodel Instances,” in ECMDA, European Con-
ference on Model-Driven Architecture Foundations and Applications,
2009, pp. 130-145.

[14] H. Wu, “An SMT-based Approach for Generating Coverage Oriented
Metamodel Instances,” IJISMD, International Journal of Information
System Modeling and Design, vol. 7, no. 3, pp. 23-50, 2016.

[15] K. Ehrig, J. Kiister, and G. Taentzer, “Generating Instance Models from
Meta models,” SoSyM, Software and Systems Modeling, pp. 479-500,
2009.

[16] Voigt, Konrad, “Structural Graph-based Metamodel Matching,” Ph.D.
dissertation, Dresden University, 2011.

[17] J.-R. Falleri, M. Huchard, M. Lafourcade, and C. Nebut, “Metamodel
matching for automatic model transformation generation,” in MODELS,
2008, pp. 326-340.

[18] S. Melnik, H. Garcia-Molina, and E. Rahm, “Similarity flooding: A ver-
satile graph matching algorithm and its application to schema matching,”
in ICDE, 2002, pp. 117-128.

[19] K. Voigt and T. Heinze, “Metamodel matching based on planar graph
edit distance,” in Theory and Practice of Model Transformations, 2010,
pp. 245-259.

[20] J. Cadavid, B. Baudry, and H. Sahraoui, “Searching the Boundaries of a
Modeling Space to Test Metamodels,” in IEEE ICST, 2012, pp. 131-140.

[21] E. Batot and H. Sahraoui, “A Generic Framework for Model-set Se-
lection for the Unification of Testing and Learning MDE Tasks,” in
MODELS, 2016, pp. 374-384.

[22] S. Sen, B. Baudry, and J.-M. Mottu, “On Combining Multi-formalism
Knowledge to Select Models for Model Transformation Testing,” in
ICST, IEEE International Conference on Software Testing, Verification
and Validation, 2008, pp. 328-337.

[23] B. Henderson-Sellers, Object-Oriented Metrics: Measures of Complex-
ity. Prentice Hall, 1996.

[24] E. Van Emden and L. Moonen, “Java quality assurance by detecting
code smells,” in Conference on Reverse Engineering. 1EEE, 2002, pp.
97-106.

[25] M. Mitzenmacher and E. Upfal, Probability and Computing: Random-
ized Algorithms and Probabilistic Analysis. ~ Cambridge University
Press, 2005.

[26] “Qualitas corpus,” qualitascorpus.com/docs/catalogue/20130901/index.html,

accessed: 2018-05-29.

[27] “Metrics tool,” metrics.sourceforge.net, accessed: 2018-05-29.

[28] “R software,” www.r-project.org, accessed: 2018-05-29.

[29] M. Weller, A. Chateau, and R. Giroudeau, “Exact approaches for
scaffolding,” BMC Bioinformatics, vol. 16, no. 14, pp. 1471-2105, 2015.

[30] C. Brun and A. Pierantonio, “Model differences in the eclipse modeling
framework,” UPGRADE, The European Journal for the Informatics
Professional, vol. 9, no. 2, pp. 29-34, 2008.

[31] G. Széarnyas, Z. Koviri, A. Salanki, and D. Varrd, “Towards the char-
acterization of realistic models: evaluation of multidisciplinary graph
metrics,” in MODELS, 2016, pp. 87-94.

[32] R. W. Hamming, “Error detecting and error correcting codes,” Bell
System technical journal, vol. 29, no. 2, pp. 147-160, 1950.

[33] A. Singhal, “Modern information retrieval: A brief overview,” IEEE
Data Engineering Bulletin, vol. 24, no. 4, pp. 35-43, 2001.

[34] V. Levenshtein, “Binary codes capable of correcting deletions, insertions,
and reversals,” in Soviet physics doklady, vol. 10, no. 8, 1966, pp. 707—
710.

[35]
[36]
[37]

[38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]

G. Kishi, “On centrality functions of a graph,” in Graph Theory and
Algorithms. Springer, 1981, pp. 45-52.

L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank citation
ranking: bringing order to the web,” Stanford InfoLab, Tech. Rep., 1999.
R. Kollmann and M. Gogolla, “Metric-based selective representation of
uml diagrams,” in CSMR. 1EEE, 2002, pp. 89-98.

R. von Mises and H. Pollaczek-Geiringer, “Praktische verfahren der
gleichungsauflosung.” ZAMM-Journal of Applied Mathematics and Me-
chanics, vol. 9, no. 2, pp. 152-164, 1929.

M. Roy, S. Schmid, and G. Trédan, “Modeling and measuring Graph
Similarity: the Case for Centrality Distance,” in FOMC, 2014, pp. 47—
52.

F. Murtagh, “Multidimensional clustering algorithms,” Compstat Lec-
tures, Vienna: Physika Verlag, 1985, 1985.

R Development Core Team, R: A Language and Environment for
Statistical Computing, R Foundation for Statistical Computing, 2008.
F. Aurenhammer, “Voronoi diagrams a survey of a fundamental geo-
metric data structure,” CSUR, ACM Computing Surveys, vol. 23, no. 3,
pp. 345-405, 1991.

“Download comodi,” github.com/ferdjoukh/comodi, accessed: 2018-05-
29.

C. Dallard, M. Weller, A. Chateau, and R. Giroudeau, “Instance guar-
anteed ratio on greedy heuristic for genome scaffolding,” in COCOA,
Combinatorial Optimization and Applications, 2016, pp. 294-308.
J.-M. Mottu, S. Sen, J. Cadavid, and B. Baudry, “Discovering model
transformation pre-conditions using automatically generated test mod-
els,” in ISSRE, International Symposium on Software Reliability Engi-
neering, 2015, pp. 88-99.

https://www.researchgate.net/publication/326446454

