
HAL Id: lirmm-02079017
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02079017

Submitted on 13 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Connected tree-width and connected cops and robber
game

Christophe Paul

To cite this version:
Christophe Paul. Connected tree-width and connected cops and robber game. CAALM 2019 - Com-
plexity, Algorithms, Automata and Logic Meet, Jan 2019, Chennai, India. �lirmm-02079017�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02079017
https://hal.archives-ouvertes.fr

Connected treewidth and
connected cops-and-robber game

–
Obstructions and algorithms

Christophe PAUL
(CNRS – Univ. Montpellier, LIRMM, France)

Joint work with I. Adler (University of Leeds, UK)
G. Mescoff (ENS Rennes, France)

D. Thilikos (CNRS – Univ. Montpellier, LIRMM, France)

CAALM Workshop, Chennai, January 25, 2019

A node search strategy

A search strategy is defined by a sequence of moves, each of these

I either add a searcher

I or remove a searcher

a b c

d e

f g

A node search strategy

A search strategy is defined by a sequence of moves, each of these

I either add a searcher

I or remove a searcher

a b c

d e

f g

〈{a}, . . . 〉

A node search strategy

A search strategy is defined by a sequence of moves, each of these

I either add a searcher

I or remove a searcher

a b c

d e

f g

〈{a}, {a, b}, . . . 〉

A node search strategy

A search strategy is defined by a sequence of moves, each of these

I either add a searcher

I or remove a searcher

a b c

d e

f g

〈{a}, {a, b}, {b}, . . . 〉

More formally, we define S = 〈S1, . . .Sr 〉 such that

I for all i ∈ [r], Si ⊆ V (G); (set of occupied positions)

I |S1| = 1;

I for all i ∈ [r − 1], |Si M Si−1| = 1.

Node search against. . .

. . . an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

I

Lazy robber Agile robber

We define the set of free locations in the case of a lazy robber :

I F1 = V (G) \ S1
I for all i > 2, Fi = (Fi−1 \Si)∪{v ∈ ccG−Si (u) | u ∈ Fi ∩ (Si \Si−1)}

Node search against. . .

. . . an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

I

Lazy robber Agile robber

We define the set of free locations in the case of a lazy robber :

I F1 = V (G) \ S1
I for all i > 2, Fi = (Fi−1 \Si)∪{v ∈ ccG−Si (u) | u ∈ Fi ∩ (Si \Si−1)}

Node search against. . .

. . . an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

I

Lazy robber Agile robber

We define the set of free locations in the case of a lazy robber :

I F1 = V (G) \ S1
I for all i > 2, Fi = (Fi−1 \Si)∪{v ∈ ccG−Si (u) | u ∈ Fi ∩ (Si \Si−1)}

Node search against. . .

. . . an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

I

Lazy robber Agile robber

We define the set of free locations in the case of a lazy robber :

I F1 = V (G) \ S1
I for all i > 2, Fi = (Fi−1 \Si)∪{v ∈ ccG−Si (u) | u ∈ Fi ∩ (Si \Si−1)}

Node search against. . .

. . . an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

I

Lazy robber Agile robber

We define the set of free locations in the case of a lazy robber :

I F1 = V (G) \ S1
I for all i > 2, Fi = (Fi−1 \Si)∪{v ∈ ccG−Si (u) | u ∈ Fi ∩ (Si \Si−1)}

Node search against. . .

. . . an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

I

Lazy robber Agile robber

We define the set of free locations in the case of a lazy robber :

I F1 = V (G) \ S1
I for all i > 2, Fi = (Fi−1 \Si)∪{v ∈ ccG−Si (u) | u ∈ Fi ∩ (Si \Si−1)}

Node search against. . .

. . . an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

I

Lazy robber Agile robber

We define the set of free locations in the case of a lazy robber :

I F1 = V (G) \ S1
I for all i > 2, Fi = (Fi−1 \Si)∪{v ∈ ccG−Si (u) | u ∈ Fi ∩ (Si \Si−1)}

Node search against. . .

. . . an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

I

Lazy robber Agile robber

We define the set of free locations in the case of a lazy robber :

I F1 = V (G) \ S1
I for all i > 2, Fi = (Fi−1 \Si)∪{v ∈ ccG−Si (u) | u ∈ Fi ∩ (Si \Si−1)}

Node search against. . .

. . . an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

I

Lazy robber Agile robber

???

We define the set of free locations in the case of a lazy robber :

I F1 = V (G) \ S1
I for all i > 2, Fi = (Fi−1 \Si)∪{v ∈ ccG−Si (u) | u ∈ Fi ∩ (Si \Si−1)}

Node search against. . .

. . . an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

I

Lazy robber Agile robber

We define the set of free locations in the case of a lazy robber :

I F1 = V (G) \ S1
I for all i > 2, Fi = (Fi−1 \Si)∪{v ∈ ccG−Si (u) | u ∈ Fi ∩ (Si \Si−1)}

Node search against. . .

. . . an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

I

Lazy robber Agile robber

We define the set of free locations in the case of a lazy robber :

I F1 = V (G) \ S1
I for all i > 2, Fi = (Fi−1 \Si)∪{v ∈ ccG−Si (u) | u ∈ Fi ∩ (Si \Si−1)}

Node search against. . .

. . . an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

I

Lazy robber Agile robber

We define the set of free locations in the case of a lazy robber :

I F1 = V (G) \ S1
I for all i > 2, Fi = (Fi−1 \Si)∪{v ∈ ccG−Si (u) | u ∈ Fi ∩ (Si \Si−1)}

Node search against. . .

. . . an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

I

Lazy robber Agile robber

We define the set of free locations in the case of a lazy robber :

I F1 = V (G) \ S1
I for all i > 2, Fi = (Fi−1 \Si)∪{v ∈ ccG−Si (u) | u ∈ Fi ∩ (Si \Si−1)}

Node search against. . .

. . . an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

I agile : he can move (if possible) at any time

Lazy robber Agile robber

???

We define the set of free locations in the case of a agile robber :

I F1 = V (G) \ S1
I for all i > 2, Fi = (Fi−1 \ Si) ∪ {v ∈ ccG−Si (u) | u ∈ Fi}

Node search against. . .

. . . an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

I agile : he can move (if possible) at any time

Lazy robber Agile robber

We define the set of free locations in the case of a agile robber :

I F1 = V (G) \ S1
I for all i > 2, Fi = (Fi−1 \ Si) ∪ {v ∈ ccG−Si (u) | u ∈ Fi}

Node search against. . .

. . . an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

I agile : he can move (if possible) at any time

Lazy robber Agile robber

We define the set of free locations in the case of a agile robber :

I F1 = V (G) \ S1
I for all i > 2, Fi = (Fi−1 \ Si) ∪ {v ∈ ccG−Si (u) | u ∈ Fi}

Node search against. . .

. . . an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

I agile : he can move (if possible) at any time

Lazy robber Agile robber

We define the set of free locations in the case of a agile robber :

I F1 = V (G) \ S1
I for all i > 2, Fi = (Fi−1 \ Si) ∪ {v ∈ ccG−Si (u) | u ∈ Fi}

Node search against. . .

. . . an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

I agile : he can move (if possible) at any time

Lazy robber Agile robber

We define the set of free locations in the case of a agile robber :

I F1 = V (G) \ S1
I for all i > 2, Fi = (Fi−1 \ Si) ∪ {v ∈ ccG−Si (u) | u ∈ Fi}

Node search against. . .

. . . an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

I agile : he can move (if possible) at any time

Lazy robber Agile robber

We define the set of free locations in the case of a agile robber :

I F1 = V (G) \ S1
I for all i > 2, Fi = (Fi−1 \ Si) ∪ {v ∈ ccG−Si (u) | u ∈ Fi}

Properties and cost of a node search strategy

A node search strategy S = 〈S1, . . .Sr 〉 is

I complete if Fr = ∅;
I monotone if for every i ∈ [r − 1], Fi+1 ⊂ Fi .

(there is no recontamination of a vertex)

Properties and cost of a node search strategy

A node search strategy S = 〈S1, . . .Sr 〉 is

I complete if Fr = ∅;
I monotone if for every i ∈ [r − 1], Fi+1 ⊂ Fi .

(there is no recontamination of a vertex)

We define

ans(G) = min{cost(S) | S is a complete strategy against an agile robber}

mans(G) = min{cost(S) | S is a complete monotone . . . agile robber}

lns(G) = min{cost(S) | S is a complete strategy against a lazy robber}

mlns(G) = min{cost(S) | S is a complete monotone . . . lazy robber}

Known relationship between parameters

Theorem.

I treewidth corresponds to lazy strategies [DKT97]

tw(G) = tvs(G) = mlns(G)− 1 = lns(G)− 1

I pathwidth corresponds to agile strategies [Kin92, KP95]

pw(G) = pvs(G) = mans(G)− 1 = ans(G)− 1

σ
i

S
(t)
σ (i) = {x ∈ V | σ(x) < i ∧ ∃(x , σi)-path with internal vertices in σ>i}

Known relationship between parameters

Theorem.

I treewidth corresponds to lazy strategies [DKT97]

tw(G) = tvs(G) = mlns(G)− 1 = lns(G)− 1

I pathwidth corresponds to agile strategies [Kin92, KP95]

pw(G) = pvs(G) = mans(G)− 1 = ans(G)− 1

σ
i

S
(t)
σ (i) = {x ∈ V | σ(x) < i ∧ ∃(x , σi)-path with internal vertices in σ>i}

tvs(G) = minσ maxi∈[n] |S (t)
σ (i)|

Known relationship between parameters

Theorem.

I treewidth corresponds to lazy strategies [DKT97]

tw(G) = tvs(G) = mlns(G)− 1 = lns(G)− 1

I pathwidth corresponds to agile strategies [Kin92, KP95]

pw(G) = pvs(G) = mans(G)− 1 = ans(G)− 1

σ
i

S
(p)
σ (i) = NG (σ>i)

pvs(G) = minσ maxi∈[n] |S (p)
σ (i)|

What about connected node search strategy ?

Hints : force to search the graph in a connected manner
 the guarded space Gi = Fi has to be connected

a b

c d

e f

What about connected node search strategy ?

Hints : force to search the graph in a connected manner
 the guarded space Gi = Fi has to be connected

a b

c d

e f

What about connected node search strategy ?

Hints : force to search the graph in a connected manner
 the guarded space Gi = Fi has to be connected

a b

c d

e f
This is not a connected search !

A node search strategy S = 〈S1, . . .Sr 〉 is

I connected if for every i ∈ [r], Gi is connected.

What about connected node search strategy ?

Hints : force to search the graph in a connected manner
 the guarded space Gi = Fi has to be connected

a b

c d

e f
This is not a connected search !

A node search strategy S = 〈S1, . . .Sr 〉 is

I connected if for every i ∈ [r], Gi is connected.

Why connected search ?

I from the theoretical view point very natural constraint

I from the application view point:

I cave exploration
I maintenance of communications between searcher
I . . .

What about connected node search strategy ?

Questions

I What is the price of connectivity ?

I Can the mclns(.) parameter be expressed in terms of a layout
parameter or a width parameter ?

I Can we characterize the set of graphs such that mclns(G) 6 k ?

I What is the complexity of deciding whether mclns(G) 6 k?

Results (1) – Parameter equivalence

Theorem 1 [Adler, P., Thilikos (grasta’17)]

ctw(G) = ctvs(G) = mclns(G)− 1

Results (1) – Parameter equivalence

Theorem 1 [Adler, P., Thilikos (grasta’17)]

ctw(G) = ctvs(G) = mclns(G)− 1

r

v

In a connected tree decomposition (T ,F),
there exists a root r such that for every node v ,
G [∪{Xu | u ∈ rTv}] is connected

In a connected path decomposition, r is an extremity of the path:
r v

Results (1) – Parameter equivalence

Theorem 1 [Adler, P., Thilikos (grasta’17)]

ctw(G) = ctvs(G) = mclns(G)− 1

Connected layout : for every i , there exists j < i such that σj ∈ N(σi)

σ
ij

Results (1) – Parameter equivalence

Theorem 1 [Adler, P., Thilikos (grasta’17)]

ctw(G) = ctvs(G) = mclns(G)− 1

Connected layout : for every i , there exists j < i such that σj ∈ N(σi)

σ
ij

ctvs(G) = minσ maxi∈[n] |S (t)
σ (i)|, with σ a connected layout

σ
i

S
(t)
σ (i) = {x ∈ V | σ(x) < i ∧ ∃(x , σi)-path with internal vertices in σ>i}

Results (1) – Parameter equivalence

Theorem 1 [Adler, P., Thilikos, grasta’17]

ctw(G) = ctvs(G) = mclns(G)− 1

Sketch of proof:

I ctvs(G) 6 mclns(G)− 1: search strategy S = 〈S1, . . .Sr 〉 layout σ

σ = vertices ordered by the first date they are occupied by a cops.

Results (1) – Parameter equivalence

Theorem 1 [Adler, P., Thilikos, grasta’17]

ctw(G) = ctvs(G) = mclns(G)− 1

Sketch of proof:

I ctvs(G) 6 mclns(G)− 1: search strategy S = 〈S1, . . .Sr 〉 layout σ

σ = vertices ordered by the first date they are occupied by a cops.

I ctw(G) 6 ctvs(G): connected layout σ tree-decomposition (T ,F)

F =
{
S
(t)
σ (i) ∪ {σi} | i ∈ [n]

}

σ
i

Results (1) – Parameter equivalence

Theorem 1 [Adler, P., Thilikos, grasta’17]

ctw(G) = ctvs(G) = mclns(G)− 1

Sketch of proof:

I ctvs(G) 6 mclns(G)− 1: search strategy S = 〈S1, . . .Sr 〉 layout σ

σ = vertices ordered by the first date they are occupied by a cops.

I ctw(G) 6 ctvs(G): connected layout σ tree-decomposition (T ,F)

F =
{
S
(t)
σ (i) ∪ {σi} | i ∈ [n]

}

σ
i

I mclns(G) 6 ctw(G) + 1: connected tree-decomposition (T ,F) σ

σ = vertex ordering resulting from a traversal of (T ,F) starting at the root

Contraction obstruction sets

Observation. The mclns parameter is closed under edge-contraction.

σ
i j

e

σ/e
i

ve

h

h

i ∈ S(t)
σ (h)

i ∈ S(t)
σ/e

(h)

Contraction obstruction sets

Observation. The mclns parameter is closed under edge-contraction.

σ
i j

e

σ/e
i

ve

h

h

i ∈ S(t)
σ (h)

i ∈ S(t)
σ/e

(h)

We define

I Ck =
{
G | mclns(G) 6 k

}
I obs(Ck) =

{
G | mclns(G) > k and ∀H,H ≺c G ,mclns(H) 6 k

}

Results (2) – Obstruction set for C2

Theorem 2 [Adler, P., Thilikos (grasta’17)]
The set of obstructions for C2 is obs(C2) = {K4} ∪ H1 ∪H2 ∪R where

H1 H2K4

I graphs of H1 ∪H2 are obtained by replacing thick subdivided edges
by multiple subdivided edges;

I graphs of R are obtained by gluing two graphs of R on their root
vertex.

Results (2) – Obstruction set for C2

Theorem 2 [Adler, P., Thilikos (grasta’17)]
The set of obstructions for C2 is obs(C2) = {K4} ∪ H1 ∪H2 ∪R where

H1 H2K4

I graphs of H1 ∪H2 are obtained by replacing thick subdivided edges
by multiple subdivided edges;

I graphs of R are obtained by gluing two graphs of R on their root
vertex.

Results (2) – Obstruction set for C2

Theorem 2 [Adler, P., Thilikos (grasta’17)]
The set of obstructions for C2 is obs(C2) = {K4} ∪ H1 ∪H2 ∪R where

H1 H2K4

R2
1 R3

1 R`
1

r r

R1

r r

R

I graphs of H1 ∪H2 are obtained by replacing thick subdivided edges
by multiple subdivided edges;

I graphs of R are obtained by gluing two graphs of R on their root
vertex.

Obstruction set for C2 – some lemmas

Lemma. Let G ∈ obs(Ck).

I If x is a cut-vertex, then G − x contains two connected components;

I G contains at most one cut-vertex.

xC1 C2

C3

C1 C2 C3

x y

Obstruction set for C2 – some lemmas

Lemma. Let G ∈ obs(Ck).

I If x is a cut-vertex, then G − x contains two connected components;

I G contains at most one cut-vertex.

xC1 C2

C3

C1 C2 C3

x y

Sketch of proof: Suppose G − x contains 3 connected components

As G/C1
, G/C2

, G/C3
are contractions:

1. ctvs(C1, x) 6 k or ctvs(C2, x) 6 k ;
2. ctvs(C2, x) 6 k or ctvs(C3, x) 6 k ;
3. ctvs(C3, x) 6 k or ctvs(C1, x) 6 k .

⇒ there exists σ such that ctvs(G , σ) 6 k : contradiction.

Obstruction set for C2 – some lemmas

Lemma. Let G ∈ obs(Ck).

I If x is a cut-vertex, then G − x contains two connected components;

I G contains at most one cut-vertex.

xC1 C2

C3

C1 C2 C3

x y

Twin-expansion Lemma.
Let x and y are two twin-vertices of degree 2 of a graph
G and G+ be the graph obtained from G by adding an
arbitrary number of twins of x and y . Then

G ∈ obs(Ck) if and only if G+ ∈ obs(Ck).

Obstruction set for C2 – some lemmas

Lemma. Let G ∈ obs(Ck).

I If x is a cut-vertex, then G − x contains two connected components;

I G contains at most one cut-vertex.

xC1 C2

C3

C1 C2 C3

x y

Lemma. For every k ≥ 1 and every connected graph G , G ∈ Ok is not a
biconnected graph iff G ∈ {A⊕ B | A,B ∈ R}.

R2
1 R3

1 R`
1

r r

R1

r r

R

Results (3) – Price of connectivity

Theorem [Derenioswki’12]
pw(G) 6 cpw(G) 6 2 · pw(G) + 1

r v

Results (3) – Price of connectivity

Theorem [Derenioswki’12]
pw(G) 6 cpw(G) 6 2 · pw(G) + 1

r v

Theorem [Adler, P., Thilikos, (grasta 2017)]
∀n ∈ N, ∃Gn such that mlns(Gn) = 3 and mclns(Gn) = 3 + n

and |V (Gn)| = O(2n). [Fraigniaud, Nisee’08]

a b

c

G1

a b

c

G1

G1 G1

G1

G1

G1

G1

G1

G2

G1

G1

G1

tw ctw # of levels # of parallel edges in highest level
G1 2 3 1 4
G2 2 4 2 5
G3 2 5 3 6
G4 2 6 4 7

Results (3) – Price of connectivity

Theorem [Derenioswki’12]
pw(G) 6 cpw(G) 6 2 · pw(G) + 1

r v

Theorem [Adler, P., Thilikos, (grasta 2017)]
∀n ∈ N, ∃Gn such that mlns(Gn) = 3 and mclns(Gn) = 3 + n

and |V (Gn)| = O(2n). [Fraigniaud, Nisee’08]

a b

c

G1

a b

c

G1

G1 G1

G1

G1

G1

G1

G1

G2

G1

G1

G1

tw ctw # of levels # of parallel edges in highest level
G1 2 3 1 4
G2 2 4 2 5
G3 2 5 3 6
G4 2 6 4 7

Computing the connected treewidth

 A graph H is a contraction of a graph G , denoted H 6c G ,
if H is obtained from G by a series of contractions.

 A graph H is a minor of a graph G , denoted H 6m G ,
if H is obtained from a subgraph G ′ of G by a series of contractions.

Computing the connected treewidth

 A graph H is a contraction of a graph G , denoted H 6c G ,
if H is obtained from G by a series of contractions.

 A graph H is a minor of a graph G , denoted H 6m G ,
if H is obtained from a subgraph G ′ of G by a series of contractions.

Theorem [Roberston & Seymour’84-04, Bodlaender’96]
There is an algorithm that, given a graph G and an integer k, decide
whether tw(G) 6 k in f (k) · nO(1) steps.

 tw(.) is a parameter closed under minor.
 graphs are well-quasi-ordered by the minor relation.
 minor testing can be performed in FPT-time.

Computing the connected treewidth

 A graph H is a contraction of a graph G , denoted H 6c G ,
if H is obtained from G by a series of contractions.

 A graph H is a minor of a graph G , denoted H 6m G ,
if H is obtained from a subgraph G ′ of G by a series of contractions.

Observation: Ck is closed under contraction not under minor !

I Can we decide whether ctw(G) 6 k in time

f (k) · nO(1) (FPT) or nf (k) (XP) ?

Theorem [Dereniowski, Osula, Rzazweski’18]
There is an algorithm that, given a graph G and an integer k, decides
whether cpw(G) 6 k in nO(k2) steps.

Computing the connected treewidth

 A graph H is a contraction of a graph G , denoted H 6c G ,
if H is obtained from G by a series of contractions.

 A graph H is a minor of a graph G , denoted H 6m G ,
if H is obtained from a subgraph G ′ of G by a series of contractions.

Observation: Ck is closed under contraction not under minor !

I Can we decide whether ctw(G) 6 k in time

f (k) · nO(1) (FPT) or nf (k) (XP) ?

Theorem [Dereniowski, Osula, Rzazweski’18]
There is an algorithm that, given a graph G and an integer k, decides
whether cpw(G) 6 k in nO(k2) steps.

Theorem [Kante, P., Thilikos (grasta 2018)]
There is an algorithm that, given a graph G and an integer k, decides
whether cpw(G) 6 k in f (k) · nO(1) steps.

(Connected) path-decomposition and pathwidth

A path-decomposition of a graph G is a sequence B = [B1, . . .Br] st.

I for every i ∈ [r], Bi ⊆ V (G);

I for every v ∈ V (G), ∃i , j ∈ [r] st. ∀i 6 k 6 j , v ∈ Bk .

r v

The path-decomposition B is connected if

I for every i ∈ [r], the subgraph G [∪j6iBj] is connected.

(Connected) path-decomposition and pathwidth

A path-decomposition of a graph G is a sequence B = [B1, . . .Br] st.

I for every i ∈ [r], Bi ⊆ V (G);

I for every v ∈ V (G), ∃i , j ∈ [r] st. ∀i 6 k 6 j , v ∈ Bk .

r v

The path-decomposition B is connected if

I for every i ∈ [r], the subgraph G [∪j6iBj] is connected.

Theorem [Derenioswki’12] pw(G) 6 cpw(G) 6 2 · pw(G) + 1

 we may assume that

I pw(G) 6 2k + 1.

I B = [B1, . . .Br] is a nice path-decomposition of with at most 2k + 1.

DP algorithm – connected path-decomposition of rooted
graphs

B1 B2 Bi Br

At step i , we aim at computing a connected path-decomposition
A = [A1, . . .Aq] of the rooted graph (Gi ,Bi) where Gi = G [∪j6iBj].

Observation: The graph Gi may not be connected.

DP algorithm – connected path-decomposition of rooted
graphs

B1 B2 Bi Br

At step i , we aim at computing a connected path-decomposition
A = [A1, . . .Aq] of the rooted graph (Gi ,Bi) where Gi = G [∪j6iBj].

Observation: The graph Gi may not be connected.

A path-decomposition Ai = [A1
i , . . .A

`
i] of a rooted graph (Gi ,Bi) is

connected if

I for every j ∈ [`], every connected

component of G j
i = G [∪k6jA

j
i]

intersects Bi .

A1
i A2

i Aj
i A`

i

C1

C2

C3

C4
Gj

i

DP algorithm – encoding

Ai = [A1
i , . . .A

j
i , . . .A

`
i] is a connected path-decomposition of (Gi ,Bi)

A1
i A2

i Bi
A`

i

Gi

Aj
i

DP algorithm – encoding

Ai = [A1
i , . . .A

j
i , . . .A

`
i] is a connected path-decomposition of (Gi ,Bi)

A1
i A2

i Bi
A`

i

Gi

Aj
i

B̃1
i

B̃2
i

B̃j
i

Each bag Aj
i is represented by a basic triple

t̃ ji = (B̃ j
i = Bi ∩ Aj

i , C̃ji , z ji = |Aj
i \ Bi |)

DP algorithm – encoding

Ai = [A1
i , . . .A

j
i , . . .A

`
i] is a connected path-decomposition of (Gi ,Bi)

A1
i A2

i Bi
A`

i

Gi

Aj
i

B̃1
i

B̃2
i

B̃j
i

Gj
i

Each bag Aj
i is represented by a basic triple

t̃ ji = (B̃ j
i = Bi ∩ Aj

i , C̃ji , z ji = |Aj
i \ Bi |)

where C̃ j
i is a partition of V j

i such that every part X is the intersection of

Bi with a connected component of G j
i .

DP algorithm – encoding

Observation: The size of a basic triple is O(pw(G)).
But ` can be arbitrarily large.

DP algorithm – encoding

Observation: The size of a basic triple is O(pw(G)).
But ` can be arbitrarily large.

 we need to compress the sequence of basic triples [t̃1i , . . . , t̃
`
i].

z4 z5 z6

(B4
i , C

4
i , Z

4
i = 〈z4, z5, z6〉)

DP algorithm – encoding

Observation: The size of a basic triple is O(pw(G)).
But ` can be arbitrarily large.

 we need to compress the sequence of basic triples [t̃1i , . . . , t̃
`
i].

z4 z5 z6

(B4
i , C

4
i , Z

4
i = 〈z4, z5, z6〉)

 Each sequence Z j
i of integers in [1, k] will be represented by its

characteristic sequence of size O(k). [Bodlaender & Kloks, 1996]

DP algorithm – encoding

z4 z5 z6

(B4
i , C

4
i , Z

4
i = 〈z4, z5, z6〉)

Lemma [Representative sequence]
The size of the representative sequence for the path-decomposition
[A1

i , . . .A
`
i] of (Gi ,Bi) is O(pw(G)2).

DP algorithm – encoding

z4 z5 z6

(B4
i , C

4
i , Z

4
i = 〈z4, z5, z6〉)

Lemma [Representative sequence]
The size of the representative sequence for the path-decomposition
[A1

i , . . .A
`
i] of (Gi ,Bi) is O(pw(G)2).

Lemma [Congruency]
If two boundaried graphs (G1,B) and (G2,B) have the same
representative sequence, then for every boundaried graph (H,B)

cpw((G1,B)⊕ (H,B)) 6 k ⇔ cpw((G2,B)⊕ (H,B)) 6 k

DP algorithm

 Build the set of characteristic sequence for (Gi+1,Bi+1) using the one
of (Gi ,Bi)

I Introduce node Bi+1 = Bi ∪ {vinsert}
I Forget node Bi = Bi+1 ∪ {vforget}

DP algorithm

 Build the set of characteristic sequence for (Gi+1,Bi+1) using the one
of (Gi ,Bi)

I Introduce node Bi+1 = Bi ∪ {vinsert}
I Forget node Bi = Bi+1 ∪ {vforget}

Theorem [Kanté, P. Thilikos]

Given a graph G , we can decide if cpw(G) 6 k in time 2O(k2) · n.

Conclusion

Open problems

I What is the complexity of deciding whether ctw(G) 6 k ?

 Can it be solved in FPT time, or even XP time ?
 Or provide an hardness proof.

I What is the complexity of deciding whether ctw(G) 6 k when
parameterized by tw(G) ? (assuming a positive answer to the
previous question)

 Can it be solved in FPT time, or even XP time ?
 Or provide an hardness proof.

I Identify problems that are hard with respect to tw(.) but not with
respect to ctw(.).

I Describe the set of obstructions for k > 3.

Conclusion

Open problems

I What is the complexity of deciding whether ctw(G) 6 k ?

 Can it be solved in FPT time, or even XP time ?
 Or provide an hardness proof.

I What is the complexity of deciding whether ctw(G) 6 k when
parameterized by tw(G) ? (assuming a positive answer to the
previous question)

 Can it be solved in FPT time, or even XP time ?
 Or provide an hardness proof.

Theorem [Mescoff, P., Thilikos (grasta 2018)]
If G is a series-parallel graph (i.e. tw(G) = 2),

then we can decide if ctw(G) 6 k in time nO(1).

I Identify problems that are hard with respect to tw(.) but not with
respect to ctw(.).

I Describe the set of obstructions for k > 3.

Conclusion

Open problems

I What is the complexity of deciding whether ctw(G) 6 k ?

 Can it be solved in FPT time, or even XP time ?
 Or provide an hardness proof.

I What is the complexity of deciding whether ctw(G) 6 k when
parameterized by tw(G) ? (assuming a positive answer to the
previous question)

 Can it be solved in FPT time, or even XP time ?
 Or provide an hardness proof.

Theorem [Mescoff, P., Thilikos (grasta 2018)]
If G is a series-parallel graph (i.e. tw(G) = 2),

then we can decide if ctw(G) 6 k in time nO(1).

I Identify problems that are hard with respect to tw(.) but not with
respect to ctw(.).

I Describe the set of obstructions for k > 3.

Conclusion – connected treewidth

I [P. Fraigniaud, N. Nisse, LATIN’06]

 To each edge eT of the tree-decomposition we associate two
graphs G eT

1 and G eT
2 that need to be connected.

I [P. Jégou, C. Terrioux, Constraints’17], [Diestel, Combinatorica’17]

 every bag of the tree decomposition (T ,F) induces a connected
subgraph

I [IA, Constraints] : efficient heuristics based on the structure of
the constraint network to fasten backtracking strategies;

I [Graph theory] : duality theorem, relation to graph
hyperbolicity.

Thank to the organizers !

