N

N

*QMM2+i2/ i 22@rB/i? M/ +QMM2+i2/ +QTb
- K2
*2°BbiQT?2 S mH

hQ +Bi2 i?Bb p2 " bBQM,

*2°BbiQT?2 S MHX *QMM2+i2/i'22@rB/i? M/ +QMM2+i2/ +QTb M/ Q#
TH2tBiv- H:Q 'Bi?Kb- miQK i M/ GQ:B+ J22i-C M kyRN-*?2MM B- AM

> G A/, HB KK@ykydNyRd
?21iTb,ff? H@HB KKX++b/X+M bX7 fHB KK@ykyd]
am#KBii2/ QM Rj C M kykk

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X


https://hal-lirmm.ccsd.cnrs.fr/lirmm-02079017v1
https://hal.archives-ouvertes.fr

Connected treewidth and
connected cops-and-robber game

Obstructions and algorithms

Christophe PAUL
(CNRS { Univ. Montpellier, LIRMM, France)

Joint work with I. Adler (University of Leeds, UK)
G. Mesco (ENS Rennes, France)
D. Thilikos (CNRS { Univ. Montpellier, LIRMM, France)

CAALM Workshop, Chennai, January 25, 2019

Jo)

LIRMM




A node search strategy

A search strategy is de ned by a sequence of moves, each of these

I either add a searcher

O—O—O<Z:Z



A node search strategy

A search strategy is de ned by a sequence of moves, each of these

I either add a searcher

hfag;:::i iz z



A node search strategy

A search strategy is de ned by a sequence of moves, each of these

I either add a searcher

hfag;fa; bg;:::i iz z



A node search strategy

A search strategy is de ned by a sequence of moves, each of these
I either add a searcher

I or remove a searcher

hfag; fa; bg;fbg;:::i iz z

More formally, we de neS = hS;;::: S such that
I foralli2[r], S V(G) (set of occupied positions)
L iSi=1
I foralli2[r 1],j]SMS 1j=1.



Node search against. ..

...an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

T

We de ne the set of free locations in the case of a lazy robber :
I Fi=V(G)nS
I foralli>2,F=(FK 1nS)[f v2cc s(u)ju2 K\ (SnS 1)g



Node search against. ..

...an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

e T

We de ne the set of free locations in the case of a lazy robber :
I Fi=V(G)nS
I foralli>2,F=(FK 1nS)[f v2cc s(u)ju2 K\ (SnS 1)g



Node search against. ..

...an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

e T

We de ne the set of free locations in the case of a lazy robber :
I Fi=V(G)nS
I foralli>2,F=(FK 1nS)[f v2cc s(u)ju2 K\ (SnS 1)g



Node search against. ..

...an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

.

We de ne the set of free locations in the case of a lazy robber :
I Fi=V(G)nS
I foralli>2,F=(FK 1nS)[f v2cc s(u)ju2 K\ (SnS 1)g



Node search against. ..

...an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

s

We de ne the set of free locations in the case of a lazy robber :
I Fi=V(G)nS
I foralli>2,F=(FK 1nS)[f v2cc s(u)ju2 K\ (SnS 1)g



Node search against. ..

...an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

s T

We de ne the set of free locations in the case of a lazy robber :
I Fi=V(G)nS
I foralli>2,F=(FK 1nS)[f v2cc s(u)ju2 K\ (SnS 1)g



Node search against. ..

...an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

s T

We de ne the set of free locations in the case of a lazy robber :
I Fi=V(G)nS
I foralli>2,F=(FK 1nS)[f v2cc s(u)ju2 K\ (SnS 1)g



Node search against. ..

...an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

s

We de ne the set of free locations in the case of a lazy robber :
I Fi=V(G)nS
I foralli>2,F=(FK 1nS)[f v2cc s(u)ju2 K\ (SnS 1)g



Node search against. ..

...an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

.

We de ne the set of free locations in the case of a lazy robber :
I Fi=V(G)nS
I foralli>2,F=(FK 1nS)[f v2cc s(u)ju2 K\ (SnS 1)g



Node search against. ..

...an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

s

We de ne the set of free locations in the case of a lazy robber :
I Fi=V(G)nS
I foralli>2,F=(FK 1nS)[f v2cc s(u)ju2 K\ (SnS 1)g



Node search against. ..

...an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

.

We de ne the set of free locations in the case of a lazy robber :
I Fi=V(G)nS
I foralli>2,F=(FK 1nS)[f v2cc s(u)ju2 K\ (SnS 1)g



Node search against. ..

...an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

.

We de ne the set of free locations in the case of a lazy robber :
I Fi=V(G)nS
I foralli>2,F=(FK 1nS)[f v2cc s(u)ju2 K\ (SnS 1)g



Node search against. ..

...an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

L

We de ne the set of free locations in the case of a lazy robber :
I Fi=V(G)nS
I foralli>2,F=(FK 1nS)[f v2cc s(u)ju2 K\ (SnS 1)g



Node search against. ..

...an invisible robber, that can be
I lazy : he escapes (if possible) if a searcher is landing at his position

I agile : he can move (if possible) at any time

—l. <L

We de ne the set of free locations in the case of a agile robber :
I F = V(G) nS;
I foralli>2,F=(F 1nS)[fv2ce s(u)ju2Fg



Node search against. ..

...an invisible robber, that can be
I lazy : he escapes (if possible) if a searcher is landing at his position

I agile : he can move (if possible) at any time

—l. <L

We de ne the set of free locations in the case of a agile robber :
I F = V(G) nS;
I foralli>2,F=(F 1nS)[fv2ce s(u)ju2Fg



Node search against. ..

...an invisible robber, that can be
I lazy : he escapes (if possible) if a searcher is landing at his position

I agile : he can move (if possible) at any time

—l. <L

We de ne the set of free locations in the case of a agile robber :
I F = V(G) nS;
I foralli>2,F=(F 1nS)[fv2ce s(u)ju2Fg



Node search against. ..

...an invisible robber, that can be
I lazy : he escapes (if possible) if a searcher is landing at his position

I agile : he can move (if possible) at any time

—l.

We de ne the set of free locations in the case of a agile robber :
I F = V(G) nS;
I foralli>2,F=(F 1nS)[fv2ce s(u)ju2Fg



Node search against. ..

...an invisible robber, that can be
I lazy : he escapes (if possible) if a searcher is landing at his position

I agile : he can move (if possible) at any time

—l. <

We de ne the set of free locations in the case of a agile robber :
I F = V(G) nS;
I foralli>2,F=(F 1nS)[fv2ce s(u)ju2Fg



Node search against. ..

...an invisible robber, that can be
I lazy : he escapes (if possible) if a searcher is landing at his position

I agile : he can move (if possible) at any time

—l.

We de ne the set of free locations in the case of a agile robber :
I F = V(G) nS;
I foralli>2,F=(F 1nS)[fv2ce s(u)ju2Fg



Properties and cost of a node search strategy

A node search strateg$ = hS;;:::Si is
I complete ifF, = ;;

I monotone if for eveny 2 [r 1], F«1  F.
(there is no recontamination of a vertex)



Properties and cost of a node search strategy

A node search strateg$ = hS;;:::Si is
I complete ifF, = ;;

I monotone if for eveny 2 [r 1], F«1  F.
(there is no recontamination of a vertex)

We de ne
ans(G) = minfcost(S) j S is a complete strategy against an agile robger

mans(G) = minfcost(S) j S is a complete monotone ... agile roblaer

Ins(G) = minfcost(S) j S is a complete strategy against a lazy robber

mins(G) = minfcost(S) j S is a complete monotone .. .lazy roblger



Known relationship between parameters

Theorem.
I treewidth corresponds to lazy strategies [DKT97]
tw(G) = tvs(G) = mins(G) 1=1Ins(G) 1
o o e o o e o o e o o o

S(t)(i) =fx2Vj (X)<i”9(x; i)-path with internal vertices in -ig



Known relationship between parameters

Theorem.
I treewidth corresponds to lazy strategies [DKT97]
tw(G) = tvs(G) = mins(G) 1=1Ins(G) 1
o o ° o ¢ o o o °

S(t)(i) =fx2Vj (X)<i”9(x; i)-path with internal vertices in -ig
tvs(G) = min maxg[n]js(t)(i)j



Known relationship between parameters

Theorem.
I treewidth corresponds to lazy strategies [DKT97]
tw(G) = tvs(G) = mins(G) 1=1Ins(G) 1
I pathwidth corresponds to agile strategies [Kin92, KP95]
pw(G) = pvs(G) = mans(G) 1=ans(G) 1
o o o o o o ° o o

i
s (i) = Ne( i)

pvs(G) = min  max S ()]



What about connected node search strategy ?

Hints : force to search the graph in a connected manner
the guarded spac& = F; has to be connected



What about connected node search strategy ?

Hints : force to search the graph in a connected manner
the guarded spac& = F; has to be connected



What about connected node search strategy ?
Hints : force to search the graph in a connected manner
the guarded spac& = F; has to be connected
This is not a connected search !

A node search strateg$ = hS;;:::Si is

I connected if for every 2 [r], G is connected.



What about connected node search strategy ?
Hints : force to search the graph in a connected manner
the guarded spac& = F; has to be connected
This is not a connected search !

A node search strateg$ = hS;;:::Si is

I connected if for every 2 [r], G is connected.

Why connected searcd ?

I from the theoretical view point very natural constraint
I from the application view point:

I cave exploration

I maintenance of communications between searcher
|



What about connected node search strategy ?

Questions

\* 2

I What is the price of connectivity ?

I Can themclns(:) parameter be expressed in terms of a layout
parameter or a width parameter ?

I Can we characterize the set of graphs such tmatins(G) 6 k ?

I What is the complexity of deciding whethencins(G) 6 k?



Results (1) { Parameter equivalence

Theorem 1 [Adler, P., Thilikos grasta '17)]
ctw (G) = ctvs(G) = mcins(G) 1



Results (1) { Parameter equivalence

Theorem 1 [Adler, P., Thilikos grasta '17)]
ctw (G) = ctvs(G) = mcins(G) 1

In a connected tree decompositiofi (F ),
there exists a root such that for every node,
G[[f X, ju2rTvg]is connected

In a connected path decomposition,is an extremity of the path:

S el



Results (1) { Parameter equivalence

Theorem 1 [Adler, P., Thilikos grasta '17)]
ctw (G) = ctvs(G) = mclns(G) 1

Connected layout : for every, there existg < i such that ; 2 N( ;)



Results (1) { Parameter equivalence

Theorem 1 [Adler, P., Thilikos grasta '17)]
ctw (G) = ctvs(G) = mclns(G) 1

Connected layout : for every, there existg < i such that ; 2 N( ;)

o o ¢ o e v o o o o o o o
j i

ctvs(G) = min maxg[n]jS(t)(i)j, with  a connected layout

sU)= fx2 V| (X)<i”9(x; i)-path with internal vertices in g



Results (1) { Parameter equivalence

Theorem 1 [Adler, P., Thilikosgrasta '17]
ctw (G) = ctvs(G) = mcins(G) 1

Sketch of proof:
| ctvs(G) 6 mcIns(G) 1: search strategys = hS;;::: Si layout

= vertices ordered by the rst date they are occupied by a cops.



Results (1) { Parameter equivalence

Theorem 1 [Adler, P., Thilikosgrasta '17]
ctw (G) = ctvs(G) = mcins(G) 1

Sketch of proof:
| ctvs(G) 6 mcIns(G) 1: search strategys = hS;;::: Si layout

= vertices ordered by the rst date they are occupied by a cops.

I ctw(G) 6 ctvs(G): connected layout tree-decompositionT ; F)
o}

n
F= sY0[f gji2in



Results (1) { Parameter equivalence

Theorem 1 [Adler, P., Thilikosgrasta '17]
ctw (G) = ctvs(G) = mcins(G) 1

Sketch of proof:
| ctvs(G) 6 mcIns(G) 1: search strategys = hS;;::: Si layout
= vertices ordered by the rst date they are occupied by a cops.
I ctw(G) 6 ctvs(G): connected layout tree-decompositionT ; F)
n o}
F= sYNIf igji2m]

I mcIns(G) 6 ctw(G) + 1: connected tree-decompositionT(; F)

= vertex ordering resulting from a traversal off ( F ) starting at the root



Contraction obstruction sets

Observation. Themclns parameter is closed under edge-contraction.

oo.oooho e v o o o
i
i 2 SO(h)
Ve
<o ® e o o ° ° ° o o
i h

i 250 (h)



Contraction obstruction sets

Observation. Themclns parameter is closed under edge-contraction.

e o o o o o . ° e v o o o
i
i 2 SO(h)
Ve
<o ® e o o ° ° ° o o
i h
i 280 (h)

We de ne
I G = Gjmcins(G) 6 k
I obs(G)= G jmcins(G) > k and8H;H . G;mcIns(H) 6 k



Results (2) { Obstruction set fot,

Theorem 2 [Adler, P., Thilikos grasta '17)]
The set of obstructions folG is obs(G) = fK4g[H 1[H 2[R where

3



Results (2) { Obstruction set fot,

Theorem 2 [Adler, P., Thilikos grasta '17)]
The set of obstructions folG is obs(G) = fK4g[H 1[H 2[R where

I graphs ofH1 [H » are obtained by replacing thick subdivided edges
by multiple subdivided edges;



Results (2) { Obstruction set fot,

Theorem 2 [Adler, P., Thilikos grasta '17)]
The set of obstructions folG, is obs(G) = fKyg[H 1[H 2[R where

I graphs ofH1 [H » are obtained by replacing thick subdivided edges
by multiple subdivided edges;

I graphs ofR are obtained by gluing two graphs & on their root
vertex.



Obstruction set foiG { some lemmas

Lemma. LetG 2 obs(G).
I If x is a cut-vertex, thenG X contains two connected components;

I G contains at most one cut-vertex.

X
5 (oo W o)



Obstruction set foiG { some lemmas

Lemma. LetG 2 obs(G).
I If x is a cut-vertex, thenG X contains two connected components;

I G contains at most one cut-vertex.
X
5 e

Sketch of proof: Suppos& x contains 3 connected components

As G_¢,, Gc,, Gc, are contractions:

1. ctvs(Cy;x) 6 k or ctvs(Cy;x) 6 k;
2. ctvs(Cy;x) 6 k or ctvs(Cs; x) 6 k;
3. ctvs(Cs;x) 6 k or ctvs(Cy; x) 6 K.

) there exists such thatctvs(G; ) 6 k: contradiction.



Obstruction set foiG { some lemmas

Lemma. LetG 2 obs(G).
I If x is a cut-vertex, thenG X contains two connected components;

I G contains at most one cut-vertex.
X
5 e

Twin-expansion Lemma.

Let x andy are two twin-vertices of degree 2 of a graph
G andG* be the graph obtained fronG by adding an
arbitrary number of twins ok andy. Then

G 2 obs(G) if and only if G* 2 obs(G).



Obstruction set foiG { some lemmas

Lemma. LetG 2 obs(G).
I If x is a cut-vertex, thenG X contains two connected components;

I G contains at most one cut-vertex.

Lemma. For everk 1 and every connected graph, G 2 Oy is not a
biconnected graphiG2fA BjA;B2Rg.

R
Ry R2 R$ R,
r r r r



Results (3) { Price of connectivity

Theorem [Derenioswki'12]

ow(G) 6 cow(G) 6 2 pw(G) + 1 ® O oNEy



Results (3) { Price of connectivity

Theorem [Derenioswki'12]

pw(G) 6 cpw(G) 6 2 pw(G) +1 D P D OHEH

Theorem [Adler, P., Thilikos, grasta 2017 )]
8n 2 N, 9G, such thatmIns(G,) = 3 and mclns(G,) =3+ n

Gy
a b
w ctw # of levels # of parallel edges in highest level
G 2 3 1 4
Gy 2 4 2 5
G3 2 5 3 6
Gy 2 6 4 7




Results (3) { Price of connectivity

Theorem [Derenioswki'12]

pw(G) 6 cpw(G) 6 2 pw(G) +1 D P D OHEH

Theorem [Adler, P., Thilikos, grasta 2017 )]
8n 2 N, 9G, such thatmIns(G,) = 3 and mclns(G,) =3+ n

andjV (G,)j = O2M. [Fraigniaud, Nisee'08]

G
a b
w ctw # of levels # of parallel edges in highest level
G 2 3 1 4
Gy 2 4 2 5
Gz 2 5 3 6
[N 2 6 4 7




Computing the connected treewidth

A graphH is a contraction of a grapl, denotedH 6 ; G,
if H is obtained fromG by a series of contractions.

A graphH is a minor of a graphs, denotedH 6 ., G,
if H is obtained from a subgrap@® of G by a series of contractions.



Computing the connected treewidth

A graphH is a contraction of a grapl, denotedH 6 ; G,
if H is obtained fromG by a series of contractions.

A graphH is a minor of a graphs, denotedH 6 ., G,
if H is obtained from a subgrap@® of G by a series of contractions.

Theorem [Roberston & Seymour'84-04, Bodlaender'96]
There is an algorithm that, given a grap® and an integelk, decide
whethertw (G) 6 k in f(k) n°® steps.

tw (:) is a parameter closed under minor.
graphs are well-quasi-ordered by the minor relation.
minor testing can be performed in FPT-time.



Computing the connected treewidth

A graphH is a contraction of a grapl, denotedH 6 ; G,
if H is obtained fromG by a series of contractions.

A graphH is a minor of a graphs, denotedH 6 ., G,
if H is obtained from a subgrap@® of G by a series of contractions.

Observation:G is closed under contraction not under minor !

I Can we decide whethertw (G) 6 k in time
f(k) n°® (FPT) or n K (XP) 2

Theorem [Dereniowski, Osula, Rzazweski'18]
There is an algorithm that, given a grapB8 and an integeik, decides
whethercpw(G) 6 k in n°k") steps.



Computing the connected treewidth

A graphH is a contraction of a grapl, denotedH 6 ; G,
if H is obtained fromG by a series of contractions.

A graphH is a minor of a graphs, denotedH 6 ., G,
if H is obtained from a subgrap@® of G by a series of contractions.

Observation:G is closed under contraction not under minor !

I Can we decide whethertw (G) 6 k in time
f(k) n°® (FPT) or n K (XP) 2

Theorem [Dereniowski, Osula, Rzazweski'18]
There is an algorithm that, given a grapB8 and an integeik, decides
whethercpw(G) 6 k in n°k") steps.

Theorem [Kante, P., Thilikos ¢rasta 2018 )]
There is an algorithm that, given a grap8 and an integelk, decides
whethercpw(G) 6 k in f (k) n°® steps.



(Connected) path-decomposition and pathwidth

A path-decomposition of a grapks is a sequenc® =[By;:
I for everyi 2 [r], Bi V(G);
I for everyv 2 V(G), 9i;j 2 [r] st. 8i 6 k6 j, v 2 Byg.

S &

The path-decompositiorB is connected if

.1 By] st.

I for everyi 2 [r], the subgraphG[[ jsiB;] is connected.



(Connected) path-decomposition and pathwidth

A path-decomposition of a grapls is a sequenc® =[Bj;:::B;] st.
I for everyi 2 [r], Bi V(G);
I for everyv 2 V(G), 9i;j 2 [r] st. 8i 6 k6 j, v 2 Byg.

® P D ONESH
The path-decompositiorB is connected if

I for everyi 2 [r], the subgraphG[[ jsiB;] is connected.

Theorem [Derenioswki'12pw(G) 6 cpw(G) 6 2 pw(G)+1
we may assume that
I pw(G) 6 2k + 1.

I B =[Bj;:::B;] is a nice path-decomposition of with at mosk2 1.



DP algorithm { connected path-decomposition of rootec

graphs

At step i, we aim at computing a connected path-decomposition
A =[Aq;:::Aq] of the rooted graph G; B;) whereG = GI[ j6iB;].

Observation: The grapls may not be connected.



DP algorithm { connected path-decomposition of rootec

graphs

At step i, we aim at computing a connected path-decomposition
A =[Aq;:::Aq] of the rooted graph G;; Bi) whereG = GI[ jsiB;].

Observation: The grapls may not be connected.

A path-decompositiomA; = [A}; :: :A{] of a rooted graph G;; B;) is
connected if

I for everyj 2 [], every connected D D cee D cee [
component ofG = G[[ xs;Al]

intersectsB;. @
e



DP algorithm { encoding
Ai=[AL:: :A%; :::A]is a connected path-decomposition o&( B;)

(e



DP algorithm { encoding

A =[AY AL :A] is a connected path-decomposition o&( B;)

ARRRRARG-1 C

Each bagA{ is represented by a basic triple '
t=(Bl=B\ A ; G ; Z=]AnBj)



DP algorithm { encoding

Ai =[AL Al Al s a connected path-decomposition o B;)

ARRRRRG-1 C

Each bagA{ is represented by a basic triple '
t=(B =B\ A ; G Z=]jAnBj

whereC/ is a partition of V! such that every parX is the intersection of
Bj with a connected component dBl‘.



DP algorithm { encoding

Observation: The size of a basic triple &(pw(G)).
But ° can be arbitrarily large.



DP algorithm { encoding

Observation: The size of a basic triple &(pw(G)).
But ° can be arbitrarily large.

we need to compress the sequence of basic trigies [:; 1.

T

rrot et

{



DP algorithm { encoding

Observation: The size of a basic triple &(pw(G)).
But ° can be arbitrarily large.

we need to compress the sequence of basic trigies [:; 1.
i11iinil
EENNN
H|[E N

Each sequenczij of integers in [1k] will be represented by its
characteristic sequence of siz&(k). [Bodlaender & Kloks, 1996]

et

{



DP algorithm { encoding

e

i
[ A R LR
Lemma [Representative sequence]

The size of the representative sequence for the path-decomposition
[AL AT of (G Bi) is O(pw(G)?).



DP algorithm { encoding

e

i
[ A R LR
Lemma [Representative sequence]

The size of the representative sequence for the path-decomposition
[AL 2 Al of (G; By) is O(pw(G)?).

Lemma [Congruency]

If two boundaried graphs@;; B) and (G;; B) have the same
representative sequence, then for every boundaried grapiB(

cpw((G1;B) (H;B)) 6 k, cpw((G;B) (H;B)) 6 k



DP algorithm

Build the set of characteristic sequence fdi(; ; Bij+1) using the one
of (G Bi)
I Introduce nodeBi+; = B [f Vinsertd

| Forget nodeB; = Bjs1 [f Viorgetd



DP algorithm

Build the set of characteristic sequence fdi(; ; Bij+1) using the one
of (G Bi)
I Introduce nodeBi+; = B [f Vinsertd

| Forget nodeB; = Bjs1 [f Viorgetd

Theorem [Kang, P. Thilikos]
Given a graplG, we can decide iEpw(G) 6 k in time X&) n.



Conclusion

Open problems
I What is the complexity of deciding whethetw (G) 6 k ?

Can it be solved in FPT time, or even XP time ?
Or provide an hardness proof.

I What is the complexity of deciding whethetw (G) 6 k when
parameterized byw (G) ? (assuming a positive answer to the
previous question)

Can it be solved in FPT time, or even XP time ?
Or provide an hardness proof.



Conclusion

Open problems

I What is the complexity of deciding whethetw (G) 6 k ?

Can it be solved in FPT time, or even XP time ?
Or provide an hardness proof.

I What is the complexity of deciding whethetw (G) 6 k when

parameterized byw (G) ? (assuming a positive answer to the
previous question)

Can it be solved in FPT time, or even XP time ?
Or provide an hardness proof.

Theorem [Mesco, P., Thilikos grasta 2018 )]
If G is a series-parallel graph (i.éw (G) = 2),
then we can decide iétw (G) 6 k in time n°®,



Conclusion

Open problems
I What is the complexity of deciding whethetw (G) 6 k ?

Can it be solved in FPT time, or even XP time ?
Or provide an hardness proof.

I What is the complexity of deciding whethetw (G) 6 k when
parameterized byw (G) ? (assuming a positive answer to the
previous question)

Can it be solved in FPT time, or even XP time ?
Or provide an hardness proof.

Theorem [Mesco, P., Thilikos grasta 2018 )]
If G is a series-parallel graph (i.éw (G) = 2),
then we can decide iétw (G) 6 k in time n°®,

I ldentify problems that are hard with respect tv (:) but not with
respect toctw (:).

I Describe the set of obstructions fér> 3.



Conclusion { connected treewidth

I [P. Fraigniaud, N. Nisse, LATIN'06]

To each edgeer of the tree-decomposition we associate two
graphsG;™ and G;" that need to be connected.

I [P. Egou, C. Terrioux, Constraints'17], [Diestel, Combinatorica'17]
every bag of the tree decompositioil (F) induces a connected
subgraph

I [IA, Constraints] : e cient heuristics based on the structure of
the constraint network to fasten backtracking strategies;

I [Graph theory] : duality theorem, relation to graph
hyperbolicity.



Thank to the organizers \!




