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A node search strategy

A search strategy is de�ned by a sequence of moves, each of these

I either add a searcher

I or remove a searcher

hfag; f a; bg; f bg; : : : i

More formally, we de�neS = hS1; : : : Sr i such that

I for all i 2 [r ], Si � V (G); (set of occupied positions)

I jS1j = 1;

I for all i 2 [r � 1], jSi M Si � 1j = 1.



Node search against. . .

. . . an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

I

We de�ne the set of free locations in the case of a lazy robber :

I F1 = V (G) n S1

I for all i > 2, Fi = ( Fi � 1 nSi ) [ f v 2 ccG� Si (u) j u 2 Fi \ (Si nSi � 1)g
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Properties and cost of a node search strategy

A node search strategyS = hS1; : : : Sr i is

I complete ifFr = ; ;

I monotone if for everyi 2 [r � 1], Fi +1 � Fi .
(there is no recontamination of a vertex)

We de�ne

ans(G) = min f cost(S) j S is a complete strategy against an agile robberg

mans(G) = min f cost(S) j S is a complete monotone . . . agile robberg

lns(G) = min f cost(S) j S is a complete strategy against a lazy robberg

mlns(G) = min f cost(S) j S is a complete monotone . . . lazy robberg



Known relationship between parameters

Theorem.

I treewidth corresponds to lazy strategies [DKT97]

tw (G) = tvs(G) = mlns(G) � 1 = lns(G) � 1

I pathwidth corresponds to agile strategies [Kin92, KP95]

pw(G) = pvs(G) = mans(G) � 1 = ans(G) � 1
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S(t )
� (i ) = f x 2 V j � (x) < i ^ 9 (x; � i )-path with internal vertices in� > i g
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Known relationship between parameters

Theorem.

I treewidth corresponds to lazy strategies [DKT97]

tw (G) = tvs(G) = mlns(G) � 1 = lns(G) � 1

I pathwidth corresponds to agile strategies [Kin92, KP95]

pw(G) = pvs(G) = mans(G) � 1 = ans(G) � 1

�
i

S(p)
� (i ) = NG(� > i )

pvs(G) = min � maxi 2 [n] jS(p)
� (i )j
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What about connected node search strategy ?

Hints : force to search the graph in a connected manner
 the guarded spaceGi = Fi has to be connected

a b

c d

e f
This is not a connected search !

A node search strategyS = hS1; : : : Sr i is

I connected if for everyi 2 [r ], Gi is connected.

Why connected search ?

I from the theoretical view point very natural constraint

I from the application view point:

I cave exploration
I maintenance of communications between searcher
I . . .



What about connected node search strategy ?

Questions

I What is the price of connectivity ?

I Can themclns(:) parameter be expressed in terms of a layout
parameter or a width parameter ?

I Can we characterize the set of graphs such thatmclns(G) 6 k ?

I What is the complexity of deciding whethermclns(G) 6 k?
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Theorem 1 [Adler, P., Thilikos (grasta '17)]

ctw (G) = ctvs(G) = mclns(G) � 1

r

v

In a connected tree decomposition (T ; F ),
there exists a rootr such that for every nodev,
G[[f Xu j u 2 rTv g] is connected

In a connected path decomposition,r is an extremity of the path:
r v
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ctw (G) = ctvs(G) = mclns(G) � 1

Connected layout : for everyi , there existsj < i such that � j 2 N(� i )

�
ij

ctvs(G) = min � maxi 2 [n] jS(t )
� (i )j, with � a connected layout

�
i

S(t )
� (i ) = f x 2 V j � (x) < i ^ 9 (x; � i )-path with internal vertices in � > i g
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Results (1) { Parameter equivalence

Theorem 1 [Adler, P., Thilikos,grasta '17]

ctw (G) = ctvs(G) = mclns(G) � 1

Sketch of proof:

I ctvs(G) 6 mclns(G) � 1: search strategyS = hS1; : : : Sr i  layout �

� = vertices ordered by the �rst date they are occupied by a cops.

I ctw (G) 6 ctvs(G): connected layout�  tree-decomposition (T ; F )

F =
n

S(t )
� (i ) [ f � i g j i 2 [n]

o

�
i

I mclns(G) 6 ctw (G) + 1: connected tree-decomposition (T ; F )  �

� = vertex ordering resulting from a traversal of (T ; F ) starting at the root
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Observation. Themclns parameter is closed under edge-contraction.
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Contraction obstruction sets

Observation. Themclns parameter is closed under edge-contraction.

�
i j

e

� =e
i

ve

h

h

i 2 S(t)
� (h)

i 2 S(t)
� =e

(h)

We de�ne

I Ck =
�

G j mclns(G) 6 k
	

I obs(Ck ) =
�

G j mclns(G) > k and 8H; H � c G; mclns(H) 6 k
	



Results (2) { Obstruction set forC2

Theorem 2 [Adler, P., Thilikos (grasta '17)]
The set of obstructions forC2 is obs(C2) = f K4g [ H 1 [ H 2 [ R where

H 1 H 2K 4

I graphs ofH 1 [ H 2 are obtained by replacing thick subdivided edges
by multiple subdivided edges;

I graphs ofR are obtained by gluing two graphs ofR on their root
vertex.
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Theorem 2 [Adler, P., Thilikos (grasta '17)]
The set of obstructions forC2 is obs(C2) = f K4g [ H 1 [ H 2 [ R where

H 1 H 2K 4

R 2
1 R 3

1 R `
1

r r

R 1

r r

R

I graphs ofH 1 [ H 2 are obtained by replacing thick subdivided edges
by multiple subdivided edges;

I graphs ofR are obtained by gluing two graphs ofR on their root
vertex.
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Obstruction set forC2 { some lemmas

Lemma. LetG 2 obs(Ck ).

I If x is a cut-vertex, thenG � x contains two connected components;

I G contains at most one cut-vertex.

xC1 C2

C3

C1 C2 C3
x y

Sketch of proof: SupposeG � x contains 3 connected components

As G=C1 , G=C2 , G=C3 are contractions:

1. ctvs(C1; x) 6 k or ctvs(C2; x) 6 k;
2. ctvs(C2; x) 6 k or ctvs(C3; x) 6 k;
3. ctvs(C3; x) 6 k or ctvs(C1; x) 6 k.

) there exists� such thatctvs(G; � ) 6 k: contradiction.



Obstruction set forC2 { some lemmas

Lemma. LetG 2 obs(Ck ).

I If x is a cut-vertex, thenG � x contains two connected components;

I G contains at most one cut-vertex.

xC1 C2

C3

C1 C2 C3
x y

Twin-expansion Lemma.
Let x and y are two twin-vertices of degree 2 of a graph
G andG+ be the graph obtained fromG by adding an
arbitrary number of twins ofx and y. Then

G 2 obs(Ck ) if and only if G+ 2 obs(Ck ).



Obstruction set forC2 { some lemmas

Lemma. LetG 2 obs(Ck ).

I If x is a cut-vertex, thenG � x contains two connected components;

I G contains at most one cut-vertex.

xC1 C2

C3

C1 C2 C3
x y

Lemma. For everyk � 1 and every connected graphG, G 2 O k is not a
biconnected graph i�G 2 f A � B j A; B 2 Rg .

R 2
1 R 3

1 R `
1

r r

R 1

r r

R
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pw(G) 6 cpw(G) 6 2 � pw(G) + 1

r v



Results (3) { Price of connectivity

Theorem [Derenioswki'12]
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Theorem [Adler, P., Thilikos, (grasta 2017 )]
8n 2 N, 9Gn such thatmlns(Gn) = 3 and mclns(Gn) = 3 + n

and jV (Gn)j = O(2n). [Fraigniaud, Nisee'08]
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G1 G1
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G1
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G1

G1

G1

tw ctw # of levels # of parallel edges in highest level
G1 2 3 1 4
G2 2 4 2 5
G3 2 5 3 6
G4 2 6 4 7
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and jV (Gn)j = O(2n). [Fraigniaud, Nisee'08]
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G1

a b

c

G1

G1 G1

G1

G1

G1

G1

G1

G2

G1

G1

G1

tw ctw # of levels # of parallel edges in highest level
G1 2 3 1 4
G2 2 4 2 5
G3 2 5 3 6
G4 2 6 4 7



Computing the connected treewidth

 A graphH is a contraction of a graphG, denotedH 6 c G,
if H is obtained fromG by a series of contractions.

 A graphH is a minor of a graphG, denotedH 6 m G,
if H is obtained from a subgraphG0 of G by a series of contractions.



Computing the connected treewidth

 A graphH is a contraction of a graphG, denotedH 6 c G,
if H is obtained fromG by a series of contractions.

 A graphH is a minor of a graphG, denotedH 6 m G,
if H is obtained from a subgraphG0 of G by a series of contractions.

Theorem [Roberston & Seymour'84-04, Bodlaender'96]
There is an algorithm that, given a graphG and an integerk, decide
whethertw (G) 6 k in f (k) � nO(1) steps.

 tw (:) is a parameter closed under minor.
 graphs are well-quasi-ordered by the minor relation.
 minor testing can be performed in FPT-time.



Computing the connected treewidth

 A graphH is a contraction of a graphG, denotedH 6 c G,
if H is obtained fromG by a series of contractions.

 A graphH is a minor of a graphG, denotedH 6 m G,
if H is obtained from a subgraphG0 of G by a series of contractions.

Observation:Ck is closed under contraction not under minor !

I Can we decide whetherctw (G) 6 k in time

f (k) � nO(1) (FPT) or nf (k) (XP) ?

Theorem [Dereniowski, Osula, Rzazweski'18]
There is an algorithm that, given a graphG and an integerk, decides
whethercpw(G) 6 k in nO(k2) steps.



Computing the connected treewidth

 A graphH is a contraction of a graphG, denotedH 6 c G,
if H is obtained fromG by a series of contractions.

 A graphH is a minor of a graphG, denotedH 6 m G,
if H is obtained from a subgraphG0 of G by a series of contractions.

Observation:Ck is closed under contraction not under minor !

I Can we decide whetherctw (G) 6 k in time

f (k) � nO(1) (FPT) or nf (k) (XP) ?

Theorem [Dereniowski, Osula, Rzazweski'18]
There is an algorithm that, given a graphG and an integerk, decides
whethercpw(G) 6 k in nO(k2) steps.

Theorem [Kante, P., Thilikos (grasta 2018 )]
There is an algorithm that, given a graphG and an integerk, decides
whethercpw(G) 6 k in f (k) � nO(1) steps.



(Connected) path-decomposition and pathwidth

A path-decomposition of a graphG is a sequenceB = [ B1; : : : Br ] st.

I for everyi 2 [r ], Bi � V (G);

I for everyv 2 V (G), 9i ; j 2 [r ] st. 8i 6 k 6 j , v 2 Bk .

r v

The path-decompositionB is connected if

I for everyi 2 [r ], the subgraphG[[ j 6 i Bj ] is connected.



(Connected) path-decomposition and pathwidth

A path-decomposition of a graphG is a sequenceB = [ B1; : : : Br ] st.

I for everyi 2 [r ], Bi � V (G);

I for everyv 2 V (G), 9i ; j 2 [r ] st. 8i 6 k 6 j , v 2 Bk .

r v

The path-decompositionB is connected if

I for everyi 2 [r ], the subgraphG[[ j 6 i Bj ] is connected.

Theorem [Derenioswki'12]pw(G) 6 cpw(G) 6 2 � pw(G) + 1

 we may assume that

I pw(G) 6 2k + 1.

I B = [ B1; : : : Br ] is a nice path-decomposition of with at most 2k + 1.



DP algorithm { connected path-decomposition of rooted
graphs

At step i , we aim at computing a connected path-decomposition
A = [ A1; : : : Aq] of the rooted graph (Gi ; Bi ) whereGi = G[[ j 6 i Bj ].

Observation: The graphGi may not be connected.



DP algorithm { connected path-decomposition of rooted
graphs

At step i , we aim at computing a connected path-decomposition
A = [ A1; : : : Aq] of the rooted graph (Gi ; Bi ) whereGi = G[[ j 6 i Bj ].

Observation: The graphGi may not be connected.

A path-decompositionA i = [ A1
i ; : : : A`

i ] of a rooted graph (Gi ; Bi ) is
connected if

I for everyj 2 [`], every connected
component ofGj

i = G[[ k6 j A
j
i ]

intersectsBi .
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i ; : : : A`

i ] is a connected path-decomposition of (Gi ; Bi )
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DP algorithm { encoding
A i = [ A1

i ; : : : Aj
i ; : : : A`

i ] is a connected path-decomposition of (Gi ; Bi )

Each bagAj
i is represented by a basic triple

~t j
i = ( ~B j

i = Bi \ Aj
i ; ~Cj

i ; zj
i = jAj

i n Bi j)

where ~Cj
i is a partition ofV j

i such that every partX is the intersection of
Bi with a connected component ofGj

i .



DP algorithm { encoding

Observation: The size of a basic triple isO(pw(G)).
But ` can be arbitrarily large.
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DP algorithm { encoding

Observation: The size of a basic triple isO(pw(G)).
But ` can be arbitrarily large.

 we need to compress the sequence of basic triples [~t 1
i ; : : : ; ~t `

i ].

 Each sequenceZ j
i of integers in [1; k] will be represented by its

characteristic sequence of sizeO(k). [Bodlaender & Kloks, 1996]



DP algorithm { encoding

Lemma [Representative sequence]
The size of the representative sequence for the path-decomposition
[A1

i ; : : : A`
i ] of (Gi ; Bi ) is O(pw(G)2).



DP algorithm { encoding

Lemma [Representative sequence]
The size of the representative sequence for the path-decomposition
[A1

i ; : : : A`
i ] of (Gi ; Bi ) is O(pw(G)2).

Lemma [Congruency]
If two boundaried graphs (G1; B) and (G2; B) have the same
representative sequence, then for every boundaried graph (H; B)

cpw((G1; B) � (H; B)) 6 k , cpw((G2; B) � (H; B)) 6 k



DP algorithm

 Build the set of characteristic sequence for (Gi +1 ; Bi +1 ) using the one
of (Gi ; Bi )

I Introduce nodeBi +1 = Bi [ f vinsertg

I Forget nodeBi = Bi +1 [ f vforget g



DP algorithm

 Build the set of characteristic sequence for (Gi +1 ; Bi +1 ) using the one
of (Gi ; Bi )

I Introduce nodeBi +1 = Bi [ f vinsertg

I Forget nodeBi = Bi +1 [ f vforget g

Theorem [Kant�e, P. Thilikos]
Given a graphG, we can decide ifcpw(G) 6 k in time 2O(k2) � n.



Conclusion

Open problems

I What is the complexity of deciding whetherctw (G) 6 k ?

 Can it be solved in FPT time, or even XP time ?
 Or provide an hardness proof.

I What is the complexity of deciding whetherctw (G) 6 k when
parameterized bytw (G) ? (assuming a positive answer to the
previous question)

 Can it be solved in FPT time, or even XP time ?
 Or provide an hardness proof.

I Identify problems that are hard with respect totw (:) but not with
respect toctw (:).

I Describe the set of obstructions fork > 3.
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If G is a series-parallel graph (i.e.tw (G) = 2),

then we can decide ifctw (G) 6 k in time nO(1) .

I Identify problems that are hard with respect totw (:) but not with
respect toctw (:).

I Describe the set of obstructions fork > 3.
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Conclusion { connected treewidth

I [P. Fraigniaud, N. Nisse, LATIN'06]

 To each edgeeT of the tree-decomposition we associate two
graphsGeT

1 and GeT
2 that need to be connected.

I [P. J�egou, C. Terrioux, Constraints'17], [Diestel, Combinatorica'17]

 every bag of the tree decomposition (T ; F ) induces a connected
subgraph

I [IA, Constraints] : e�cient heuristics based on the structure of
the constraint network to fasten backtracking strategies;

I [Graph theory] : duality theorem, relation to graph
hyperbolicity.



Thank to the organizers !


