Connected tree-width and connected cops and robber game
 Christophe Paul

To cite this version:

Christophe Paul. Connected tree-width and connected cops and robber game. CAALM 2019 - Complexity, Algorithms, Automata and Logic Meet, Jan 2019, Chennai, India. lirmm-02079017

HAL Id: lirmm-02079017 https://hal-lirmm.ccsd.cnrs.fr/lirmm-02079017

Submitted on 13 Jan 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Connected treewidth and connected cops-and-robber game

Obstructions and algorithms

Christophe PAUL

(CNRS - Univ. Montpellier, LIRMM, France)

Joint work with I. Adler (University of Leeds, UK)
G. Mescoff (ENS Rennes, France)
D. Thilikos (CNRS - Univ. Montpellier, LIRMM, France)

CAALM Workshop, Chennai, January 25, 2019

A node search strategy

A search strategy is defined by a sequence of moves, each of these

- either add a searcher

A node search strategy

A search strategy is defined by a sequence of moves, each of these

- either add a searcher

$$
\langle\{a\}, \ldots\rangle
$$

A node search strategy

A search strategy is defined by a sequence of moves, each of these

- either add a searcher

$$
\langle\{a\},\{a, b\}, \ldots\rangle
$$

A node search strategy

A search strategy is defined by a sequence of moves, each of these

- either add a searcher
- or remove a searcher

$$
\langle\{a\},\{a, b\},\{b\}, \ldots\rangle
$$

More formally, we define $\mathcal{S}=\left\langle S_{1}, \ldots S_{r}\right\rangle$ such that

- for all $i \in[r], S_{i} \subseteq V(G) ; \quad$ (set of occupied positions)
- $\left|S_{1}\right|=1$;
- for all $i \in[r-1],\left|S_{i} \Delta S_{i-1}\right|=1$.

Node search against...

... an invisible robber, that can be

- lazy : he escapes (if possible) if a searcher is landing at his position

Lazy robber

Agile robber

We define the set of free locations in the case of a lazy robber :

- $F_{1}=V(G) \backslash S_{1}$
- for all $i \geqslant 2, F_{i}=\left(F_{i-1} \backslash S_{i}\right) \cup\left\{v \in c c_{G-S_{i}}(u) \mid u \in F_{i} \cap\left(S_{i} \backslash S_{i-1}\right)\right\}$

Node search against...

... an invisible robber, that can be

- lazy : he escapes (if possible) if a searcher is landing at his position

Lazy robber

Agile robber

We define the set of free locations in the case of a lazy robber :

- $F_{1}=V(G) \backslash S_{1}$
- for all $i \geqslant 2, F_{i}=\left(F_{i-1} \backslash S_{i}\right) \cup\left\{v \in c c_{G-S_{i}}(u) \mid u \in F_{i} \cap\left(S_{i} \backslash S_{i-1}\right)\right\}$

Node search against...

... an invisible robber, that can be

- lazy : he escapes (if possible) if a searcher is landing at his position

Lazy robber

Agile robber

We define the set of free locations in the case of a lazy robber :

- $F_{1}=V(G) \backslash S_{1}$
- for all $i \geqslant 2, F_{i}=\left(F_{i-1} \backslash S_{i}\right) \cup\left\{v \in c c_{G-S_{i}}(u) \mid u \in F_{i} \cap\left(S_{i} \backslash S_{i-1}\right)\right\}$

Node search against...

... an invisible robber, that can be

- lazy : he escapes (if possible) if a searcher is landing at his position

Lazy robber

Agile robber

We define the set of free locations in the case of a lazy robber :

- $F_{1}=V(G) \backslash S_{1}$
- for all $i \geqslant 2, F_{i}=\left(F_{i-1} \backslash S_{i}\right) \cup\left\{v \in c c_{G-S_{i}}(u) \mid u \in F_{i} \cap\left(S_{i} \backslash S_{i-1}\right)\right\}$

Node search against...

... an invisible robber, that can be

- lazy : he escapes (if possible) if a searcher is landing at his position

Lazy robber

Agile robber

We define the set of free locations in the case of a lazy robber :

- $F_{1}=V(G) \backslash S_{1}$
- for all $i \geqslant 2, F_{i}=\left(F_{i-1} \backslash S_{i}\right) \cup\left\{v \in c c_{G-S_{i}}(u) \mid u \in F_{i} \cap\left(S_{i} \backslash S_{i-1}\right)\right\}$

Node search against...

... an invisible robber, that can be

- lazy : he escapes (if possible) if a searcher is landing at his position

Lazy robber

Agile robber

We define the set of free locations in the case of a lazy robber :

- $F_{1}=V(G) \backslash S_{1}$
- for all $i \geqslant 2, F_{i}=\left(F_{i-1} \backslash S_{i}\right) \cup\left\{v \in c c_{G-S_{i}}(u) \mid u \in F_{i} \cap\left(S_{i} \backslash S_{i-1}\right)\right\}$

Node search against...

... an invisible robber, that can be

- lazy : he escapes (if possible) if a searcher is landing at his position

Lazy robber

Agile robber

We define the set of free locations in the case of a lazy robber :

- $F_{1}=V(G) \backslash S_{1}$
- for all $i \geqslant 2, F_{i}=\left(F_{i-1} \backslash S_{i}\right) \cup\left\{v \in c c_{G-S_{i}}(u) \mid u \in F_{i} \cap\left(S_{i} \backslash S_{i-1}\right)\right\}$

Node search against...

... an invisible robber, that can be

- lazy : he escapes (if possible) if a searcher is landing at his position

Lazy robber

Agile robber

We define the set of free locations in the case of a lazy robber :

- $F_{1}=V(G) \backslash S_{1}$
- for all $i \geqslant 2, F_{i}=\left(F_{i-1} \backslash S_{i}\right) \cup\left\{v \in c c_{G-S_{i}}(u) \mid u \in F_{i} \cap\left(S_{i} \backslash S_{i-1}\right)\right\}$

Node search against...

... an invisible robber, that can be

- lazy : he escapes (if possible) if a searcher is landing at his position

Lazy robber

Agile robber

We define the set of free locations in the case of a lazy robber :

- $F_{1}=V(G) \backslash S_{1}$
- for all $i \geqslant 2, F_{i}=\left(F_{i-1} \backslash S_{i}\right) \cup\left\{v \in c c_{G-S_{i}}(u) \mid u \in F_{i} \cap\left(S_{i} \backslash S_{i-1}\right)\right\}$

Node search against...

... an invisible robber, that can be

- lazy : he escapes (if possible) if a searcher is landing at his position

Lazy robber

Agile robber

We define the set of free locations in the case of a lazy robber :

- $F_{1}=V(G) \backslash S_{1}$
- for all $i \geqslant 2, F_{i}=\left(F_{i-1} \backslash S_{i}\right) \cup\left\{v \in c c_{G-S_{i}}(u) \mid u \in F_{i} \cap\left(S_{i} \backslash S_{i-1}\right)\right\}$

Node search against...

... an invisible robber, that can be

- lazy : he escapes (if possible) if a searcher is landing at his position

Lazy robber

Agile robber

We define the set of free locations in the case of a lazy robber :

- $F_{1}=V(G) \backslash S_{1}$
- for all $i \geqslant 2, F_{i}=\left(F_{i-1} \backslash S_{i}\right) \cup\left\{v \in c c_{G-S_{i}}(u) \mid u \in F_{i} \cap\left(S_{i} \backslash S_{i-1}\right)\right\}$

Node search against...

... an invisible robber, that can be

- lazy : he escapes (if possible) if a searcher is landing at his position

Lazy robber

Agile robber

We define the set of free locations in the case of a lazy robber :

- $F_{1}=V(G) \backslash S_{1}$
- for all $i \geqslant 2, F_{i}=\left(F_{i-1} \backslash S_{i}\right) \cup\left\{v \in c c_{G-S_{i}}(u) \mid u \in F_{i} \cap\left(S_{i} \backslash S_{i-1}\right)\right\}$

Node search against...

... an invisible robber, that can be

- lazy : he escapes (if possible) if a searcher is landing at his position

Lazy robber

Agile robber

We define the set of free locations in the case of a lazy robber :

- $F_{1}=V(G) \backslash S_{1}$
- for all $i \geqslant 2, F_{i}=\left(F_{i-1} \backslash S_{i}\right) \cup\left\{v \in c c_{G-S_{i}}(u) \mid u \in F_{i} \cap\left(S_{i} \backslash S_{i-1}\right)\right\}$

Node search against...

... an invisible robber, that can be

- lazy : he escapes (if possible) if a searcher is landing at his position
- agile : he can move (if possible) at any time

Lazy robber

Agile robber

We define the set of free locations in the case of a agile robber :

- $F_{1}=V(G) \backslash S_{1}$
- for all $i \geqslant 2, F_{i}=\left(F_{i-1} \backslash S_{i}\right) \cup\left\{v \in c c_{G-s_{i}}(u) \mid u \in F_{i}\right\}$

Node search against...

... an invisible robber, that can be

- lazy : he escapes (if possible) if a searcher is landing at his position
- agile : he can move (if possible) at any time

Lazy robber

Agile robber

We define the set of free locations in the case of a agile robber :

- $F_{1}=V(G) \backslash S_{1}$
- for all $i \geqslant 2, F_{i}=\left(F_{i-1} \backslash S_{i}\right) \cup\left\{v \in c c_{G-s_{i}}(u) \mid u \in F_{i}\right\}$

Node search against...

... an invisible robber, that can be

- lazy : he escapes (if possible) if a searcher is landing at his position
- agile : he can move (if possible) at any time

Lazy robber

Agile robber

We define the set of free locations in the case of a agile robber :

- $F_{1}=V(G) \backslash S_{1}$
- for all $i \geqslant 2, F_{i}=\left(F_{i-1} \backslash S_{i}\right) \cup\left\{v \in c c_{G-s_{i}}(u) \mid u \in F_{i}\right\}$

Node search against...

... an invisible robber, that can be

- lazy : he escapes (if possible) if a searcher is landing at his position
- agile : he can move (if possible) at any time

Lazy robber

Agile robber

We define the set of free locations in the case of a agile robber :

- $F_{1}=V(G) \backslash S_{1}$
- for all $i \geqslant 2, F_{i}=\left(F_{i-1} \backslash S_{i}\right) \cup\left\{v \in c c_{G-s_{i}}(u) \mid u \in F_{i}\right\}$

Node search against...

... an invisible robber, that can be

- lazy : he escapes (if possible) if a searcher is landing at his position
- agile : he can move (if possible) at any time

Lazy robber

Agile robber

We define the set of free locations in the case of a agile robber :

- $F_{1}=V(G) \backslash S_{1}$
- for all $i \geqslant 2, F_{i}=\left(F_{i-1} \backslash S_{i}\right) \cup\left\{v \in c c_{G-s_{i}}(u) \mid u \in F_{i}\right\}$

Node search against...

... an invisible robber, that can be

- lazy : he escapes (if possible) if a searcher is landing at his position
- agile : he can move (if possible) at any time

Lazy robber

Agile robber

We define the set of free locations in the case of a agile robber :

- $F_{1}=V(G) \backslash S_{1}$
- for all $i \geqslant 2, F_{i}=\left(F_{i-1} \backslash S_{i}\right) \cup\left\{v \in c c_{G-s_{i}}(u) \mid u \in F_{i}\right\}$

Properties and cost of a node search strategy

A node search strategy $\mathcal{S}=\left\langle S_{1}, \ldots S_{r}\right\rangle$ is

- complete if $F_{r}=\emptyset$;
- monotone if for every $i \in[r-1], F_{i+1} \subset F_{i}$.
(there is no recontamination of a vertex)

Properties and cost of a node search strategy

A node search strategy $\mathcal{S}=\left\langle S_{1}, \ldots S_{r}\right\rangle$ is

- complete if $F_{r}=\emptyset$;
- monotone if for every $i \in[r-1], F_{i+1} \subset F_{i}$.
(there is no recontamination of a vertex)

We define
$\operatorname{ans}(G)=\min \{\operatorname{cost}(\mathcal{S}) \mid \mathcal{S}$ is a complete strategy against an agile robber $\}$ $\operatorname{mans}(G)=\min \{\operatorname{cost}(\mathcal{S}) \mid \mathcal{S}$ is a complete monotone \ldots agile robber $\}$
$\operatorname{lns}(G)=\min \{\operatorname{cost}(\mathcal{S}) \mid \mathcal{S}$ is a complete strategy against a lazy robber $\}$ $\operatorname{mlns}(G)=\min \{\operatorname{cost}(\mathcal{S}) \mid \mathcal{S}$ is a complete monotone \ldots. lazy robber $\}$

Known relationship between parameters

Theorem.

- treewidth corresponds to lazy strategies
[DKT97]

$$
\mathbf{t w}(G)=\operatorname{tvs}(G)=\mathbf{m} \operatorname{lns}(G)-1=\boldsymbol{\operatorname { l n s }}(G)-1
$$

$S_{\sigma}^{(t)}(i)=\left\{x \in V \mid \sigma(x)<i \wedge \exists\left(x, \sigma_{i}\right)\right.$-path with internal vertices in $\left.\sigma_{>i}\right\}$

Known relationship between parameters

Theorem.

- treewidth corresponds to lazy strategies
[DKT97]

$$
\mathbf{t w}(G)=\operatorname{tvs}(G)=\mathbf{m} \operatorname{lns}(G)-1=\boldsymbol{\operatorname { l n s }}(G)-1
$$

$S_{\sigma}^{(t)}(i)=\left\{x \in V \mid \sigma(x)<i \wedge \exists\left(x, \sigma_{i}\right)\right.$-path with internal vertices in $\left.\sigma_{>i}\right\}$

$$
\operatorname{tvs}(G)=\min _{\sigma} \max _{i \in[n]}\left|S_{\sigma}^{(t)}(i)\right|
$$

Known relationship between parameters

Theorem.

- treewidth corresponds to lazy strategies
[DKT97]

$$
\mathbf{t w}(G)=\operatorname{tvs}(G)=\mathbf{m} \operatorname{lns}(G)-1=\boldsymbol{\operatorname { l n s }}(G)-1
$$

- pathwidth corresponds to agile strategies
[Kin92, KP95]

$$
\mathbf{p w}(G)=\mathbf{p v s}(G)=\mathbf{m a n s}(G)-1=\operatorname{ans}(G)-1
$$

What about connected node search strategy ?

Hints: force to search the graph in a connected manner
\rightsquigarrow the guarded space $\mathcal{G}_{i}=\overline{F_{i}}$ has to be connected

What about connected node search strategy ?

Hints: force to search the graph in a connected manner
\rightsquigarrow the guarded space $\mathcal{G}_{i}=\overline{F_{i}}$ has to be connected

What about connected node search strategy ?

Hints: force to search the graph in a connected manner \rightsquigarrow the guarded space $\mathcal{G}_{i}=\overline{F_{i}}$ has to be connected

This is not a connected search!
A node search strategy $\mathcal{S}=\left\langle S_{1}, \ldots S_{r}\right\rangle$ is

- connected if for every $i \in[r], \mathcal{G}_{i}$ is connected.

What about connected node search strategy?

Hints: force to search the graph in a connected manner
\rightsquigarrow the guarded space $\mathcal{G}_{i}=\overline{F_{i}}$ has to be connected

This is not a connected search!
A node search strategy $\mathcal{S}=\left\langle S_{1}, \ldots S_{r}\right\rangle$ is

- connected if for every $i \in[r], \mathcal{G}_{i}$ is connected.

Why connected search ?

- from the theoretical view point \rightsquigarrow very natural constraint
- from the application view point:
- cave exploration
- maintenance of communications between searcher
- ...

What about connected node search strategy ?

Questions

- What is the price of connectivity ?
- Can the mclns(.) parameter be expressed in terms of a layout parameter or a width parameter ?
- Can we characterize the set of graphs such that $\mathbf{m c l n s}(G) \leqslant k$?
- What is the complexity of deciding whether $\mathbf{m c l n s}(G) \leqslant k$?

Results (1) - Parameter equivalence

Theorem 1 [Adler, P., Thilikos (Grasta'17)]

$$
\operatorname{ctw}(G)=\operatorname{ctvs}(G)=\operatorname{mclns}(G)-1
$$

Results (1) - Parameter equivalence

Theorem 1 [Adler, P., Thilikos (Grasta'17)]

$$
\operatorname{ctw}(G)=\operatorname{ctvs}(G)=\operatorname{mclns}(G)-1
$$

In a connected tree decomposition (T, \mathcal{F}), there exists a root r such that for every node v, $G\left[\cup\left\{X_{u} \mid u \in r T v\right\}\right]$ is connected

In a connected path decomposition, r is an extremity of the path:

Results (1) - Parameter equivalence

Theorem 1 [Adler, P., Thilikos (Grasta'17)]

$$
\operatorname{ctw}(G)=\operatorname{ctvs}(G)=\boldsymbol{m c l n s}(G)-1
$$

Connected layout: for every i, there exists $j<i$ such that $\sigma_{j} \in N\left(\sigma_{i}\right)$

Results (1) - Parameter equivalence

Theorem 1 [Adler, P., Thilikos (Grasta'17)]

$$
\operatorname{ctw}(G)=\operatorname{ctvs}(G)=\operatorname{mclns}(G)-1
$$

Connected layout : for every i, there exists $j<i$ such that $\sigma_{j} \in N\left(\sigma_{i}\right)$

$$
\operatorname{ctvs}(G)=\min _{\sigma} \max _{i \in[n]}\left|S_{\sigma}^{(t)}(i)\right|, \text { with } \sigma \text { a connected layout }
$$

$$
S_{\sigma}^{(t)}(i)=\left\{x \in V \mid \sigma(x)<i \wedge \exists\left(x, \sigma_{i}^{i}\right) \text {-path with internal vertices in } \sigma_{>i}\right\}
$$

Results (1) - Parameter equivalence

Theorem 1 [Adler, P., Thilikos, grasta'17]

$$
\operatorname{ctw}(G)=\operatorname{ctvs}(G)=\operatorname{mclns}(G)-1
$$

Sketch of proof:

- $\boldsymbol{\operatorname { c t v s }}(G) \leqslant \boldsymbol{m c l n s}(G)-1$: search strategy $\mathcal{S}=\left\langle S_{1}, \ldots S_{r}\right\rangle \rightsquigarrow$ layout σ $\sigma=$ vertices ordered by the first date they are occupied by a cops.

Results (1) - Parameter equivalence

Theorem 1 [Adler, P., Thilikos, grasta'17]

$$
\operatorname{ctw}(G)=\operatorname{ctvs}(G)=\operatorname{mclns}(G)-1
$$

Sketch of proof:

- $\boldsymbol{\operatorname { c t v s }}(G) \leqslant \boldsymbol{m c l n s}(G)-1$: search strategy $\mathcal{S}=\left\langle S_{1}, \ldots S_{r}\right\rangle \rightsquigarrow$ layout σ $\sigma=$ vertices ordered by the first date they are occupied by a cops.
- $\boldsymbol{\operatorname { c t w }}(G) \leqslant \boldsymbol{\operatorname { c t v s }}(G)$: connected layout $\sigma \rightsquigarrow$ tree-decomposition (T, \mathcal{F})

$$
\mathcal{F}=\left\{S_{\sigma}^{(t)}(i) \cup\left\{\sigma_{i}\right\} \mid i \in[n]\right\}
$$

Results (1) - Parameter equivalence

Theorem 1 [Adler, P., Thilikos, grasta'17]

$$
\operatorname{ctw}(G)=\operatorname{ctvs}(G)=\operatorname{mclns}(G)-1
$$

Sketch of proof:

- $\boldsymbol{\operatorname { c t v s }}(G) \leqslant \boldsymbol{\operatorname { m c l n s }}(G)-1$: search strategy $\mathcal{S}=\left\langle S_{1}, \ldots S_{r}\right\rangle \rightsquigarrow$ layout σ $\sigma=$ vertices ordered by the first date they are occupied by a cops.
- $\boldsymbol{\operatorname { c t w }}(G) \leqslant \boldsymbol{\operatorname { c t v s }}(G)$: connected layout $\sigma \rightsquigarrow$ tree-decomposition (T, \mathcal{F})

$$
\mathcal{F}=\left\{S_{\sigma}^{(t)}(i) \cup\left\{\sigma_{i}\right\} \mid i \in[n]\right\}
$$

- $\operatorname{mclns}(G) \leqslant \operatorname{ctw}(G)+1$: connected tree-decomposition $(T, \mathcal{F}) \rightsquigarrow \sigma$ $\sigma=$ vertex ordering resulting from a traversal of (T, \mathcal{F}) starting at the root

Contraction obstruction sets

Observation. The mclns parameter is closed under edge-contraction.

Contraction obstruction sets

Observation. The mclns parameter is closed under edge-contraction.

We define

- $\mathcal{C}_{k}=\{G \mid \operatorname{mclns}(G) \leqslant k\}$
- obs $\left(\mathcal{C}_{k}\right)=\left\{G \mid \boldsymbol{\operatorname { m c l n s }}(G)>k\right.$ and $\left.\forall H, H \prec_{c} G, \operatorname{mclns}(H) \leqslant k\right\}$

Results (2) - Obstruction set for \mathcal{C}_{2}

Theorem 2 [Adler, P., Thilikos (GRasta'17)]
The set of obstructions for \mathcal{C}_{2} is $\operatorname{obs}\left(\mathcal{C}_{2}\right)=\left\{K_{4}\right\} \cup \mathcal{H}_{1} \cup \mathcal{H}_{2} \cup \mathcal{R}$ where

Results (2) - Obstruction set for \mathcal{C}_{2}

Theorem 2 [Adler, P., Thilikos (GRasta'17)]
The set of obstructions for \mathcal{C}_{2} is obs $\left(\mathcal{C}_{2}\right)=\left\{K_{4}\right\} \cup \mathcal{H}_{1} \cup \mathcal{H}_{2} \cup \mathcal{R}$ where

- graphs of $\mathcal{H}_{1} \cup \mathcal{H}_{2}$ are obtained by replacing thick subdivided edges by multiple subdivided edges;

Results (2) - Obstruction set for \mathcal{C}_{2}

Theorem 2 [Adler, P., Thilikos (Grasta'17)]
The set of obstructions for \mathcal{C}_{2} is $\boldsymbol{o b s}\left(\mathcal{C}_{2}\right)=\left\{K_{4}\right\} \cup \mathcal{H}_{1} \cup \mathcal{H}_{2} \cup \mathcal{R}$ where

- graphs of $\mathcal{H}_{1} \cup \mathcal{H}_{2}$ are obtained by replacing thick subdivided edges by multiple subdivided edges;
- graphs of \mathcal{R} are obtained by gluing two graphs of \mathcal{R} on their root vertex.

Obstruction set for \mathcal{C}_{2} - some lemmas

Lemma. Let $G \in \mathbf{o b s}\left(\mathcal{C}_{k}\right)$.

- If x is a cut-vertex, then $G-x$ contains two connected components;
- G contains at most one cut-vertex.

Obstruction set for \mathcal{C}_{2} - some lemmas

Lemma. Let $G \in \mathbf{o b s}\left(\mathcal{C}_{k}\right)$.

- If x is a cut-vertex, then $G-x$ contains two connected components;
- G contains at most one cut-vertex.

Sketch of proof: Suppose $G-x$ contains 3 connected components
As $G_{/ C_{1}}, G_{/ C_{2}}, G_{/ C_{3}}$ are contractions:

1. $\boldsymbol{\operatorname { c t v s }}\left(C_{1}, x\right) \leqslant k$ or $\boldsymbol{\operatorname { c t v s }}\left(C_{2}, x\right) \leqslant k$;
2. $\operatorname{ctvs}\left(C_{2}, x\right) \leqslant k$ or $\operatorname{ctvs}\left(C_{3}, x\right) \leqslant k$;
3. $\boldsymbol{\operatorname { c t v s }}\left(C_{3}, x\right) \leqslant k$ or $\boldsymbol{\operatorname { c t v s }}\left(C_{1}, x\right) \leqslant k$.
\Rightarrow there exists σ such that $\operatorname{ctvs}(G, \sigma) \leqslant k$: contradiction.

Obstruction set for \mathcal{C}_{2} - some lemmas

Lemma. Let $G \in \mathbf{o b s}\left(\mathcal{C}_{k}\right)$.

- If x is a cut-vertex, then $G-x$ contains two connected components;
- G contains at most one cut-vertex.

Twin-expansion Lemma.
Let x and y are two twin-vertices of degree 2 of a graph G and G^{+}be the graph obtained from G by adding an arbitrary number of twins of x and y. Then

$$
G \in \mathbf{o b s}\left(\mathcal{C}_{k}\right) \text { if and only if } G^{+} \in \mathbf{o b s}\left(\mathcal{C}_{k}\right) .
$$

Obstruction set for \mathcal{C}_{2} - some lemmas

Lemma. Let $G \in \mathbf{o b s}\left(\mathcal{C}_{k}\right)$.

- If x is a cut-vertex, then $G-x$ contains two connected components;
- G contains at most one cut-vertex.

Lemma. For every $k \geq 1$ and every connected graph $G, G \in \mathcal{O}_{k}$ is not a biconnected graph iff $G \in\{\mathbf{A} \oplus \mathbf{B} \mid \mathbf{A}, \mathbf{B} \in \mathcal{R}\}$.

Results (3) - Price of connectivity

Theorem [Derenioswki'12]
$\mathbf{p w}(G) \leqslant \mathbf{c p w}(G) \leqslant 2 \cdot \mathbf{p w}(G)+1$

Results (3) - Price of connectivity

Theorem [Derenioswki'12]
$\mathbf{p w}(G) \leqslant \mathbf{c p w}(G) \leqslant 2 \cdot \mathbf{p w}(G)+1$

Theorem [Adler, P., Thilikos, (Grasta 2017)]
$\forall n \in \mathbb{N}, \exists G_{n}$ such that $\mathbf{m} \operatorname{lns}\left(G_{n}\right)=3$ and $\mathbf{m c | n s}\left(G_{n}\right)=3+n$

	tw	ctw	\# of levels	\# of parallel edges in highest level
G_{1}	2	3	1	4
G_{2}	2	4	2	5
G_{3}	2	5	3	6
G_{4}	2	6	4	7

Results (3) - Price of connectivity

Theorem [Derenioswki'12]
$\mathbf{p w}(G) \leqslant \mathbf{c p w}(G) \leqslant 2 \cdot \mathbf{p w}(G)+1$

Theorem [Adler, P., Thilikos, (Grasta 2017)]
$\forall n \in \mathbb{N}, \exists G_{n}$ such that $\mathbf{m} \operatorname{Ins}\left(G_{n}\right)=3$ and $\mathbf{m c | n s}\left(G_{n}\right)=3+n$

$$
\text { and }\left|V\left(G_{n}\right)\right|=O\left(2^{n}\right) . \quad[\text { Fraigniaud, Nisee'08] }
$$

	tw	ctw	\# of levels	\# of parallel edges in highest level
G_{1}	2	3	1	4
G_{2}	2	4	2	5
G_{3}	2	5	3	6
G_{4}	2	6	4	7

Computing the connected treewidth

\rightsquigarrow A graph H is a contraction of a graph G, denoted $H \leqslant_{c} G$, if H is obtained from G by a series of contractions.
\rightsquigarrow A graph H is a minor of a graph G, denoted $H \leqslant_{m} G$, if H is obtained from a subgraph G^{\prime} of G by a series of contractions.

Computing the connected treewidth

\rightsquigarrow A graph H is a contraction of a graph G, denoted $H \leqslant_{c} G$, if H is obtained from G by a series of contractions.
\rightsquigarrow A graph H is a minor of a graph G, denoted $H \leqslant m G$, if H is obtained from a subgraph G^{\prime} of G by a series of contractions.

Theorem [Roberston \& Seymour'84-04, Bodlaender'96]
There is an algorithm that, given a graph G and an integer k, decide whether $\mathbf{t w}(G) \leqslant k$ in $f(k) \cdot n^{O(1)}$ steps.
$\rightsquigarrow \mathbf{t w}($.$) is a parameter closed under minor.$
\rightsquigarrow graphs are well-quasi-ordered by the minor relation.
\rightsquigarrow minor testing can be performed in FPT-time.

Computing the connected treewidth

\rightsquigarrow A graph H is a contraction of a graph G, denoted $H \leqslant_{c} G$, if H is obtained from G by a series of contractions.
\rightsquigarrow A graph H is a minor of a graph G, denoted $H \leqslant_{m} G$, if H is obtained from a subgraph G^{\prime} of G by a series of contractions.

Observation: \mathcal{C}_{k} is closed under contraction not under minor !

- Can we decide whether $\operatorname{ctw}(G) \leqslant k$ in time

$$
f(k) \cdot n^{O(1)}(\mathrm{FPT}) \text { or } n^{f(k)}(\mathrm{XP}) ?
$$

Theorem [Dereniowski, Osula, Rzazweski'18]
There is an algorithm that, given a graph G and an integer k, decides whether $\mathbf{c p w}(G) \leqslant k$ in $n^{O\left(k^{2}\right)}$ steps.

Computing the connected treewidth

\rightsquigarrow A graph H is a contraction of a graph G, denoted $H \leqslant_{c} G$, if H is obtained from G by a series of contractions.
\rightsquigarrow A graph H is a minor of a graph G, denoted $H \leqslant_{m} G$, if H is obtained from a subgraph G^{\prime} of G by a series of contractions.

Observation: \mathcal{C}_{k} is closed under contraction not under minor !

- Can we decide whether $\boldsymbol{\operatorname { c t w }}(G) \leqslant k$ in time

$$
f(k) \cdot n^{O(1)}(\mathrm{FPT}) \text { or } n^{f(k)}(\mathrm{XP}) ?
$$

Theorem [Dereniowski, Osula, Rzazweski'18]
There is an algorithm that, given a graph G and an integer k, decides whether $\mathbf{c p w}(G) \leqslant k$ in $n^{O\left(k^{2}\right)}$ steps.

Theorem [Kante, P., Thilikos (Grasta 2018)]
There is an algorithm that, given a graph G and an integer k, decides whether $\mathbf{c p w}(G) \leqslant k$ in $f(k) \cdot n^{O(1)}$ steps.

(Connected) path-decomposition and pathwidth

A path-decomposition of a graph G is a sequence $\mathcal{B}=\left[B_{1}, \ldots B_{r}\right]$ st.

- for every $i \in[r], B_{i} \subseteq V(G)$;
- for every $v \in V(G), \exists i, j \in[r]$ st. $\forall i \leqslant k \leqslant j, v \in B_{k}$.

The path-decomposition \mathcal{B} is connected if

- for every $i \in[r]$, the subgraph $G\left[\cup_{j \leqslant i} B_{j}\right]$ is connected.

(Connected) path-decomposition and pathwidth

A path-decomposition of a graph G is a sequence $\mathcal{B}=\left[B_{1}, \ldots B_{r}\right]$ st.

- for every $i \in[r], B_{i} \subseteq V(G)$;
- for every $v \in V(G), \exists i, j \in[r]$ st. $\forall i \leqslant k \leqslant j, v \in B_{k}$.

The path-decomposition \mathcal{B} is connected if

- for every $i \in[r]$, the subgraph $G\left[\cup_{j \leqslant i} B_{j}\right]$ is connected.

Theorem [Derenioswki'12] $\mathbf{p w}(G) \leqslant \mathbf{c p w}(G) \leqslant 2 \cdot \mathbf{p w}(G)+1$
\rightsquigarrow we may assume that

- $\mathbf{p w}(G) \leqslant 2 k+1$.
- $\mathcal{B}=\left[B_{1}, \ldots B_{r}\right]$ is a nice path-decomposition of with at most $2 k+1$.

DP algorithm - connected path-decomposition of rooted graphs

At step i, we aim at computing a connected path-decomposition $\mathcal{A}=\left[A_{1}, \ldots A_{q}\right]$ of the rooted graph $\left(G_{i}, B_{i}\right)$ where $G_{i}=G\left[\cup_{j \leqslant i} B_{j}\right]$.

Observation: The graph G_{i} may not be connected.

DP algorithm - connected path-decomposition of rooted graphs

At step i, we aim at computing a connected path-decomposition $\mathcal{A}=\left[A_{1}, \ldots A_{q}\right]$ of the rooted graph $\left(G_{i}, B_{i}\right)$ where $G_{i}=G\left[\cup_{j \leqslant i} B_{j}\right]$.

Observation: The graph G_{i} may not be connected.
A path-decomposition $\mathcal{A}_{i}=\left[A_{i}^{1}, \ldots A_{i}^{\ell}\right]$ of a rooted graph $\left(G_{i}, B_{i}\right)$ is connected if

- for every $j \in[\ell]$, every connected component of $G_{i}^{j}=G\left[\cup_{k \leqslant j} A_{i}^{j}\right]$ intersects B_{i}.

DP algorithm - encoding

$\mathcal{A}_{i}=\left[A_{i}^{1}, \ldots A_{i}^{j}, \ldots A_{i}^{\ell}\right]$ is a connected path-decomposition of $\left(G_{i}, B_{i}\right)$

DP algorithm - encoding

$\mathcal{A}_{i}=\left[A_{i}^{1}, \ldots A_{i}^{j}, \ldots A_{i}^{\ell}\right]$ is a connected path-decomposition of $\left(G_{i}, B_{i}\right)$

Each bag A_{i}^{j} is represented by a basic triple

$$
\tilde{t}_{i}^{j}=\left(\tilde{B}_{i}^{j}=B_{i} \cap A_{i}^{j}, \quad \tilde{C}_{i}^{j}, \quad z_{i}^{j}=\left|A_{i}^{j} \backslash B_{i}\right|\right)
$$

DP algorithm - encoding

$\mathcal{A}_{i}=\left[A_{i}^{1}, \ldots A_{i}^{j}, \ldots A_{i}^{\ell}\right]$ is a connected path-decomposition of $\left(G_{i}, B_{i}\right)$

Each bag A_{i}^{j} is represented by a basic triple

$$
\tilde{t}_{i}^{j}=\left(\tilde{B}_{i}^{j}=B_{i} \cap A_{i}^{j}, \quad \tilde{C}_{i}^{j}, \quad z_{i}^{j}=\left|A_{i}^{j} \backslash B_{i}\right|\right)
$$

where \tilde{C}_{i}^{j} is a partition of V_{i}^{j} such that every part X is the intersection of B_{i} with a connected component of G_{i}^{j}.

DP algorithm - encoding

Observation: The size of a basic triple is $O(\mathbf{p w}(G))$. But ℓ can be arbitrarily large.

DP algorithm - encoding

Observation: The size of a basic triple is $O(\mathrm{pw}(G))$. But ℓ can be arbitrarily large.
\rightsquigarrow we need to compress the sequence of basic triples $\left[\tilde{t}_{i}^{1}, \ldots, \tilde{t}_{i}^{\ell}\right]$.

DP algorithm - encoding

Observation: The size of a basic triple is $O(\mathbf{p w}(G))$. But ℓ can be arbitrarily large.
\rightsquigarrow we need to compress the sequence of basic triples $\left[\tilde{t}_{i}^{1}, \ldots, \tilde{t}_{i}^{\ell}\right]$.

\rightsquigarrow Each sequence Z_{i}^{j} of integers in $[1, k]$ will be represented by its characteristic sequence of size $O(k)$. [Bodlaender \& Kloks, 1996]

DP algorithm - encoding

Lemma [Representative sequence]
The size of the representative sequence for the path-decomposition $\left[A_{i}^{1}, \ldots A_{i}^{\ell}\right]$ of $\left(G_{i}, B_{i}\right)$ is $O\left(\mathbf{p w}(G)^{2}\right)$.

DP algorithm - encoding

Lemma [Representative sequence]
The size of the representative sequence for the path-decomposition $\left[A_{i}^{1}, \ldots A_{i}^{\ell}\right]$ of $\left(G_{i}, B_{i}\right)$ is $O\left(\operatorname{pw}(G)^{2}\right)$.

Lemma [Congruency]
If two boundaried graphs $\left(G_{1}, B\right)$ and $\left(G_{2}, B\right)$ have the same representative sequence, then for every boundaried graph (H, B)

$$
\mathbf{c p w}\left(\left(G_{1}, B\right) \oplus(H, B)\right) \leqslant k \Leftrightarrow \mathbf{c p w}\left(\left(G_{2}, B\right) \oplus(H, B)\right) \leqslant k
$$

DP algorithm

\rightsquigarrow Build the set of characteristic sequence for $\left(G_{i+1}, B_{i+1}\right)$ using the one of $\left(G_{i}, B_{i}\right)$

- Introduce node $B_{i+1}=B_{i} \cup\left\{v_{\text {insert }}\right\}$
- Forget node $B_{i}=B_{i+1} \cup\left\{v_{\text {forget }}\right\}$

DP algorithm

\rightsquigarrow Build the set of characteristic sequence for $\left(G_{i+1}, B_{i+1}\right)$ using the one of $\left(G_{i}, B_{i}\right)$

- Introduce node $B_{i+1}=B_{i} \cup\left\{v_{\text {insert }}\right\}$
- Forget node $B_{i}=B_{i+1} \cup\left\{v_{\text {forget }}\right\}$

Theorem [Kanté, P. Thilikos]
Given a graph G, we can decide if $\boldsymbol{c p w}(G) \leqslant k$ in time $2^{O\left(k^{2}\right)} \cdot n$.

Conclusion

Open problems

- What is the complexity of deciding whether $\operatorname{ctw}(G) \leqslant k$?
\rightsquigarrow Can it be solved in FPT time, or even XP time ?
\rightsquigarrow Or provide an hardness proof.
- What is the complexity of deciding whether $\operatorname{ctw}(G) \leqslant k$ when parameterized by $\operatorname{tw}(G)$? (assuming a positive answer to the previous question)
\rightsquigarrow Can it be solved in FPT time, or even XP time ?
\rightsquigarrow Or provide an hardness proof.

Conclusion

Open problems

- What is the complexity of deciding whether $\operatorname{ctw}(G) \leqslant k$?
\rightsquigarrow Can it be solved in FPT time, or even XP time ?
\rightsquigarrow Or provide an hardness proof.
- What is the complexity of deciding whether $\operatorname{ctw}(G) \leqslant k$ when parameterized by $\operatorname{tw}(G)$? (assuming a positive answer to the previous question)
\rightsquigarrow Can it be solved in FPT time, or even XP time ?
\leadsto Or provide an hardness proof.
Theorem [Mescoff, P., Thilikos (grasta 2018)]
If G is a series-parallel graph (i.e. $\operatorname{tw}(G)=2$),
then we can decide if $\operatorname{ctw}(G) \leqslant k$ in time $n^{O(1)}$.

Conclusion

Open problems

- What is the complexity of deciding whether $\operatorname{ctw}(G) \leqslant k$?
\rightsquigarrow Can it be solved in FPT time, or even XP time ?
\rightsquigarrow Or provide an hardness proof.
- What is the complexity of deciding whether $\operatorname{ctw}(G) \leqslant k$ when parameterized by $\operatorname{tw}(G)$? (assuming a positive answer to the previous question)
\rightsquigarrow Can it be solved in FPT time, or even XP time ?
\leadsto Or provide an hardness proof.
Theorem [Mescoff, P., Thilikos (grasta 2018)] If G is a series-parallel graph (i.e. $\operatorname{tw}(G)=2$), then we can decide if $\boldsymbol{\operatorname { c t w }}(G) \leqslant k$ in time $n^{O(1)}$.
- Identify problems that are hard with respect to $\mathbf{t w}($.$) but not with$ respect to $\mathbf{c t w}($.$) .$
- Describe the set of obstructions for $k \geqslant 3$.

Conclusion - connected treewidth

- [P. Fraigniaud, N. Nisse, LATIN'06]
\rightsquigarrow To each edge e_{T} of the tree-decomposition we associate two graphs $G_{1}^{e_{T}}$ and $G_{2}^{e_{T}}$ that need to be connected.
- [P. Jégou, C. Terrioux, Constraints'17], [Diestel, Combinatorica'17] \rightsquigarrow every bag of the tree decomposition (T, \mathcal{F}) induces a connected subgraph
- [IA, Constraints] : efficient heuristics based on the structure of the constraint network to fasten backtracking strategies;
- [Graph theory] : duality theorem, relation to graph hyperbolicity.

Thank to the organizers!

