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Abstract—Accurate evaluation of Ultra Low Power Systems on
Chip (ULP SoC) is a huge challenge for designers and developers.
In embedded applications, especially for Internet of Things end-
node devices, ULP SoCs have to interact with their environment,
but modelling a complete SoC and the peripheral components,
their interaction and low-power policies, can be very complex
in terms of developments and benchmarking. In order to cope
with this challenge, an approach is to implement the desired
system on FPGA with a monitoring infrastructure dedicated to
fast and accurate evaluation. This paper presents a reconfigurable
prototyping platform used for SoC architecture exploration and
real-time application evaluation.

Index Terms—FPGA, Internet of Things, sensor node, WSN

I. INTRODUCTION

Wireless Sensor Networks (WSN) are widely used in vari-
ous monitoring application requiring space deployment, thanks
to their flexibility and low implementation cost compared to
wired solutions [1]. However, many of these applications puts
high constraints to designers and developers in terms of per-
formance, energy consumption and security. These limitations
lead to explore new technologies and techniques to complete,
replace or improve current solutions and so at every levels.
Characterization of these new solutions and comparison with
current ones are necessary to evaluate the potential gains.
Moreover, they have to be done at application level to justify
the use of these innovations and the investments required
for their manufacturing and deployment. A typical sensor
node is composed of a controller surrounded by sensors and
actuators (both optional, depending on the application), at
least one energy source and communication modules (Fig. 1).
Because all these components work together, application level
evaluation has to take account of interactions between each
other and the contribution of each one. Moreover, it has to take
account of the possible network impact on the node behaviour
when bidirectional communication is used.

Many works present physical implementations with dedi-
cated architectures ([2]) and using new technologies and power
management techniques (example with non-volatile logic and
non-volatile RAM: [3]). If it is possible to integrate them in
an application for accurate evaluation of a solution, they are
prototypes mostly used for validation, not flexible enough for
design space exploration. Simulation is one of the solutions
for sensor node evaluation that is flexible and affordable to
perform this investigation at various level. However, there
is a trade-off between accuracy and simulation speed: the
more accurate we want to be, the slower the simulation will

be and so at every level, from the SoC evaluation [4] to
the radio model [5]. Moreover, some models are not exempt
from bugs and some others are not accurate enough because
of abstractions, simplifications and underestimated effects,
especially for wireless communications [6], [7].

Power emulation using FPGA acceleration [8] is a solution
between the flexibility of simulation tools and the accuracy
and speed of a physical SoC. With FPGA prototyping, every
signal of the implemented design is reachable like for RTL
simulation. Performance and power estimation can be done by
using monitoring tools with adapted models. As ULP SoCs
usually run at low frequencies, it is possible to perform an
evaluation with real-time execution, so the integration of an
FPGA-based system inside an already deployed WSN is also
possible for application level evaluation. Some other works
use the speed advantage of FPGAs to accelerate a design
evaluation. For example, Strober [9] is an evaluation tool that
use an FPGA as an accelerator. The design is implemented
on it, and random snapshots of the registers’ state are taken
during runtime. Each capture is transmitted to a computer that
will replay it on a RTL simulator, and a power estimation
flow is used to obtain the power consumption of the design
at the moment of the capture. This method helps to accelerate
the system evaluation, which is interesting for long runtime
applications. However, the snapshot system used by Strober
requires the transfer of the registers’ state at multiple time
during the execution. These interruptions do not allow real-
time evaluation since some external events may be missed
during this step. Unlike Strober, we propose another FPGA-
based solution allowing real-time execution and interactivity.
We present here the FlexNode, a reconfigurable prototyping
platform used for design space exploration and evaluation
of new technologies for ULP SoC. Section II introduces the
design evaluation flow based on FPGA prototyping. Section III
presents the prototype platform and the design evaluated in
Section V. Section IV focuses on the activity monitor, a tool
implemented in our design to capture the system’s activity.
Section V presents evaluations with two software benchmarks.
Finally, Section VI concludes this paper.

II. EVALUATION FLOW

The typical power estimation flow of a design consists
of a power model driven by the system activity and the
environment. This power model can be composed of individual
ones, obtained from low-level simulation (for example, with
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Fig. 1. Typical wireless node

Spice), from standard technology library cells given by man-
ufacturers through design kits, from physical implementation
measurements or from the literature. The system activity is
dependent on the application behaviour. This activity can be
obtained by multiple methods, depending on the nature of
the design. Here we focus on a microcontroller design, that
is, a synchronous digital circuits. For this kind of device the
activity is typically obtained from the RTL design thanks to
simulation tools (for example, ModelSim) and application test
benches. In the case of programmable devices, which is the
case with a microcontroller, part of a test bench come from a
software code compiled from a programming language such
as assembly or C. When external events are part of the test
bench, they are injected during the simulation. The design
activity recorded during this step is then provided to a power
estimation tool with the power model previously generated.

This typical power estimation flow presents inconveniences.
First, the simulation step is slow. Secondly, the external
events are scripted, so critical cases could be forgotten. Our
proposition is to modify this evaluation flow, replacing the
RTL simulation by FPGA prototyping for application level
analysis (Fig. 2). Power models are still generated like for
a standard evaluation flow, with low-level hardware simula-
tions, manufacturers’ design kits and literature. It has been
demonstrated that using Performance Monitoring Counters
(PMC) can be used for power consumption estimation [10],
[11]. Because, inside a bloc, some signals/events are more
correlated with the bloc’s power consumption than other ones,
it is possible to use a simplified power model based on these
events, which will be captured thanks to a dedicated activity
monitor. The target design is synthesised and implemented on
a FPGA board using FPGA development tools, with the fewest
changes possible (some IPs need to be replaced in order to run
on the FPGA, like memories or I/O buffers, but the behaviour
is unchanged). Now that the design is implemented on FPGA,
real peripherals can be attached to it to produce the external
events required by the test bench. The data captured by the
activity monitor are then used with the power model to produce
power estimation.

III. FLEXNODE

A. Prototyping platform

The FlexNode prototyping platform consists of an elec-
tronic board with a controller slot, peripheral slots, power

Fig. 2. Evaluation flow

Fig. 3. Prototyping platform

distribution and the necessary components to perform power
characterization of each element composing the node. The
peripheral slots can be used to connect sensors, actuators or
communication modules. It is possible to use this board for
the characterization of a peripheral, and so to obtain a power
model of it. This platform can be used for the evaluation
and comparison of multiple controller solutions, with different
node architectures and applications. This node can be directly
connected to existing WSN to perform evaluation while taking
account of communication and network hazards (Fig. 3).

If we use the Digilent CmodA7 as main controller of the
node, it is possible to exchange the FPGA board with other
kinds of controller, for evaluation and solution comparison.
The CmodA7 is a small, 48-pin DIP form factor board built
around a Xilinx Artix-7 FPGA. The CmodA7 35T use the
XC7A35T-1CPG236C, which has 20 800 LUTs, 41 600 Flip-
Flops, 225 kB of RAM and 1 MSPS ADC. We can explore
different architecture solutions by reproducing the desired
behaviour with the FPGA. With monitoring tools and power
models, it is also possible to make estimations of a designed
architecture’s power consumption for a defined application.



Fig. 4. Typical microcontroller architecture

B. Controller architecture

The specifications of an application determine which micro-
controller to use. Manufacturers generally offer a large variety
of microcontrollers to answer to the large number of actual em-
bedded applications and their specific constraints, as it is not
possible to design one microcontroller architecture that will
fit all applications. There are microcontrollers with different
packages, number of input/output pins, processor, operating
frequencies, peripherals, communication interfaces, analogic
modules, low-power modes, memory technologies, memory
capacities, and dedicated to different kind of applications
(automotive for example). However, there are some similarities
between all these different devices. Typical microcontrollers
include at least one processor, a non-volatile memory (usually
Flash for code instructions and read-only data), a volatile
memory (usually SRAM for application data), a power man-
agement unit, a clock management unit, input/output peripher-
als, communication modules (UART, SPI, I²C, USB, CAN. . . )
and timers. This typical architecture is depicted in Fig. 4. Some
microcontrollers also include different types of non-volatile
memories (ROM, EEPROM...) or have a multi-master system
(multi-processors, Direct Memory Access (DMA)...).

C. Architecture overview

Here is an example of a controller implementation we use
in this work. The following system is used in the experiments
described in Section V.

ARM Cortex-M are widely used in commercial low-power
microcontrollers. We use the ARM Cortex-M0 r1p0 in our
evaluations. This is a 3-stage 32-bit RISC processor that
implements the ARMv6-M ISA, with a maximum frequency of
50 MHz. It includes a single AHB-Lite interface, 32 interrupt
lines, 1 Non-Maskable Interrupt and a single-cycle multiplier.
Existing products using this processor can be used as hardware
references for performance evaluation comparison.

The architecture used in this work, depicted in Fig. 5, is
composed of the ARM Cortex-M0 r1p0 processor, a 2 kB

Fig. 5. Architecture example

Fig. 6. Monitor block diagram

ROM containing a bootloader code, a 128 kB RAM and a 16
kB RAM, peripherals for inputs/outputs control (44 I/O, PPS),
serial communication (4x UART, 2x SPI, 2x I²C) and timing
modules (4x 16-bit timers). All these elements are connected
together thank to a single-master AMBA3 AHB-Lite system.
A peripheral called Activity Monitor is used to report events
and will serve as basis for the design evaluation flow described
in Section II.

IV. ACTIVITY MONITOR

A. Hardware

The activity monitor is a set of counters used to capture
events. Its architecture is based on the principle of PMU, as
described in Fig. 6.

In the work we present here, the activity monitor is designed
to capture the following events related to the memory:

• Number of cycles
• Number of executed instructions
• Number of instruction fetches
• Number of RAM read accesses
• Number of RAM write accesses
The activity monitor is connected to the AHB-Lite bus

system, and can be accessed by the processor as a peripheral.
By connecting it to the main bus, it is possible to start, stop



Fig. 7. Basic system initialization and run sequence

and reset the counters by software using a control register.
Activity monitoring can be performed for a selected portion
of code without adding external control hardware.

For cycle counting, a simple counter, always enabled, is
used. The instruction counter is incremented each time the
program counter (PC) changes. The RAM counters are incre-
mented when a valid RAM access is detected.

The size of the counters depends on the desired use. In this
work, we use 32-bit counters, which will overflow after 86
seconds at 50 MHz (ARM gives 50 MHz as the maximum
frequency supported by the Cortex-M0 processor).

B. Software interface

The software manages the activity monitor by writing into
its control registers. At system reset, the application code
initializes the platform, runs code and performs monitoring
by using the activity monitor. Then, it retrieves the monitor’s
counter values and can share them or process the results. Fig. 7
shows the basic sequence to perform activity monitoring on a
portion of code.

Depending on the implementation and software optimiza-
tions, the processor needs to execute some instructions to stop
the monitor, which are captured by the counters. If stopping
the monitor may add few extra cycles, instructions and RAM
accesses to these counters, the overhead can be measured
and is most of the time negligible (5 cycles, 3 instructions
including 1 load and 1 store).

V. EXPERIMENTS

A. FPGA resources

Synthesis is done using Vivado 2018.2 Synthesis tool, with
Vivado default pre-set. Implementation is also done using
Vivado 2018.2 Implementation tool, still with Vivado default
pre-set. The Table I shows the resources utilization of the
whole implementation, of the Cortex-M0 and of the Activity
Monitor.

B. Application benchmarks

Two application benchmarks are considered in this work.

TABLE I
RESOURCES UTILIZATION

Resources Used Available Ratio
Total utilization

Slice LUTs 5915 20800 28.44%
Slice registers 3432 41600 8.25%
Block RAM Tile 36.5 50 73.00%

Cortex-M0
Slice LUTs 3118 20800 14.99%
Slice registers 901 41600 2.17%
Block RAM Tile 0 50 0.00%

Activity Monitor
Slice LUTs 305 20800 1.47%
Slice registers 372 41600 0.89%
Block RAM Tile 0 50 0.00%

Fig. 8. Application behaviour

The first one is the ULPMark from EEMBC [12]. CorePro-
file (ULPMark-CP) is an application designed to reproduce a
periodic behaviour with active and sleep phases (see Fig. 8).
The active phase of the CoreProfile is composed of math func-
tions (linear approximation, filtering), conversion tables, string
search, table copy, sorting, data permutations and output tog-
gling. This application code is used to evaluate and compare
the energy efficiency of Ultra-Low-Power microcontrollers for
Internet of Things applications

The second benchmark used is based on a software code
of a commercial agriculture application. The system’s drivers
are replaced to match the architecture implemented inside the
FPGA, but the main algorithm is keep the same. Depicted by
Fig. 8, this benchmark is composed of active phases separated
by sleep periods. At each wake-up, the node performs sensing,
processes the data and then sends them by radio before
returning to sleep phase. We use the ADT7420, a digital
temperature sensor with I²C interface, which is the one used by
Digilent on the PmodTMP2. The radio module is the SX1272
from SEMTECH, a LoRa transceiver with SPI interface. The
SX1272 is configured in LoRa mode with a spreading factor
of 12. The schematic of this node is presented in Fig. 9.



Fig. 9. Schematic of the sensor node

C. CoreProfile

The activity monitor starts at wake-up, and stops before
calling SLEEP instruction. One active phase of the CoreProfile
benchmark runs 49767 clock cycles with 32773 executed
instructions. Memory operations for each benchmark (one
active phase) are detailed in Table II. Total reads, which is the
number of data read operations, does not include Instruction
fetches. One instruction fetch corresponds to a 32-bit read
operation. Idle cycles is the number of cycles without read
nor write request to the memory.

TABLE II
MEMORY OPERATIONS FOR ONE COREPROFILE ACTIVE PHASE (49767

CLOCK CYCLES, 32773 EXECUTED INSTRUCTIONS)

Memory location Code Data
Idle cycles 29532 38280
Instruction fetches 18693 0
Total reads 1542 8151
Total writes 0 3336

8-bit writes 0 1000
16-bit writes 0 516
32-bit writes 0 1820

D. Agriculture application

Like for CoreProfile benchmark, the activity monitor starts
at wake-up, and stops before calling SLEEP instruction. One
active phase of the agriculture application runs 9936204 cycles
with 2173 executed instructions. The memory operations are
detailed in Table III. The high amount of cycles is due to wait
states during communication through SPI and I2C, and during
the radio emission. Some time is spent into communication:
SPI currently works at 3 MHz and I²C bus works at 400 kHz
whereas CPU frequency is 12 MHz. However, the main loose
of time is due to the LoRa communication, which takes more
than 800 ms to send one message. Regarding the application
specifications in term of energy consumption, radio range and
amount of data to transmit, it is possible to optimize the radio

Fig. 10. Power consumption of the LoRa module when transmitting a message

communication to save energy and so expand the battery life.
Some optimisation can be done by forcing sleep mode of
unused components.

TABLE III
MEMORY OPERATIONS FOR ONE ACTIVE PHASE OF THE AGRICULTURE

APPLICATION (9936204 CYCLES, 2173 EXECUTED INSTRUCTIONS)

Memory location Code Data
Idle cycles 9935295 9935786
Instruction fetches 783 0
Total reads 126 192
Total writes 0 226

8-bit writes 0 55
16-bit writes 0 3
32-bit writes 0 168

Over the 9936204 clock cycles, the processor is active
(that is, executing instructions) only for 2173 cycles. It is put
in sleep mode the rest of the time. The temperature value
is fetched in 270 µs and the sensor as an average power
consumption of 0.77 mW. In comparison, the LoRa module
consumes 27.5 mW during 827 ms (Fig. 10). These results
clearly show that for this sensor node, potential gains in term
of energy saving will be on the radio communication.

VI. CONCLUSION

We have presented in this paper the FlexNode, an FPGA-
based prototyping platform for fast, real-time, accurate and
low cost evaluation and prototyping of ULP SoCs for sensor
nodes. This platform can be easily interfaced with sensors,
actuators and other peripherals for application level analysis.
The activity monitor we presented can be exploited for archi-
tecture optimization and exploration purposes, and is easily
customizable and adaptable as wished. The flexibility provided
by the FPGA also makes possible to capture events that could
not be available in a software model, with an accuracy similar



to RTL simulations but with real time execution. Moreover,
the FlexNode can be integrated into existing WSN to evaluate
network hazards effects for large-scale deployment.
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