S. Im, N. Srivastava, K. Banerjee, and K. E. Goodson, Scaling analysis of multilevel interconnect temperatures for high-performance ics, IEEE Transactions on Electron Devices, vol.52, issue.12, pp.2710-2719, 2005.

W. Steinhögl, G. Schindler, G. Steinlesberger, M. Traving, and M. Engelhardt, Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller, Journal of Applied Physics, vol.97, issue.2, p.23706, 2005.

A. Todri-sanial, J. Dijon, and A. Maffucci, Carbon Nanotubes for Interconnects, pp.978-981, 2017.
URL : https://hal.archives-ouvertes.fr/lirmm-01444977

A. Todri-sanial, R. Ramos, H. Okuno, J. Dijon, A. Dhavamani et al., A survey of carbon nanotube interconnects for energy efficient integrated circuits, IEEE Circuits and Systems Magazine, vol.17, issue.2, pp.47-62, 2017.
URL : https://hal.archives-ouvertes.fr/lirmm-01795757

, international roadmap for devices and systems, 2017.

G. F. Close, S. Yasuda, B. Paul, S. Fujita, and H. P. Wong, A 1 ghz integrated circuit with carbon nanotube interconnects and silicon transistors, Nano Letters, vol.8, issue.2, pp.706-709, 2008.

S. Frank, P. Poncharal, Z. Wang, and W. A. De-heer, Carbon nanotube quantum resistors, science, vol.280, issue.5370, pp.1744-1746, 1998.

C. T. White and T. N. Todorov, Carbon nanotubes as long ballistic conductors, Nature, vol.393, issue.6682, p.240, 1998.

P. L. Mceuen, M. S. Fuhrer, and H. Park, Single-walled carbon nanotube electronics, IEEE transactions on nanotechnology, vol.99, issue.1, pp.78-85, 2002.

N. Srivastava and K. Banerjee, Performance analysis of carbon nanotube interconnects for vlsi applications, IEEE/ACM International conference on Computer-aided design, pp.383-390, 2005.

H. Li, W. Yin, K. Banerjee, and J. Mao, Circuit modeling and performance analysis of multi-walled carbon nanotube interconnects, IEEE Transactions on electron devices, vol.55, issue.6, pp.1328-1337, 2008.

B. Padya, D. Kalita, P. Jain, G. Padmanabham, M. Ravi et al., Self-organized growth of bamboo-like carbon nanotube arrays for field emission properties, Applied Nanoscience, vol.2, issue.3, pp.253-259, 2012.

P. G. Collins, K. Bradley, M. Ishigami, and D. A. Zettl, Extreme oxygen sensitivity of electronic properties of carbon nanotubes, science, vol.287, issue.5459, pp.1801-1804, 2000.

J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng et al., Nanotube molecular wires as chemical sensors, science, vol.287, issue.5453, pp.622-625, 2000.

V. Skakalova, A. Kaiser, U. Dettlaff-weglikowska, K. Hrncarikova, and S. Roth, Effect of chemical treatment on electrical conductivity, infrared absorption, and raman spectra of single-walled carbon nanotubes, The Journal of Physical Chemistry B, vol.109, issue.15, pp.7174-7181, 2005.

B. B. Parekh, G. Fanchini, G. Eda, and M. Chhowalla, Improved conductivity of transparent single-wall carbon nanotube thin films via stable postdeposition functionalization, Applied Physics Letters, vol.90, issue.12, p.121913, 2007.

L. Yu, C. Shearer, and J. Shapter, Recent development of carbon nanotube transparent conductive films, Chemical reviews, vol.116, issue.22, pp.13-413, 2016.

Y. Zhao, J. Wei, R. Vajtai, P. M. Ajayan, and E. V. Barrera, Iodine doped carbon nanotube cables exceeding specific electrical conductivity of metals, Scientific reports, vol.1, p.83, 2011.

S. Esconjauregui, L. D'arsié, Y. Guo, J. Yang, H. Sugime et al., Efficient transfer doping of carbon nanotube forests by moo3, ACS nano, vol.9, issue.10, pp.10-422, 2015.

J. Dijon, R. Ramos, A. Fournier, H. Le-poche, H. Fournier et al., Record resistivity of in-situ grown horizontal carbon nanotube interconnect, Technical proceedings of the 2014 NSTI nanotechnology conference and expo, vol.3, pp.978-979, 2014.

J. Liang and R. Ramos, A physics-based investigation of ptsalt doped carbon nanotubes for local interconnects, IEEE International Electron Devices Meeting (IEDM
URL : https://hal.archives-ouvertes.fr/lirmm-01795777

, Atomistix toolkit version 2016.4, quantumwise a/s

H. Li, W. Lu, J. Li, X. Bai, and C. Gu, Multichannel ballistic transport in multiwall carbon nanotubes, Physical review letters, vol.95, issue.8, p.86601, 2005.

R. Chen, J. Liang, J. Lee, V. P. Georgiev, R. Ramos et al., Variability study of mwcnt local interconnects considering defects and contact resistancespart ii: Impact of charge transfer doping, IEEE Transactions on Electron Devices, issue.99, pp.1-8, 2018.

N. Chiodarelli, O. Richard, H. Bender, M. Heyns, S. De-gendt et al., Correlation between number of walls and diameter in multiwall carbon nanotubes grown by chemical vapor deposition, Carbon, vol.50, issue.5, pp.1748-1752, 2012.

P. J. Burke, Luttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes, IEEE Transactions on Nanotechnology, vol.99, issue.3, pp.129-144, 2002.

P. G. Collins, Defects and disorder in carbon nanotubes, pp.156-184, 2009.

M. Zhang and J. Li, Carbon nanotube in different shapes, Materials today, vol.12, issue.6, pp.70176-70178, 2009.

M. Bockrath, W. Liang, D. Bozovic, J. H. Hafner, C. M. Lieber et al., Resonant electron scattering by defects in single-walled carbon nanotubes, Science, vol.291, issue.5502, pp.283-285, 2001.

C. Chen, W. Zhang, L. Wei, Y. Su, N. Hu et al., Investigation on nanotube-metal contacts under different contact types, Materials Letters, vol.145, pp.95-98, 2015.

A. D. Franklin and Z. Chen, Length scaling of carbon nanotube transistors, Nature nanotechnology, vol.5, issue.12, p.858, 2010.

M. H. Van-der-veen, Y. Barbarin, Y. Kashiwagi, and Z. Tokei, Electron mean-free path for cnt in vertical interconnects approaches cu, pp.181-184, 2014.

N. C. Wang, S. Sinha, B. Cline, C. D. English, G. Yeric et al., Replacing copper interconnects with graphene at a 7-nm node, pp.1-3, 2017.