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Abstract

We obtain the following results about the avoidance of ternary formulas. Up
to renaming of the letters, the only infinite ternary words avoiding the formula
ABCAB.ABCBA.ACB.BAC (resp. ABCA.BCAB.BCB.CBA) are the ones that
have the same set of recurrent factors as the fixed point of 0 7→ 012, 1 7→ 02,
2 7→ 1. The formula ABAC.BACA.ABCA is avoided by polynomially many binary
words (w.r.t. to their lengths) and there exist arbitrarily many infinite binary
words with different sets of recurrent factors that avoid it. If every variable of a
ternary formula appears at least twice in the same fragment, then the formula is
3-avoidable. The pattern ABACADABCA is unavoidable for the class of C4-minor-
free graphs with maximum degree 3. This disproves a conjecture of Grytczuk. The
formula ABCA.ACBA, or equivalently the palindromic pattern ABCADACBA,
has avoidability index 4.

Mathematics Subject Classifications: 68R15

1 Introduction

A pattern p is a non-empty finite word over an alphabet ∆ = {A,B,C, . . .} of capital
letters called variables. An occurrence of p in a word w is a non-erasing morphism h :
∆∗ → Σ∗ such that h(p) is a factor of w. The avoidability index λ(p) of a pattern p is the
size of the smallest alphabet Σ such that there exists an infinite word over Σ containing
no occurrence of p.

A variable that appears only once in a pattern is said to be isolated. Following Cas-
saigne [4], we associate a pattern p with the formula f obtained by replacing every isolated
variable in p by a dot. For example, the pattern AABCABBDBBAA gives the formula

∗The authors were partially supported by the ANR project CoCoGro (ANR-16-CE40-0005).

the electronic journal of combinatorics 26(1) (2019), #P1.12 1



AAB.ABB.BBAA. The factors that are separated by dots are called fragments. So
AAB, ABB, and BBAA are the fragments of AAB.ABB.BBAA.

An occurrence of a formula f in a word w is a non-erasing morphism h : ∆∗ → Σ∗ such
that the h-image of every fragment of f is a factor of w. As for patterns, the avoidability
index λ(f) of a formula f is the size of the smallest alphabet allowing the existence of an
infinite word containing no occurrence of f . Clearly, if a formula f is associated with a
pattern p, every word avoiding f also avoids p, so λ(p) 6 λ(f). Recall that an infinite
word is recurrent if every finite factor appears infinitely many times and that any infinite
factorial language contains a recurrent word (see Proposition 5.1.13 of [8] for instance).
Thus, if there exists an infinite word over Σ avoiding p, then there exists an infinite
recurrent word over Σ avoiding p. This recurrent word avoiding p also avoids f , so that
λ(p) = λ(f). Without loss of generality, a formula is such that no variable is isolated and
no fragment is a factor of another fragment. We say that a formula f is divisible by a
formula f ′ if f does not avoid f ′, that is, there is a non-erasing morphism h such that the
image of any fragment of f ′ under h is a factor of a fragment of f . If f is divisible by f ′,
then every word avoiding f ′ also avoids f . Let Σk = {0, 1, . . . , k − 1} denote the k-letter
alphabet. We denote by Σn

k the kn words of length n over Σk.
A formula is binary if it has at most 2 variables. We have recently determined the

avoidability index of every binary formula [14]. This exhaustive study led to the discovery
of some binary formulas that are avoided by only a few binary words. Determining the
avoidability index of every ternary formula would be a huge task. However, we have
identified some interesting ternary formulas and this paper describes their properties.

We say that two infinite words are equivalent if they have the same set of factors. Let
b3 be the fixed point of 0 7→ 012, 1 7→ 02, 2 7→ 1. A famous result of Thue [2, 15, 16] can
be stated as follows:

Theorem 1. [2, 15, 16] Every recurrent ternary word avoiding AA, 010, and 212 is
equivalent to b3.

In Section 2, we obtain a similar result for b3 by forbidding one ternary formula but
without forbidding explicit factors in Σ∗3. In Section 3, we describe the set of binary words
avoiding ABACA.ABCA and ABAC.BACA.ABCA. We show that these formulas are
avoided by polynomially many binary words (w.r.t. to their lengths) and that there exist
infinitely many recurrent binary words with different sets of recurrent factors that avoid
them. In the terminology of [14], these formulas are not essentially avoided by a finite set
of morphic words. In Section 4, we consider nice formulas. A formula f is nice if for every
variable X of f , there exists a fragment of f that contains X at least twice. This notion
generalizes to formulas the notion of a doubled pattern (that is, a pattern that contains
every variable at least twice). Every doubled pattern is 3-avoidable [13]. We show that
every ternary nice formula is 3-avoidable. In Section 5, we show that ABACADABCA is
a 2-avoidable pattern that is unavoidable on graphs with maximum degree 3. In Section 6,
we show that there exists a palindromic pattern with index 4.

A preliminary version of this paper, without the results in Sections 4 and 6, has been
presented at WORDS 2017.
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2 Formulas closely related to b3

For every letter c ∈ Σ3, σc : Σ∗3 7→ Σ∗3 is the morphism such that σc(a) = b, σc(b) = a, and
σc(c) = c with {a, b, c} = Σ3. So σc is the morphism that fixes c and exchanges the two
other letters.

We consider the following formulas.

• fb = ABCAB.ABCBA.ACB.BAC

• f1 = ABCA.BCAB.BCB.CBA

• f2 = ABCAB.BCB.AC

• f3 = ABCA.BCAB.ACB.BCB

• f4 = ABCA.BCAB.BCB.AC.BA

Notice that fb is divisible by f1, f2, f3, f4.

Theorem 2. Let f ∈ {fb, f1, f2, f3, f4}. Every ternary recurrent word avoiding f is
equivalent to b3, σ0(b3), or σ2(b3).

By considering divisibility, we can deduce that Theorem 2 holds for 72 ternary formu-
las. Since b3, σ0(b3), and σ2(b3) are equivalent to their reverses, Theorem 2 also holds for
the 72 reverse ternary formulas.

Proof. Using Cassaigne’s algorithm [3], we have checked that b3 avoids fi, for 1 6 i 6 4.
By symmetry, σ0(b3) and σ2(b3) also avoid fi.

Let w be a ternary recurrent word w avoiding fb. Assume towards a contradiction that
w contains a square uu. Then there exists a non-empty word v such that uuvuu is a factor
of w. Thus, w contains an occurrence of fb given by the morphism A 7→ u,B 7→ u,C 7→ v.
This contradiction shows that w is square-free.

An occurrence h of a ternary formula over Σ3 is said to be basic if {h(A), h(B), h(C)} =
Σ3. As already noticed by Thue [2], no infinite ternary word avoids squares and 012. So,
every infinite ternary square-free word contains the 6 factors obtained by letter permu-
tation of 012. Thus, an infinite ternary square-free word contains a basic occurrence of
fb if and only if it contains the same basic occurrence of ABCAB.ABCBA. Therefore,
w contains no basic occurrence of ABCAB.ABCBA. A computer check shows that the
longest ternary words avoiding fb, squares, 021020120, 102101201, and 210212012 have
length 159. So we assume without loss of generality that w contains 021020120.

Assume towards a contradiction that w contains 010. Since w is square-free, w contains
20102. Moreover, w contains the factor 20120 of 021020120. So w contains the basic
occurrence A 7→ 2, B 7→ 0, C 7→ 1 of ABCAB.ABCBA. This contradiction shows that
w avoids 010.

Assume towards a contradiction that w contains 212. Since w is square-free, w contains
02120. Moreover, w contains the factor 02102 of 021020120. So w contains the basic
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occurrence A 7→ 0, B 7→ 2, C 7→ 1 of ABCAB.ABCBA. This contradiction shows that
w avoids 212.

Since w avoids squares, 010, and 212, Theorem 1 implies that w is equivalent to b3.
By symmetry, every ternary recurrent word avoiding fb is equivalent to b3, σ0(b3), or
σ2(b3).

3 Avoidability of ABACA.ABCA and ABAC.BACA.ABCA

Following the terminology in [14], we say that a finite set of infinite words M essentially
avoids a formula f if every infinite word over Σλ(f) avoiding f has the same set of recurrent
factors as a word in M. Let us list all the formulas (up to symetries) from the literature
that are known to be essentially avoided by a finite set of words.

• Five binary formulas are known to be essentially avoided by a finite set of binary
morphic words [14].

• {b3, σ0(b3), σ2(b3)} essentially avoids the ternary formulas in Section 2.

• {b4, b′4, b′′4} essentially avoids AB.AC.BA.CA.CB [1], where b4 is the fixed point of
0 7→ 01, 1 7→ 21, 2 7→ 03, 3 7→ 23, b′4 is obtained from b4 by exchanging 0 and 1,
and b′′4 is obtained from b4 by exchanging 0 and 3.

The formulas listed above are also the only ones known to be avoided by polynomi-
ally many words (w.r.t. to their lengths). In this section, we show that the formulas
ABACA.ABCA and ABAC.BACA.ABCA behave differently: they are avoided by poly-
nomially many binary words but they are not essentially avoided by a finite set of morphic
words.

We consider the morphisms ma : 0 7→ 001, 1 7→ 101 and mb : 0 7→ 010, 1 7→ 110.
That is, ma(x) = x01 and mb(x) = x10 for every x ∈ Σ2. We construct the set S of
binary words as follows:

• 0 ∈ S.

• If v ∈ S, then ma(v) ∈ S and mb(v) ∈ S.

• If v ∈ S and v′ is a factor of v, then v′ ∈ S.

Theorem 3. Let f ∈ {ABACA.ABCA,ABAC.BACA.ABCA}. The set of words u
such that u is recurrent in an infinite binary word avoiding f is S.

Proof. Let R be the set of words u such that u is recurrent in an infinite binary word
avoiding ABACA.ABCA. Let R′ be the set of words u such that u is recurrent in an
infinite binary word avoiding ABAC.BACA.ABCA. An occurrence of ABACA.ABCA
is also an occurrence of ABAC.BACA.ABCA, so that R′ ⊆ R.

Let us show that R ⊆ S. We study the small factors of a recurrent binary word w
avoiding ABACA.ABCA. Notice that w avoid the pattern ABAAA since it contains the
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occurrence A 7→ A, B 7→ B, C 7→ A of ABACA.ABCA. Since w contains recurrent
factors only, w also avoids AAA.

A computer check shows that the longest binary words avoiding ABACA.ABCA,
AAA, 1001101001, and 0110010110 have length 53. So we assume without loss of gen-
erality that w contains 1001101001.

Assume towards a contradiction that w contains 1100. Since w avoidsAAA, w contains
011001. Then w contains the occurrence A 7→ 01, B 7→ 1, C 7→ 0 of ABACA.ABCA.
This contradiction shows that w avoids 1100.

Since w contains 0110, the occurrence A 7→ 0, B 7→ 1, C 7→ 1 of ABACA.ABCA
shows that w avoids 01010. Similarly, w contains 1001 and avoids 10101.

Assume towards a contradiction that w contains 0101. Since w avoids 01010 and
10101, w contains 001011. Moreover, w avoids AAA, so w contains 10010110. Then w
contains the occurrence A 7→ 10, B 7→ 0, C 7→ 1 of ABACA.ABCA. This contradiction
shows that w avoids 0101.

So w avoids every factor in {000, 111, 0101, 1100}. Thus, it is not difficult to check
that if we extend any factor 01 in w to three letters to the right, we get either 01001 or
01101, that is, 01x01 with x ∈ Σ2. This implies that w is the ma-image of some binary
word.

Obviously, the image by a non-erasing morphism of a word containing a formula also
contains the formula. Thus, the pre-image of w by ma also avoids ABACA.ABCA. This
shows that R ⊆ S.

Let us show that S ⊆ R′, that is, every word in S avoids ABAC.BACA.ABCA.
Assume towards a contradiction that a finite word w ∈ S avoids ABAC.BACA.ABCA
and that ma(w) contains an occurrence h of ABAC.BACA.ABCA.

If we write w = w0w1w2w3 . . ., then the word ma(w) = w001w101w201w301 . . . is such
that:

• Every factor 00 occurs at position 0 (mod 3).

• Every factor 01 occurs at position 1 (mod 3).

• Every factor 11 occurs at position 2 (mod 3).

• Every factor 10 occurs at position 0 or 2 (mod 3), depending on whether the factor
1wi0 is 100 or 110.

We say that a factor s is gentle if either |s| > 3 or s ∈ {00, 01, 11}. By the previous
remarks, all the occurrences of the same gentle factor have the same position modulo 3.

First, we consider the case when h(A) is gentle. This implies that the distance between
two occurrences of h(A) is 0 (mod 3). Because of the repetitions h(ABA), h(ACA), and
h(ABCA) are contained in the formula, we deduce that

• |h(AB)| = |h(A)|+ |h(B)| ≡ 0 (mod 3).

• |h(AC)| = |h(A)|+ |h(C)| ≡ 0 (mod 3).
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• |h(ABC)| = |h(A)|+ |h(B) + |h(C)| ≡ 0 (mod 3).

This gives |h(A)| ≡ |h(B)| ≡ |h(C)| ≡ 0 (mod 3). Clearly, such an occurrence of the
formula in ma(w) implies an occurrence of the formula in w, which is a contradiction.

Now we consider the case when h(B) is gentle. If h(CA) is also gentle, then the factors
h(BACA) and h(BCA) imply that |h(A)| ≡ 0 (mod 3). Thus, h(A) is gentle and the first
case applies. If h(CA) is not gentle, then h(CA) = 10, that is, h(C) = 1 and h(A) = 0.
Thus, ma(w) contains both h(BAC) = h(B)01 and h(BCA) = h(B)10. Since h(B) is
gentle, this implies that 01 and 10 have the same position modulo 3, which is impossible.

The case when h(C) is gentle is symmetrical. If h(AB) is gentle, then h(ABAC) and
h(ABC) imply that |h(A)| ≡ 0 (mod 3). If h(AB) is not gentle, then h(A) = 1 and
h(B) = 0. Thus, ma(w) contains both h(ABC) = 01h(C) and h(BAC) = 10h(C). Since
h(C) is gentle, this implies that 01 and 01 have the same position modulo 3, which is
impossible.

Finally, if h(A), h(B), and h(C) are not gentle, then the length of the three fragments
of the formula is 2|h(A)| + |h(B)| + |h(C)| 6 8. So it suffices to consider the factors of
length at most 8 in S to check that no such occurrence exists.

This shows that S ⊆ R′. Since R′ ⊆ R ⊆ S ⊆ R′, we obtain R′ = R = S, which
proves Theorem 3.

Corollary 4. Neither ABACA.ABCA nor ABAC.BACA.ABCA is essentially avoided
by a finite set of morphic words.

Proof. Let c(n) = |S ∩ Σn
2 | denote the number of words of length n in S. By construction

of S,

c(n) = 2
∑
06i62

c
(⌈

n−i
3

⌉)
for every n > 8.

Thus c(n) = Θ
(
nln 6/ ln 3

)
= Θ

(
n1+ln 2/ ln 3

)
. Devyatov [7] has recently shown that the

factor complexity (i.e. the number of factors of length n) of a morphic word is either
O (n ln(n)) or Θ

(
n1+1/k

)
for some integer k > 1. Thus, S cannot be the union of the

factors of a finite number of morphic words.

4 Ternary nice formulas

Clark [5] introduced the notion of n-avoidance basis for formulas, which is the smallest
set of formulas with the following property: for every i 6 n, every avoidable formula with
i variables is divisible by at least one formula with at most i variables in the n-avoidance
basis. See [5, 9] for more discussions about the n-avoidance basis. The avoidability index
of every formula in the 3-avoidance basis has been determined:

• AA (λ = 3 [15])

• ABA.BAB (λ = 3 [4])

• ABCA.BCAB.CABC (λ = 3 [9])
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• ABCBA.CBABC (λ = 2 [9])

• ABCA.CABC.BCB (λ = 3 [9])

• ABCA.BCAB.CBC (λ = 3, reverse of ABCA.CABC.BCB)

• AB.AC.BA.CA.CB (λ = 4 [1])

Recall that a formula f is nice if for every variable X of f , there exists a fragment
of f that contains X at least twice. Every formula in the 3-avoidance basis except
AB.AC.BA.CA.CB is both nice and 3-avoidable. This raised the question in [9] whether
every nice formula is 3-avoidable, which would generalize the 3-avoidability of doubled
patterns. In this section, we answer this question positively for ternary formulas.

Theorem 5. Every nice formula with at most 3 variables is 3-avoidable.

We say that a nice formula is minimal if it is not divisible by another nice formula
with at most the same number of variables. The following property of every minimal nice
formula is easy to derive. If a variable V appears as a prefix of a fragment φ, then

• V is also a suffix of φ,

• φ contains exactly two occurrences of V ,

• V is neither a prefix nor a suffix of any fragment other than φ,

• Every fragment other than φ contains at most one occurrence of V .

Thus, if f is a minimal nice formula with n > 2 variables, then f has at most n
fragments. Moreover, every fragment has length at most 2 + 2n−1 − 1 = 2n−1 + 1, since
otherwise it would contain a doubled pattern as a factor.

This implies an algorithm to list the minimal nice formulas with at most n variables.
The table below lists the formulas that need to be shown 3-avoidable, that is, the minimal
nice formulas with at most 3 variables that do not belong to the 3-avoidance basis. Also,
if two distinct formulas are the reverse of each other, then only one of them appears in
the table and the given avoiding word avoids both formulas. Some of these formulas are
avoided by b3 and the proof uses Cassaigne’s algorithm [3] as in Section 2. The other
formulas are each avoided by the image by a uniform morphism of either any infinite(

5
4

+
)

-free word w5 over Σ5 or any infinite
(

7
5

+
)

-free word w4 over Σ4. We refer to [12, 13]

for details about the technique to prove avoidance with morphic images of (α+)-free words.
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Formula Closed under Avoidability Avoiding
reversal? exponent word

ABA.BCB.CAC yes 1.5 b3
ABCA.BCAB.CBAC no 1.333333333 b3
ABCA.BAB.CAC yes 1.414213562 gv(w4)
ABCA.BAB.CBC no 1.430159709 gw(w4)
ABCA.BAB.CBAC no 1.381966011 gx(w5)
ABCBA.CABC no 1.361103081 gy(w5)
ABCBA.CAC yes 1.396608253 gz(w5)

gv
0→ 01220,
1→ 01110,
2→ 00212,
3→ 00112.

gw
0→ 02111,
1→ 01121,
2→ 00222,
3→ 00122.

gx
0→ 021110,
1→ 012221,
2→ 011120,
3→ 002211,
4→ 001122.

gy
0→ 022,
1→ 021,
2→ 012,
3→ 011,
4→ 000.

gz
0→ 120201,
1→ 100002,
2→ 022221,
3→ 011112,
4→ 001122.

5 A counter-example to a conjecture of Grytczuk

Grytczuk [10] considered the notion of pattern avoidance on graphs. This generalizes
the definition of nonrepetitive coloring, which corresponds to the pattern AA. Given a
pattern p and a graph G, the avoidability index λ(p,G) is the smallest number of colors
needed to color the vertices of G such that every path in G induces a word avoiding p.

We think that the natural framework is that of directed graphs with no loops and no
multiple arcs, but such that opposite arcs (i.e., digons) are allowed. An oriented path in

a directed graph
−→
G is a sequence of distinct vertices v1, v2, . . . , vk such that

−→
G contains

all the arcs −−−→vivi+1 such that 1 6 i 6 k − 1.

A pattern occurs in a vertex-colored directed graph
−→
G if the sequence of colors on a

directed path of
−→
G induces an occurrence of the pattern. Informally, the orientation of

the path corresponds to the reading direction. We define λ
(
p,
−→
G
)

as the smallest number

of colors such that there exists a vertex coloring avoiding p. This way, λ(p) = λ
(
p,
−→
P
)

,

where
−→
P is the infinite oriented path with vertices vi and arcs −−−→vivi+1, for every i > 0.

Thus, an undirected graph corresponds to a symmetric directed graph: for every pair
of distinct vertices u and v, either there exists no arc between u and v, or there exist both
the arcs −→uv and −→vu. Let P denote the infinite undirected path. We prefer the framework

of directed graphs because, even though λ
(
AA,
−→
P
)

= λ(AA,P ) = 3, there exist patterns

such that λ
(
p,
−→
P
)
< λ(p, P ). For example, λ(ABCACB) = λ

(
ABCACB,

−→
P
)

= 2 [12],

whereas λ(ABCACB,P ) = 3 since a computer check shows that the longest binary words
avoiding both ABCACB and its reverse ABCBAC have length 23. The equivalence

between avoiding a pattern and its corresponding formula holds for
−→
P but does not

the electronic journal of combinatorics 26(1) (2019), #P1.12 8



generalize to other directed graphs. So we do not try to define a notion of avoidance for
formulas on graphs or directed graphs.

A conjecture of Grytczuk [10] says that for every avoidable pattern p, there exists
a function g such that λ(p,G) 6 g(∆(G)), where G is an undirected graph and ∆(G)
denotes its maximum degree. Grytczuk [10] obtained that his conjecture holds for doubled
patterns.

As a counterexample, we consider the pattern ABACADABCA which is 2-avoidable
by the result in Section 3. Of course, ABACADABCA is not doubled because of the
isolated variable D. Let us show that ABACADABCA is unavoidable on the infinite
oriented graph

−→
G with vertices vi and arcs −−−→vivi+1 and −−−−−−−→v100iv100i+2, for every i > 0. Notice

that
−→
G is obtained from

−→
P by adding the arcs −−−−−−−→v100iv100i+2. The constant 100 in the

construction is arbitrary and can be replaced by any constant.

Suppose that
−→
G is colored with k colors. Consider the factors in the subgraph

−→
P

induced by the paths from v300ik+1 to v300ik+200k+1, for every i > 0. Since these factors
have bounded length, the same factor appears on two disjoint such paths pl and pr (such
that pl is on the left of pr). Notice that pl contains 2k + 1 vertices with index ≡ 1
(mod 100). By the pigeon-hole principle, pl contains three such vertices with the same
color a. Thus, pl contains an occurrence of ABACA such that A 7→ a on vertices with

index ≡ 1 (mod 100). The same is true for pr. In
−→
G , the occurrences of ABACA in pl

and pr imply an occurrence of ABACADABCA since we can skip an occurrence of the
variable A in pl thanks to some arc of the form −−−−−−−→v100jv100j+2.

This shows that ABACADABCA is unavoidable on
−→
G . So Grytczuk’s conjecture is

disproved since
−→
G has maximum degree 3. It is also a counterexample to Conjecture 6

in [6] which states that every avoidable pattern is avoidable on the infinite graph with
vertices {v0, v1, . . .} and the arcs −−−→vivi+1 and −−−→vivi+2 for every i > 0.

6 A palindrome with index 4

Mikhailova [11] considered the largest avoidability index P of an avoidable pattern that is
a palindrome. She proved that P 6 16. An obvious lower bound is P > λ(AA) = 3. For a
better lower bound, we consider the palindromic pattern ABCADACBA or, equivalently,
the ternary formula f = ABCA.ACBA. Since it is a ternary formula, f is 4-avoidable.
More precisely, f is not nice because of the variable C, so the only formula in the 3-
avoidance basis that divides f is AB.AC.BA.CA.CB, which is avoided by b4.

Let us show that f is not 3-avoidable. Let w be a ternary recurrent word avoiding f .
Assume towards a contradiction that w contains a square uu. Then there exists a non-
empty word v such that uuvuu is a factor of w. Thus, w contains an occurrence of f given
by the morphism A 7→ u,B 7→ u,C 7→ v. This contradiction shows that w is square-free.
A computer check shows that no infinite ternary square-free word avoids f . This holds
even if we forbid only squares and every occurrence h of f such that |h(A)| = 1 and
|h(B)|+ |h(C)| 6 5. Thus, P > λ(ABCADACBA) = λ(ABCA.ACBA) = 4.
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