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Fuzzy-Temporal Gradual Patterns

Dickson Owuor
LIRMM Univ Montpellier, CNRS
Montpellier, France
doowuor @lirmm.fr

Abstract—Gradual patterns allow for retrieval of correlations
between attributes through rules such as “the more the exercise,
the less the stress”. However, it may be the case that there is a lag
between changes in some attributes and their impact on others
ones, current methods do not take this into account. In this paper,
we extend existing methods to handle these situations in order to
retrieve patterns such as: ‘“the more the exercise increases, the
more the stress decreases 1 month later”. We also extend our
gradual rules to include fuzzy temporal constraints such as “the
more the exercise increases, the more the stress decreases almost
1 month later”. For this kinds of patterns, we designed three
algorithms that were implemented and tested on real data.

Index Terms—fuzzy membership, gradual patterns, temporal
tendencies

I. INTRODUCTION

Mining gradual patterns enables the testing of data crossings
that can detect relevant correlations between the attributes of
a data-set. One of the methods for extracting gradual patterns
is to apply gradual rules in the form of “the more/less Al, ...,
the more/less An” that correlates n attributes Al, A2, ..., An.
For instance the “the greater the number of exercise activities,
the lower the level of stress” [IL], [2l]. Example 1 is an instance
applying gradual rules in the data-set shown in Table

Example 1. we consider a data-set containing the types of
physical exercises that a person performed together with the
stress levels reading for different dates. It is important to note
that the values in Table [I| are arbitrary. Each tuple in the data-
set correspond to a daily record of a person.

Correlation between exercise and stress levels

id date activity stress

(day/month) (exercise) levels
rl 01/06 swim 4
r2 02/06 jog,swim 2
3 03/06 walk,jog 3
r4 04/06 walk 5
s 05/06 walk,jog,swim 1

Table I: Sample data-set D,

A key point to realize is that deriving the support for a
gradual pattern involves at least two or more records because
the patterns are built on the increasing or decreasing nature of
an attribute. In the case of pattern {(exercise,?), (stress,|
)} sup=3, the support is 3 because we can order records <rl,
12, 15> successively to match the gradual pattern.
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Because of the complexity deriving support, the efficiency
of gradual patterns relies on the antimonocity property which
states that no frequent pattern containing n attributes can be
built over a pattern containing a subset of these n attributes
[3]]. For example if the pattern “the greater the A, the greater
B” is not relevant, then it is impossible for the pattern “the
greater the A, the greater the B, the greater the C” to be
relevant.

In comparison to association rules, extracting gradual pat-
terns allows for discovery of more meaningful correlations
between attributes of a data-set beyond finding frequent related
item-sets. However, it may be the case that the value an
attribute causes a ripple effect on other attribute with respect
to time. For instance in Table[l} it may be the case that exercise
causes stress to reduce a few days (or weeks) later and not on
the same day.

In order to for us to extract a pattern that correlates attributes
with a time lag, we need to extend the existing methods for
extracting gradual patterns in order to capture the temporal
aspects of such data-sets.

II. PRELIMINARY DEFINITIONS

We recall below some definitions taken from literature that
describe gradual pattern mining.

Definition 1. Gradual Item. A gradual item is a pair (i,v)
where i is an item and v is a variation v € {1,]}. 1 stands
for an increasing variation while | stands for a decreasing
variation.

Example 2. (exercise,T) is a gradual item that can be
interpreted as “the more the exercise”.

Definition 2. Gradual Pattern (also known as Gradual item-
set). A gradual pattern is a set of gradual items, denoted by
GP = {(i1,v1), -, (in,vn)}. The set of all gradual patterns
that can be defined by GP.

Example 3. {(jogging,?), (walking,1), (stress,])} is a
gradual item-set that can be interpreted as “the more the
jogging, the more the walking, the less the stress”.

It is important to note that gradual pattern mining aims at
extracting the frequent patterns, in contrast to the classical
data mining framework that aims to extract frequent item-sets
through techniques such as association rules.



Definition 3. Given a threshold of a minimum support o, a
gradual pattern GP is said to be frequent if 5,p,(GP) > 0.

There is a need to describe what frequent means in the
context of gradual patterns. The principle idea that the support
is based on, is that of counting the proportion of tuples in
a data-set that respects the gradual pattern [1]. For instance
in Table [l we see that for records rl and r2 the number
of exercise activities increase while the stress level decrease
simultaneously, since ‘swim’ < ‘jog, swim’ and 4 > 2.

One support proposed in [4] is based on the length of the
longest path of exercises that can be built on this pattern. While
[S] and [6] consider the number of tuples that are concordant
by exploiting the Kendall’s 7 rank correlation.

Definition 4. The support of gradual pattern GP is given
by the following formula: s,,,(GP) = %, where L
is the set of rows that when ordered, match the gradual pattern

GP and R is the set of all rows in the data-set D.

In order to determine the longest path, a precedence graph
is built for the pattern considered as shown in Figure [T} The
precedence graph shown can also be represented in a binary
matrix, which allows to optimize the computations. Let us
consider the graph for the pattern {(exercise, 1), (stress,|)},
there is one long path in this instance: < r1, r2, r5 >. Therefore
the support is equal to %
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Figure 1: Precedence graph for {(exercise, 1), (stress,})}

Similarly, the technique of gradual ranking based on
Kendall’s 7 can be applied on the data-set in Table|l} in order
to compute concordant pairs for the pattern {(exzercise,?
), (stress,|)}. The possible number of ordering pairs is given
by the formula: 2=1) where n is the number of tuples.

In our case, the possible ordering pairs are 10: [r1,r2],
[r1,r3], [r1,r4], [r1,r5], [r2,r3], [r2,r4], [r2.15], [r3,r4], [r3,r5] and
[r4,r5]. Using these orderings, the concordant pairs for pat-
tern {(exercise,?), (stress,|)} are 8: [r1,r2], [r1,r2], [r1,15],
[r2,r5], [r3,r5], [r4,r2], [r4,r3] and [r4,r5]. Therefore, the support
is 1%

III. RELATED WORK

According to [7]], temporal data mining concerns the anal-
ysis of events ordered by one or more dimensions of time.
Further, they distinguished the field by two main areas: one
involves discovering similar patterns within the same or among
different time sequences; the other involves discovering causal
relationships among temporally-oriented events.

The first area, also known as trend analysis has been a field
of active research for a long time. Srikant and Agrawal are
among the first contributors, they tried to solve the problem
of ‘absence of time constraint’ in an algorithm that they had
introduced earlier ‘AprioriAll’ [8]], for discovering sequential
patterns 9], [10].

For instance, a shop does not care if someone bought
‘bread’, followed by ‘bread and jam’ three weeks later;
they may want to specify that a customer should support a
sequential pattern only if adjacent elements occur within a
specified interval, say 3 days. (So for a customer to support
this pattern, the customer should have bought ‘bread and jam’
within 3 days of buying ‘bread’).

So, [9]] proposed a new algorithm known as ‘Generalized
Sequential Pattern’ (GSP) that allowed users to set a time gap
that was used to generate candidates for the frequent pattern.
GSP was 5 times faster than AprioriAll since it counted less
candidates. However, [11]] proposed a more efficient algorithm
than GSP known as ‘Graph for Time Constraint’ (GTC). GTC
handled time constraints prior to and separately from the
counting step of the data sequence, thus making it perform
faster.

The latter area, discovering causal relationships can easily
be conceptualized by a gradual pattern that correlates the
causal effect among gradual items. As an illustration, [12]]
proposed algorithms that could mine evolution patterns and
gradual trends such as: An increasing number of purchases of
Jjam during a short period is frequently followed by a purchase
of bream a few days later. The overall principle entailed
converting a quantitative database into a variation database,
which was converted into a membership degree database (also
known as the trend database) which is mined for evolution
patterns.

Similarly, [13]] proposed an a novel algorithm called, GSTD
that combined two concepts: gradual patterns and spatio-
temporal pattern to extract gradual-spatio-temporal patterns.
This algorithm can be used to mine frequent moving objects
such as: the more time is going on, the more objects are
moving from east to west. They achieved this by defining
a gradual-spatio-temporal rule that provided notations for
direction (positive or negative) and time duration and object
set variation.

IV. PROPOSITION

In our work, we aim at extending gradual patterns in
such a way that they can include the temporal correlations
between attributes. For instance “the more the exercise in-
creases, the more the stress decreases 2 weeks later” denoted
as: {(exercise, 1), (stress,|)+=2weeks}- We also intend to
extend our gradual rules to include fuzzy constraints such as
“the more the exercise increases, the more the stress decreases
almost 2 weeks later” denoted as: {(exercise, 1), (stress,|

)+§2weeks }



Definition 5. Time Lag. A time lag is the amount of time
that elapses before or after the changes in a one gradual
item affects the changes in another gradual item. Time lag
is denoted as aft where « is an operator o € {+,—} and
‘+’ implies after/later and ‘—’ implies before/earlier; B is an
operator
B € {=,~} and ‘=" implies equal to and ‘>’ implies almost;
t is the value of time lag and is given by the formula:
t = Medialprem, where M is a medial of sequence m,
and m = (¢;11 — CiT14k); -y (CiTn — CiTnik) Where c is the
column for time/date, r is a single tuple/row, i = 1,2,...,1,
n=12,...,.N,and k=1,2,.... K.

Remark 1. In definition 5, we consider the medial value
of the sequence as the approximation for time lag when the
largest proportion of members are split around it.

Definition 6. Temporal Gradual Item. A temporal gradual
item is made up of two parts: a gradual item and a time lag,
denoted by (i,v)ap: where (i,v) is a gradual item and a3t
is a time lag where B € {=} so that ‘+ =t implies a time
lag of t later and, ‘— =t implies a time lag of t earlier.

Definition 7. Fuzzy-Temporal Gradual Item. A fuzzy-
temporal gradual item is a temporal gradual item with a fuzzy
time lag a5t where 8 € {~} so that ‘+ ~ t’ implies a time
lag of almost t later and, ‘— ~ t’ implies a time lag of almost
t earlier.

Example 4. (stress,|)—aweeks 1S a temporal gradual item
interpreted as the “the less the stress 2 weeks later”.

Example 5. (exercise,T)_~1week is a fuzzy-temporal grad-
ual item that can be interpreted as the “the more the exercise
almost 1 week earlier”.

Definition 8. Temporal Gradual Pattern. A temporal grad-
ual pattern consists of one reference gradual item-set together
with a set of temporal gradual items, denoted by TGP =

{1, v1), (G2, v2)aptss s (in Un)apt,, |-

Definition 9. Fuzzy-Temporal Gradual Pattern. A fuzzy-
temporal gradual pattern consists of one reference gradual
item and a set of fuzzy-temporal gradual items, denoted by
TGPf = {(ila Ul)? (in UQ)Oéﬁtza [X3) (inv Uﬂ)aﬁtn}'

Remark 2. In order for definitions 7 and 8 to be relevant,
there must be one reference gradual item. A reference gradual
item is the anchor gradual item selected by a user and, from
which other temporal gradual items in the item-set are varied
with respect to time.

Example 6. {(jogging, 1), (walking, 1) - —1week, (stress, |
)~2weeks } 18 a fuzzy temporal gradual item-set that can be
interpreted as “the more the jogging, the more the walking 1
week earlier, the less the stress almost 2 weeks later”.

In the first place, our goal is to transform data-sets into a
temporal format that allows for extraction of gradual patterns
with the corresponding time information. We intend to achieve
this by modifying an existing gradual pattern mining.

However, it is very critical to highlight here that tempo-
ral correlations between attributes introduce more possible
combinations of gradual patterns within a given data-set.
For instance, the notation {(A, 1)1 /——time, (B,{)4+/——time}
introduces 4 possible pattern combinations if attributes A and
B are used as reference item-sets interchangeably and time is

held to a constant value.

V. DATA TRANSFORMATION

In this section, we will demonstrate how a typical data-set
can be transformed into a temporal format in order to allow
for extraction of temporal gradual patterns. The raw (or non-
transformed) data in the data-set should be chronologically
ordered with respect to time.

Definition 10. The representativity of a temporal gradual
pattern TGP is given by the formula: ,.,(TGP) = %,
where N is the set of all rows in the transformed data-set

D’ and R is the set of all rows in the original data-set D.

Definition 11. Given a threshold of minimum representativ-
ity 6, a temporal gradual pattern TGP is said to be relevant
if rep(TGP) > 6.

Remark 3. Definition 10 and 11 also hold for fuzzy-temporal
gradual patterns which is denoted as TG'Py. In Section
we propose an algorithm for transforming data based on the
representativity threshold set by the user.

Example 7. we consider a data-set containing the number of
hours a person spent performing physical exercises together
with the stress levels after irregular number of days. It is
important to note that the values in Table [lI| are arbitrary.

id date exercise  stress

(day/month)  (hours) levels
rl 01/06 1 4
r2 04/06 2 2
r3 05/06 3 3
r4 10/06 1 2
r5 12/06 3 3

Table II: A sample data-set Ds

A. The Data Transformation Algorithm

In this section, we propose an algorithm calculates the num-
ber of possible transformations based on the representativity
threshold, and extracts the temporal gradual patterns for each
transformation. 7'— GRAAN K is the proposed algorithm for
mining temporal gradual patterns, see Section

The main goals of the algorithm are: to calculate the fime
lags for each transformation, and to generate a new data-set
table that includes columns that have been restructured (step-
wise) while excluding the Time column. The time lags in the
Time column are separately processed by a fuzzy modality, see
Section [V1l



Algorithm 1: Mining temporal gradual patterns

: D — data set, re f C olummn — reference column, min Swp— minimum support,
min Rep— minimum representativity
Output: F'— set of Frequent Gradual Patterns, 77 — corresponding approximated time lag

Input

1 sMax <—maximum number of steps w.r.t min Rep;
2 rMax < totalRows (D);
3 fors < 1to sMax do
4 for i + Oto (rMaaz — s) do
5 d +— Cell[i+sl - Cell[i]: /+ time is in the 1lst column */
6 tempRow.append (refColummn);
7 cMax + totalCols (R(’“’[i])2
8 for j < 1tocMax do

; /+ excluding 1st column +/
9 if Columny) is same as re f Column then
10 | skip;
11 else
12 tempRow.append (Cell[j] ;4% /* Cellcop][row] i» D

*/
13 end if
14 end for
’
15 D .append (tempRow);
16 Ty -append (d);
17 end for
’

18 F, Ty + T-GRAANK (D , Ty, minSup):
19 display F, Ty
20 end for

’
21 return D , Ty

Let us transform Table [II] (using Algorithm [T) so that we
compare the hours of exercise in r, with the corresponding
stress level in 7,11, as illustrated in Table

id ‘ days lag exercise | stress
(Tn - Tn+1) (Tn) (rn+1)

tl 3 1 2

t2 1 2 3

3 5 3 2

t4 2 1 3

t5 - - -

Table III: Transformed data-set Dj: transformation: 7,11

In the first place, we determine the longest path that match
gradual pattern {(exercise, 1), (stress,|)} for transformation
Tn+1. Using the path <t2, t3>, the support is %. It is important
to note that the rows that do not have values for stress level
are removed from the computation.

We observe that transformation r,,; represents 4 out of
5 tuples. On the negative side, there is a decrease in the
representativity of the data as we progress our transformations
to larger time gaps. However, representativity has a less
significant effect on large data-sets because of their great
number of tuples.

Next, we determine the time lag between transformation 7,
and transformation r,4; and at this point we observe that the
‘day lags’ in Table [lII| vary. In order to approximate the most
relevant time lag, we apply fuzzy logic which is described in
the section that follows.

VI. BUILDING THE FuzZy MODALITY

First thing to remember is that there exists a great number of
membership modalities that one can build functions from (for
instance triangular, trapezoidal, Gaussian among others), and
it is very difficult to determine which one will fit the data-set
perfectly. However, it is enough to pick modalities that span
the whole universe and remain scalable [2]], [14], [15], [IL6].

We recommend a triangular membership function (described
in Figure 2), because we are interested in approximating the
value medial time lag. Such that when this value is taken as
the center membership function, the function should include
a majority of the members without extending its boundaries.

membership degree

R e

ifel <z < a2

ife2 < = < 22
0 Otherwise

x1 x2 x3

the values must satisfy the condition: z1 < 22 < z3

Figure 2: A triangular membership function

The TRUE center of a distribution is established when the
largest proportion of members are closely spaced around it
[L7]. In light of this, we initially can take the median as the
center and slide the membership function left or right until
we find the value that represents the TRUE center of the
distribution, see proposed Algorithm

Algorithm 2: Slide, re-calculate membership function

Input : selT's— selected time-lags, allTs — all time-lags, min Swup— minimum support
Output: g2— approximated medial value, sup— support

1 gl < quartile (1, allTs), q2 < quartile (2, allTs), and g3 < quartile (3, allTs);
2 boundaries < append (q1, q2, q3);

3 left, right <+ False, slice < (0.1 % q2), and sup <« 0;

4 while sup < minpSup do

5 memberships < fuzzTrinf (selT's, boundaries);

6 sup <— countAverage (memberships);

7 if sup >= minSup then

8 | return g2, sup;

9 else

10 ifleft == False then

1 center + minimum (selT's);

12 if center <= g2 then

13 ql < (ql — slice), q2 « (q2 — slice), g3 < (g3 — slice):
14 boundaries < append (q1, 2, 3);

15 else

16 | left + True;

17 end if

18 else if right == False then

19 center <+ maximum (selT s);

20 if center >= g2 then

21 ql + (g1 + slice), q2 + (g2 + slice), g3 + (g3 + slice);
22 boundaries < append (g1, q2, ¢3);

23 else

24 | right « True;

25 end if

26 else

27 |  return False, False;

28 end if

29 end if

30 end while

In our modality, the triangular membership function will
initially have the median time lag as the center and minimum
and maximum time lags as the extremes so that it spans the
entire universe of data-set. Figure [3] shows the membership
function for the transformed data-set Dj in Table

‘membership

Figure 3: Membership function for 7,1

When the membership function in Figure [3]is applied to the
data-set in Table [[ll we generate Table [V] We observe that
the membership degree support of ‘~ 2.5’ for path <t2, t3>
is g, in this case the support is less than half.



id ‘ ~ 2.5days | exercise | stress
(e ) (rn ) (Tn+ 1 )

tl 1 1 2

2 0 2 3

t3 0 3 2

t4 5 1 3

t5 - - -

Table IV: Transformed data-set D%

As can be seen, the problem may be that the membership
function in Figure [3] is either be too narrow or is pivoted on a
wrong median value. We shy away from widening the function
since increases the size of the universe. We recommend sliding
the median then re-calculating the membership degrees.

For instance, we slide the membership function for trans-
formation 7,41 to the left as shown in Figure [} We observe
that the support for ‘~ 1.5” for path <t2, t3> is .

i
I
I
0.5 |
I
|
I

days )
d

1 2 3 4 5

Figure 4: Modified membership function for 7,4

The fuzzy-temporal gradual pattern {(exercise,?
), (stress, |)+~1.5days } has a support of 2 a representativity
of 2 and the time lag: ‘~ 1.5’ has a support of 1.

VII. EXPERIMENTS

This section seeks to show that our proposed approach
allows to discover new temporal knowledge in gradual patterns
that previously could not be discovered using existing gradual
pattern mining techniques.

A. The Proposed T-GRAANK Approach

The proposed algorithm known as T-GRAANK (denotes
Temporal GRAANK) modifies the GRAANK algorithm pro-
posed by [5] in order to extend its functionality to mining
gradual patterns with temporal tendencies. More precisely, the
algorithm works as illustrated in Algorithm 3}

It is important to mention that since the proposed algorithm
is based on GRAANK, it inherits all the good that comes with
it. For instance, the algorithm benefits from the computational
efficiency and low computational complexity since it is also
based on binary matrices.

On one hand, the proposed algorithm seems to be more
computationally intensive than the original GRAANK al-
gorithm proposed by [5] because it executes 4 additional
functions. On the other hand, the increase in computations
can be justified by the fact that new knowledge about time lag
is extracted which was not possible previously.

Algorithm 3: The T — GRAANK algorithm

’
Input : D — transformed data-set, T'y — time differences, mn Swup— minimum support
Result: F"— set of Frequent gradual patterns, T’y — corresponding approximated time lags

’
foreach Artribute A in D do

1
2 G < build concordance matrices AT and A¥;
3 end foreach
’
4 G <+ APRIORIgen (G); /* generates frequent gradual item-set candidates =/
’
5 foreach Candidate C' in G do
6 sup < calculateSupport (C);
7 if sup < minSwup then
8 | discard C;
9 else
10 POSindices ¢ concordantPositions (Cpgips):
11 t'””elags <+ timeDifferences (POS;pdicesr Ld)
12 boundaries « buildTriMenbership (Tq):
13 tlag 4+ fuzzyFunc (timelags,bound,ariesx
14 F.append (C);
15 Ty .append (t g g):
16 end if
17 end foreach
18 return F, T';

B. Short Performance Analysis

The runtime performances of our algorithm for temporal
gradual pattern mining shown in Figure [5] were obtained from
the execution of dummy data containing 50 tuples and 2
gradual items. The runtime values were generated by a python
code that recorded the start-time and stop-time.

Representativity vs Time Support vs Time

T T 1,250 T T
X
\
1,000 (— — 1,000 |— \\ —
. 800|- - - 8oo|- ~ .
g £ s
E 600 (— — E 600 (— —
£ g \
400 — — 400 (— \ —
200 |- . 200 - S
o ! \ | | o ! ! \ \
20 40 60 80 100 0.2 0.4 0.6 0.8 1

Representativity & (%)
(a) (b)
Figure 5: (a) Temporal gradual pattern mining runtime accord-

ing to minRep, (b) temporal gradual pattern mining runtime
according to minSup

Minimum Support o

In Figure [5] (a), as the representativity threshold is de-
creased, the number of data-set transformations (or number
transformed data-sets) to be mined increase hence the increase
in runtime. In Figure [5] (b), as minimum support threshold is
decreased, the number of possible gradual patterns increase
which in turn increases the number of scans in the data-set.

C. Results for Temporal Gradual Patterns

In order to test the efficacy of the T — GRAANK, we
performed two separate tasks related to weather and compared
their results. The aim was to confirm the conclusions of [18]],
that the NDVI (Normalized Difference Vegetation Index) is a
sensitive indicator of the inter-annual variability of rainfall in
the East African region.

In the first task, we retrieved the historical rainfall dis-
tribution amounts for 4 towns in Kenya (October-December
2013 and 2015) from Kenya Meteorological Service weather



report in [19], [20], shown in Table E Here, we selected
two observable patterns: {(MAK,|),(WAJ, 1)} +=2years
and {(ELD,?1),(NRB,T)}+=2yecars, see also http://www.
meteo.go.ke/index.php?q=archive,

town amount
2013 2015
MAK 104 75
WAJ 49 69
ELD 174 200
NRB 44 223

Table V: Rainfall distribution in Kenya

In the second task, we first generated NDVI data (for year
2013 and 2015) from LANDSAT 7 satellite images over Kenya
through a novel tool known as data-cube. The data-cube is a
great tool for the expanded use of satellite data in an Open
Source framework, see also https://www.opendatacube.org|

Lastly in the second task, we applied our approach on the
NDVI data and we obtained the results shown in Table [VI] It
can be seen that the patterns built by our algorithm match the
selected patterns in Table [V} except, the rime lag is slightly
less for pattern {WAJ+, MAK—}.

Ref. Item Pattern : Sup Time : Sup Rep
NRB {ELD+,NRB+} : 0.666 ~ +1.999yrs : 1.0 50%
{WAJ+,NRB+, MAK+} : 0.666 ~ +1.999yrs : 1.0 50%
WAJ {ELD+,WAJ+} : 0.600 ~ +1.223yrs : 0.5 62.5%
{WAJ+, MAK—} : 0.600 ~ +1.747yrs : 0.5 62.5%

Table VI: NDVI Temporal Pattern Results

We note here that it is difficult to get clear satellite images
after short intervals due to cloud coverage; therefore, the data-
cube tool runs an algorithm that re-creates the image based
on previous images. It may be for this reason that the time
approximation for pattern {WAJ+, M AK—} is slightly less
than 2 years.

VIII. CONCLUSION

In this paper, we propose an approach for extending the
existing GRAANK algorithm in order to extract fuzzy tem-
poral gradual patterns. This approach integrates two main
areas: fuzzy logic and mining gradual patterns (with temporal
tendencies). We provide formal definitions for temporal and
fuzzy temporal patterns based on existing formal definitions
for gradual patterns. Further, we demonstrate a step-wise
transformation of the data-set and recommend a technique for
approximating the medial time lag using a fuzzy membership
function.

Apart from extensive experimentation, including both com-
putation efficiency and semantics (relevance of the extracted
patterns), further works include scaling and optimizing the
technique in order to allow for multi-level temporal gradual
pattern extraction. Moreover, we aim at improving the fuzzy
modality in order to increase its accuracy in perfectly fitting
the distribution of time lags.
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