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Abstract—A property graph in a NoSQL graph database en-
gine provides an efficient way to manage the data and knowledge
due to its native graph-structure storage. A property graph is
a labeled directed graph having nodes and relationships with
a set of attributes or properties in form of (key:value) pairs.
In this work, we aim at mining such graphs in order to extract
frequent gradual patterns in the form of “the more/less A1,..., the
more/less An” where Ai are information from the graph, should
it be from the nodes or from the relationships. In order to retrieve
more valuable patterns, we consider fuzzy gradual patterns in
the form of “The more/less the A1 is F1,...,the more/less the An

is Fn” where Ai are attributes retrieved from the graph nodes
or relationships and Fi are fuzzy descriptions. For this purpose,
we introduce the definitions of such concepts, the corresponding
method for extracting the patterns, and the experiments that we
have led on synthetic graphs using a graph generator. We show
the results in terms of time and memory consumption.

Index Terms—Fuzzy Gradual Patterns, Property Graphs

I. INTRODUCTION

Gradual Pattern (GP) extraction is the process of discovering
knowledge from databases as comparable attributes of co-
variations. In linguistic expression it may be represented
as, the more the value of Xi,. . . , the more the value of
Xn, where i = 1, 2, 3...n, and X1, X2, . . . Xn are ordinal
attributes [1]. The applications of gradual patterns mining
can be found in various fields ranging from analyzing client
databases for marketing purposes, analyzing patient databases
in medical studies, analysis of climate and environment
change, etc.

A Property Graph (PG) refers to a data model in which data
has (key:value) pairs. A property graph data model enables
us to represent the data in natural way in form of graph
structure where vertices are called as nodes and edges are
called as relationships. The nodes and relationships contain
properties/attributes in form of (key:value) pairs. A node can
have one or more “labels” that define the role of a node.
Relationships are directional and have a “type”. They link
two nodes. A relationship may contain (key:value) properties
as nodes. Graph schema of a sample property graph is shown
in Fig. 1, with node labels and relationship types.

Fuzzy gradual patterns are of the form “the more the X is A,
the more the Y is B” [2]–[4]. These patterns express the infor-
mation about the attributes and their co-variation. This leads
to valuable knowledge for experts for decision making. The
task of extracting fuzzy gradual patterns is challenging due
to the semi-structured nature of property graphs. Therefore,
in this paper, we present a new approach for the extraction
of fuzzy gradual patterns from property graphs. We consider
fuzzy patterns in order to extract more valuable patterns [5],
[6].

The paper is organized as follows: Section 2 describes the
preliminary concepts and definitions, including fuzzy gradual
patterns and property graphs. Section 3 describes the proposed
approach for mining fuzzy gradual patterns from property
graphs. Section 4 reports the experimental results while Sec-
tion 5 concludes and provides perspective future works.

II. PRELIMINARIES

In this section we recall the preliminary work and relevant
definitions related to property graphs [7], gradual patterns [1],
[8] and fuzzy gradual patterns [2].
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Fig. 1: Graph Schema

A. Property Graphs

A property graph is a combination of nodes and
relationships having data in (key:value) format as shown in
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Fig. 2: Property Graph

Fig. 2. We define the property node, property relationship
and property graph as follows.

Definition 1 (Property Node): Let ΛN be a set of node La-
bels with NULL ∈ ΛN , ΠN be a set of properties where every
property π ∈ ΠN can take values over a domain dom(π). PN

is the set of all possible pairs (π, v) with v ∈ dom(π). A
property node n is given by the tuple (idn,Λn, Pn) with
• idn the unique identifier of n,
• Λn ⊆ ΛN the set of labels defining the node,
• and Pn ⊆ PN is the set of properties of n.
Example 1: ΛN ={Person:Doctor, NULL}, ΠN = {ID,

Age, Expr}, n1 = (2812, { Person, Doctor}, {ID : 1050, Age
: 50, Expr : 15}) is a property node as shown in “Fig. 2” for
label Person that also carries a label Doctor.

Definition 2 (Property Relationship): Let N be a set of
property nodes, ΛR be a set of relationship types with
NULL ∈ ΛR, ΠR be a set of properties where every property
π ∈ ΠR can take values over a domain dom(π). PR is the
set of all possible pairs (π, v) with v ∈ dom(π). A property
oriented relation r is given by the tuple idr, n1, n2, λr, Pr

with
• idr the unique identifier of r,
• n1 ∈ N ,
• n2 ∈ N ,
• λr ∈ ΛR the Type of the relation,
• and Pr ⊆ PR is the set of properties of r.
Example 2: ΛR = ({ VISITS, ADVISES, TAKES, RE-

SEMBLES }, ΠR = {date, NULL}, r1 = (4213, {Patient},
{Doctor}, {VISITS}, {(date:10/01/19)}) is a property relation
as shown in “Fig 2”.

Definition 3 (Property Graph): Let ΛN be a set of node
Labels with NULL ∈ ΛN , ΠN be a set of properties of

Source Label Relationship Type Destination Label Relationship Count
Patient VISITS Doctor 80
Doctor ADVISES Patient 95
Patient TAKES Medicine 90

TABLE I: Graph Structure Summary

node, PN a set of (key:value) pairs over ΠN , ΛR be a set
of relationship Types with NULL ∈ ΛR, ΠR be a set of
properties of relationship, PR a set of (key:value) pairs over
ΠR.

A property graph PG is given by (N,R) where:
• N stands for a set of property nodes defined over ΛN

and PN ,
• R stands for a set of property relationships defined over
N , ΛR and PR.

Example 3: The details of property graph PG as shown
in “Fig 2” are : ΛN = {(Person:Patient), (Person:Doctor),
(Medicine) }, ΛR = { VISITS, ADVISES, TAKES, RE-
SEMBLES }, ΠN = {(ID, Age, Expr, NULL), (ID, Age,
NULL), (ID, Cost, Qty, NULL)}, ΠR = {(date, NULL), (since,
NULL)}.

The structure can be retrieved from property graphs in order
to deal with the data in a more efficient way. For this purpose,
we consider graph structure summaries as described below [9].

Definition 4 (Property Graph Structure Summary): Let SNL

be a source node label with NULL ∈ SNL, DNL be a
destination node label with NULL ∈ SNL, RT be a unique
of relationship type between SNL and DNL, and C be the
count of relationships between SNL and DNL.

A property graph structure summary GSS is given by the
tuple (SNL, RT , DNL, C).

Example 4: (SNL = (Person:Patient) , RT =[VISITS] ,
DNL = ((Person:Doctor), C=80).
Example tuples of structure summary are shown in Table I

B. Fuzzy Gradual Pattern

The concept of gradual item and gradual pattern (gradual
itemset) in the context of property graph is defined as follows.

Definition 5 (Gradual Item): Let I be a set of items, i ∈ I
be an item and δ ∈ {↑, ↓} be a variation operator. A gradual
item iδ is defined as an item i associated to a variation δ.

Consequently, a gradual pattern is defined as follows.

Definition 6 (Gradual Pattern or Gradual Itemset): A grad-
ual pattern P = (i1δ

1, . . . , ikδ
k) is a non empty set of gradual

items. A k-itemset is a pattern containing k gradual items.

Example 5: For example, let us consider the pattern “the
more the age, the more the experience”, it can be denoted by:

P1 = (Age ↑ , Expr. ↑)

Fuzzy gradual patterns are of the form “ the more/less A1

is F1 , the more/less Ak is Fk [2]. For instance, for a doctor,



the more the age is “almost 40”, the more the experience
is “almost high”. Every attribute is described using a fuzzy
partition. For instance, We may consider two sets namely
“Low” and “High” for each property of the node as well as
the corresponding relationship. Property “Age” would then
be described by the “Age Low” and “Age High” fuzzy sets.
Similarly, for relationship type “TAKES”, we may consider
“TAKES Low” and “TAKES High” respectively.

III. MINING FUZZY GRADUAL PATTERNS FROM
PROPERTY GRAPHS

This work primarily relates to mining fuzzy gradual patterns
(see Section II-B) from property graphs. We first formally
define them and then propose our approach to retrieve patterns.
Furthermore, we discuss about handing unstructured data for
patterns retrieval particularly in the context of property graphs.

A. Fuzzy Property Graph Gradual Item

In this section, we formally define the concept of property
graph gradual items. As said in section II-A, a property
graph is a combination of nodes and relationships. In this
section we define what is a gradual item applied to each of
this data structure. Property graph node gradual item defined
as definition 7 and property graph relationship gradual item
defined as definition 8.

Definition 7 (Fuzzy Property Graph Node Gradual Item):
Let ΛN be a set of node labels with NULL ∈ ΛN , ΠN be a
set of properties, PN a set of (key:value) pairs over ΠN , ΛR be
a set of relationship types with NULL ∈ ΛR, ΠR be a set of
properties, PR a set of (key:value) pairs over ΠR. Let GD =
(N,R) be a graph defined over ΛN , PN , ΛR and PR. Let Pi

be a fuzzy partition of the domain of property i ∈ ΠN ∪ ΠR

within the fuzzy sets {fj}j∈[1,ni]. A graph data gradual item
is a fuzzy gradual item i, fj , δ where i ∈ ΠN ∪ ΠR, fj ∈ Pi

and δ ∈ ↑, ↓.

Example 6: (Expr, Expr Low, ↑) is a fuzzy property graph
node gradual item expressing “the more the experience is
low”.

Definition 8 (Property Graph Relationship Gradual Item):
Let ΛN be a set of node Labels with NULL ∈ ΛN , ΠN

be a set of properties, PN a set of (key:value) pairs over ΠN ,
ΛR be a set of relationship Types with NULL ∈ ΛR, ΠR

be a set of properties, PR a set of (key:value) pairs over ΠR.
Let GS = (N,R) be a graph defined over ΛN , PN , ΛR and
PR. A graph relationship gradual item is a gradual item ijδ
where j ∈ N is the depth of the item, i ∈ ΛR and δ ∈ {↑, ↓}.

For the sake of simplicity, when a property graph
relationship gradual item is of depth 1, we can omit to
mention the depth, as shown in example 7.

Example 7: (RESEMBLES ↑) is equivalent to (RESEM-
BLES 1 ↑) and stands for the number of resembles increases
for a medicine. (RESEMBLES3 ↑) stands that for a particular
medicine, number of resembles of resembles of resembles
increases.

B. Retrieving Fuzzy Patterns

Property graphs can be found in a number of complex graph
storage or data processing engines. In the context of this paper,
we focus on how to extract them from a graph database. The
experiments (see section IV) are based on extracting patterns
from Neo4j database which is the leader of graph database
engines [7]. We thus consider the Neo4j syntax for related
examples in this section.

The main steps to extract gradual patterns from a graph
database engine are listed below:

1) Retrieve the graph schema from the engine and for each
object (node label and relationship type), retrieve the
properties;

2) Fuzzify data;
3) Extract gradual patterns and handling missing data.
The rest of this section gets deeper in each step.
1) Retrieve Graph Schema From the Engine: In a graph

database, the data are semi-structured, which means that
the database does not have an enforced pre-defined schema.
Indeed, some properties may appear in some nodes or rela-
tionships and not in other ones. For instance, in Fig. 2, the
experience (Expr) does not appear for Person 1002. Thus,
graph databases are good for dynamic data representation such
as networks. This first step is about retrieving the structure of
the graph that could thus be associated with schema mining
in the literature [10]. To do so, the database engine is asked
to retrieve set of triples, each as a combination of label of
outgoing nodes, type of relationship and label of incoming
nodes as shown in Listing 1.

Listing 1: Retrieving the Database Schema

MATCH ( n ) -[ r ] -> (m)
RETURN l a b e l s ( n ) as s r c L a b e l ,

t y p e ( r ) as r e l T y p e ,
l a b e l s (m) as d s t L a b e l ,
c o u n t ( * ) as c o u n t

2) Fuzzifying Data: In this work, we consider the use of
fuzzy partitions over the universes of both the properties (e.g.,
age, salary for a Person) and the relationships (e.g., number of
Visits to a Doctor). For this purpose, the data are transformed
from quantities to the degree of membership for every subset
of the partitions being considered, as for instance low and
high for the age.

3) Extracting gradual patterns and handling missing data:
We consider existing gradual pattern mining approaches [1],
[8] and extend it with the concept of valid database (“vdb”)
presented in [11] to compute the support. This approach
amounts to locally disable some parts of the database during



the computation of the support through the classical pattern
mining algorithms so as to only take into account the available
information. At every step, the vdb is thus retrieved and
then used as the basis for the computation of support. In
Algorithm 1, the first step is to initialize the binary matrix
for each item(property/attribute) and store them in list L. For
each matrix that represents a property, the algorithm computes
binary order matrix [8] and computes the sum of high bits as
well as the missing data that are flagged as ? values. This
computation is then used to compute the support and only the
items having the support greater than the minimum threshold
support are updated in list L. This updated list is further used
by Algorithm 2 where the Hadamard product of binary AND
operation of gradual items is performed and the support is
calculated. Finally, the program lists the successful frequent
gradual patterns.

Algorithm 1: Mining Gradual Property-based Items in the
Presence of Missing Values

Input: Properties, minSupport
Output: List of gradual items having support
greater than minSupport

1: Initialize the matrices for each property and
store into list L

2: for all items in list L do
3: for all rows of matrix M for listItem Li do
4: for all columns of row of M do
5: if Li.M[row][col] == 1 then
6: sum← sum+ 1
7: else if Li.M[row][col]==? then
8: card← card+ 1
9: end if

10: if card == Li.M.length then
11: flag ← flag + 1
12: end if
13: end for
14: end for
15: vdb = (Li.M.length - flag)
16: support = sum / (vdb * (vdb-1)/2)
17: if support < minSupport then
18: remove Li

19: end if
20: end for
21: Update the list L with successful gradual items

of size-1

This approach has been tested over synthetic data, as
presented below.

IV. EXPERIMENTS

Below are the system specifications for running the
experiments. Hardware: Intel Core i7-4610M, 3.00 GHz,
quad core processor, 16 GB RAM Operating System: Linux
generic kernel 4.4.0-134, Ubuntu 16.04 LTS. Software:
Java version 1.8.0 181, Java(TM) SE Runtime Environment

Algorithm 2: Mining Gradual Patterns in the Presence of
Missing Values from Gradual Items

Input: List Li of gradual items, minSupport,
Output: Frequent Property-based Gradual Patterns

1: while items in list Li ! = 0 do
2: for all listItem Li do
3: for all listItem Lj = Li + 1 do
4: for all rows of matrix M for listItem

Li do
5: for all columns of row of M do
6: resultM [row][col] =

Li.M [row][col]* Lj .M [row][col]
7: if resultM[row][col] == 1 then
8: sum← sum+ 1
9: else if resultM[row][col] == ?

then
10: card← card+ 1
11: end if
12: if card== resultM.length then
13: flag ← flag + 1
14: end if
15: end for
16: end for
17: vdb = (LiresultM.length - flag)
18: support = sum / (vdb * (vdb-1)/2)
19: if support < minSupport then
20: remove Li

21: end if
22: end for
23: end for
24: Update the list L
25: end while
26: Output the frequent patterns

(build 1.8.0 181-b13) or higher Neo4j graph database
version 3.4.7 or higher. For all experiments, we used
static memory allocation to run Java jar file along with
the efficient G1 garbage collection and zero ”0” biased
locking delay. The jvm flags are: -XX:+UseG1GC -Xmx10G
-XX:BiasedLockingStartupDelay=0. Complete source code
and program execution protocol to generate the results is
available at [12].

Neo4j is a NoSQL Graph database which helps to model
nodes and relationships in form of connected data. Neo4j
uses a declarative query language (cypher) to retrieve data
from the graph database. We used Noe4j as a graph database
for our experiments. In order to generate graph data, we used
our synthetic graph generator. The graph generator interface
is available at [13].

The graphs were generated for three datasets of 1000,
10,000 and 20,000 nodes and same number of relationships
for the respective dataset. The details of the datasets is shown



S.No. Nodes Labels Properties Relationship Types Missing%
1 1K 3 9 3 17
2 10K 3 9 3 17
3 20K 3 9 3 17

TABLE II: Synthetic Dataset: Nodes Details

A1 .. B1 .. .. C3 R1 R2 R3
25 .. 43 .. .. 74 1 0 2
45 .. 88 .. .. NULL 2 2 1
69 .. NULL .. .. 56 1 0 1

TABLE III: Graph structure: (Node Properties with Relationship
Count)

in Table II. The range of values of the node attributes are
randomly generated between 1 to 100. Also, due to the schema
less nature of property graphs, we introduce missing data
by randomly selecting the attributes of nodes. The resulting
missingness of data is 17% for all the 3 datasets as shown
in Table II. For a particular label, the graph structure of node
attributes with relationships count is shown in Table III. This
graph structure contains 12 attributes i.e., 9 attributes for each
node as (A1, A2, A3, B1,..,C3) and 3 attributes for relationship
count as (R1, R2, R3). If there does not exist any relationship
for a node, the graph database returns 0 in response to the
graph structure cypher query. In there exist a relationship for
a node, it returns the count of relationship. For example, the
first node in Table III having relation type R2 as 0 means that
it does not have any relationship type R2 where there are 2
relationships of type R3 for the same node.

V. DISCUSSION

The plots for two types of experiments i.e., with and without
fuzzy subset are shown. The experimental results show that
with fuzzy subsets, the time consumption is higher as shown
in Fig 3 as compared to without them as shown in Fig. 6.
Similarly, peak heap memory consumption is also higher with
fuzzy subset Fig. 4 and Fig 7. This is due to the fact that
the number of attributes to be considered is multiplied by the
size of the partition. We observe an increase in the number of
patterns being generated particularly at small support threshold
values as shown in Fig. 5 and Fig 8. For example, number
of patters with 10K dataset at 0.1 support threshold, we get
almost double the number of patterns with fuzzy sets. As we
can see in Fig. 5 and Fig 8, in both type of experiments, the
number of patterns for all the three datasets i.e., 1K, 10K and
20K are almost same. This is probably due to the fact that
the data is generated synthetically using the graph generator.
It would be interesting to observe the patterns generation with
real graph datasets of different sizes. This is one of the points
that may be investigated for optimization of results in term of
patterns that are being generated.

VI. CONCLUSION

In this work, we present the mining of fuzzy gradual
patterns from property graphs. The approach has been tested
on graph data generated by a synthetic graph generator. As in
most of the cases, property graphs are semi-structured and thus

contain missing data. Therefore, we propose algorithms for
dealing with missing data while extracting the fuzzy gradual
patterns. In future work, we plan to extend the algorithm for
retrieving the optimal size and form of the fuzzy partition to
be considered for every attribute and to test our approach on
real world graph databases.
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[3] H. Koh and E. Hüllermeier, “Mining gradual dependencies based
on fuzzy rank correlation,” in Combining Soft Computing and
Statistical Methods in Data Analysis, SMPS 2010, Oviedo, Spain,
September 29 - October 1, 2010, ser. Advances in Intelligent and
Soft Computing, C. Borgelt, G. González-Rodrı́guez, W. Trutschnig,
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