Marc Chaumont
email: marc.chaumont@lirmm.fr

Deep Learning in steganography and steganalysis from 2015 to 2018

Keywords: Principles, Algorithms, Advances", Book Steganography, steganalysis, Deep Learning, GAN

published or not. The documents may come

Deep Learning in steganography and steganalysis

posed to model the behavior of the brain. In computer science, especially in artificial intelligence, they have been used for around 30 years for learning purposes. Ten or so years ago [START_REF] Hinton | Reducing the Dimensionality of Data with Neural Networks[END_REF], neural networks were considered to have a lengthy learning time and to be less effective than classifiers such as SVMs or random forests.

With recent advances in the field of neuron networks [START_REF] Bengio | Representation Learning: A Review and New Perspectives[END_REF], thanks to the computing power provided by graphics cards (GPUs), and because of the profusion of available data, deep learning approaches have been proposed as a natural extension of neural networks. Since 2012, these deep networks have profoundly marked the fields of signal processing and artificial intelligence, because their performances make it possible to surpass current methods, but also to solve problems that scientists had not managed to solve until now [START_REF] Lecun | Deep learning[END_REF].

In steganalysis, for the last 10 years, the detection of a hidden message in an image was mainly carried out by calculating Rich Models (RM) [START_REF] Fridrich | Rich Models for Steganalysis of Digital Images[END_REF] followed by a classification using a classifier (EC) [START_REF] Kodovský | Ensemble Classifiers for Steganalysis of Digital Media[END_REF]. In 2015, the first study using a convolutional neural network (CNN) obtained the first results of deep-learning steganalysis approaching the performances of the two-step approach (EC + RM 1) [START_REF] Qian | Deep Learning for Steganalysis via Convolutional Neural Networks[END_REF]. During the period 2015 -2018, many publications have shown that it is possible to an obtain improved performance in spatial steganalysis, JPEG steganalysis, side-informed steganalysis, quantitative steganalysis, etc.

In Section 1.1 we present the structure of deep neural network generically. This Section is centered on existing publications in steganalysis and should be supplemented by reading about artificial learning and in particular gradient descent, and stochastic gradient descent. In Section 1.2 we explain the different steps of the convolution module. In Section 1.3 we will tackle the complexity and learning times. In Section 1.4 we will present the links between Deep Learning and previous approaches. In Section 1.5 we will revisit the different networks that were proposed during the period 2015-2018 for different scenarios of steganalysis. Finally, in Section 1.6 we will discuss steganography by deep learning which sets up a game between two networks in the manner of the precursor algorithm ASO [START_REF] Kouider | Adaptive Steganography by Oracle (ASO)[END_REF].

THE BUILDING BLOCKS OF A DEEP NEURONAL NETWORK

In the following sub-sections, we look back at the major concepts of a Convolutional Neural Network (CNN). But specifically, we will recall the basic building blocks of a network based on the Yedroudj-Net2 network that was published in 2018 [START_REF] Yedroudj | Yedrouj-Net: An Efficient CNN for Spatial Steganalysis[END_REF] (See Figure 1.1), and which takes up the ideas present in Alex-Net [START_REF] Krizhevsky | ImageNet Classification with Deep Convolutional Neural Networks[END_REF], as well as the concepts present in networks developed for steganalysis including the very first network of Qian et al. [START_REF] Qian | Deep Learning for Steganalysis via Convolutional Neural Networks[END_REF], and networks of Xu-Net [START_REF] Xu | Structural Design of Convolutional Neural Networks for Steganalysis[END_REF], and Ye-Net [START_REF] Ye | Deep Learning Hierarchical Representations for Image Steganalysis[END_REF].

GLOBAL VIEW OF A CONVOLUTIONAL NEURAL NETWORK

Before describing the structure of a neural network as well as its elementary components, it is useful to remember that a neural network belongs to the machine-learning family. In the case of supervised learning, which is the case that most concerns us, it is necessary to have a database of images, with, for each image, its label, that is to say, its class. Deep Learning networks are large neural networks that can directly take raw input data. In image processing, the network is directly powered by the pixels forming the image. Therefore, a deep learning network learns in a joint way, both the compact intrinsic characteristics of an image (we speak of feature map or of latent space) and at the same time, the separation boundary allowing the classification (we also talk of separator plans).

The learning protocol is similar to classical machine learning methods. Each image is given as input to the network. Each pixel value is transmitted to one or more neurons. The network consists of a given number of blocks. A block consists of neurons that take real input values, perform calculations, and then transmit the actual calculated values to the next block. A neural network can, therefore, be represented by an oriented graph where each node represents a computing unit. The learning is then completed by supplying the network with examples composed of an image and its label, and the network modifies the parameters of these calculation units (it learns) thanks to the mechanism of back-propagation.

The Convolutional Neuronal Networks used for steganalysis are mainly built in three parts, which we will call modules: the pre-processing module, the convolution module, and the classification module. As an illustration, figure 1.1 schematizes the network proposed by Yedroudj et al. in 2018 [START_REF] Yedroudj | Yedrouj-Net: An Efficient CNN for Spatial Steganalysis[END_REF]. The network processes grayscale images of 256 × 256 pixels.

THE PRE-PROCESSING MODULE

F (0) = 1 12       -1 2 -2 2 -1 2 -6 8 -6 2 -2 8 -12 8 -2 2 -6 8 -6 2 -1 2 -2 2 -1       (1.1)
We can observe in Figure 1.1 that in the pre-processing module, the image is filtered by 30 high-pass filters. The use of one or more high-pass filters as pre-processing is present in the majority of networks used for steganalysis during the period 2015-2018. An example of a kernel of a high-pass filter -the square S5a filter [START_REF] Fridrich | Rich Models for Steganalysis of Digital Images[END_REF] -is given in Equation 1.1. An illustration of the filtering (convolution) principle is given in Figure 1.2. This preliminary filtering step allows the network to converge faster and is probably needed to obtain good performance when the learning database is too small [START_REF] Yedroudj | How to Augment a Small Learning Set for Improving the Performances of a CNN-Based Steganalyzer?[END_REF] (only 4 000 pairs cover/stego images of size 256 × 256 pixels). The filtered images are then transmitted to the first convolution block of the network. Note that the recent SRNet [START_REF] Boroumand | Deep Residual Network for Steganalysis of Digital Images[END_REF] network does not use any fixed pre-filters, but learns the filters. It therefore requires a much larger database (more than 15 000 pairs cover/stego images of size 256 × 256 pixels), and strong know-how for its initialization. Note that there is a debate in the community if one should use fixed filters, or initialize the filters with pre-chosen values and then continue the learning, or learn filters with random initialization. At the beginning of 2019, in practice (real-world situation [START_REF] Ker | Moving Steganography and Steganalysis from the Laboratory into the Real World[END_REF]), the best choice is probably in relation to the size of the learning database (which is not necessary BOSS [START_REF] Bas | Break Our Steganographic System': The Ins and Outs of Organizing BOSS[END_REF] or BOWS2 [START_REF] Bas | BOWS-2 Contest (Break Our Watermarking System)[END_REF]), and the possibility to use transfer learning.

THE CONVOLUTION MODULE

Within the convolution module, we find several macroscopic computation units that we will call blocks. A block is composed of calculation units that take real input values, perform calculations, and return real values, which are supplied to the next block. Specifically, a block takes a set of feature maps (= a set of images) as input and returns a set of feature maps as output (= a set of images). Inside a block, there are a number of operations including the following four: the convolution (see Section 1.2.1), the activation (see Section 1.2.2), the pooling (see Section 1.2.3), and finally the normalization (see Section 1.2.4).

Note that the concept of neuron, as defined in existing literature, before the emergence of convolutional networks, is still present, but it no longer exists as a data structure in neural network libraries. In convolution modules, we must imagine a neuron as a computing unit which, for a position in the feature map taken by the convolution kernel during the convolution operation, performs the weighted sum between the kernel and the group of considered pixels. The concept of neuron corresponds to the scalar product between the input data (the pixels) and data specific to the neuron (the weight of the convolution kernel), followed by the application of a function of R in R called the activation function. Then, by extension, we can consider that pooling and normalization are operations specific to neurons.

Thus, the notion of block corresponds conceptually to a " layer " of neurons. Note that in deep learning libraries, we call a layer any elementary operation such as convolution, activation, pooling, normalization, etc. To remove any ambiguity, for the convolution module we will talk about block, and operations, and we will avoid using the term layer.

Without counting the pre-processing block, the Yedroudj-Net network [108] has a convolution module made of 5 convolution blocks, like the networks of Qian et al. [START_REF] Qian | Deep Learning for Steganalysis via Convolutional Neural Networks[END_REF] and Xu et al. [START_REF] Xu | Structural Design of Convolutional Neural Networks for Steganalysis[END_REF]. The Ye-Net network [START_REF] Ye | Deep Learning Hierarchical Representations for Image Steganalysis[END_REF] has a convolution module composed of 8 convolution blocks, and SRNet network [START_REF] Boroumand | Deep Residual Network for Steganalysis of Digital Images[END_REF] has a convolution module built with 11 convolution blocks.

THE CLASSIFICATION MODULE

The last block of the convolution module (see the previous Section) is connected to the classification module which is usually a fully connected neural network composed of one to three blocks. This classification module is often a traditional neural network where each neuron is fully connected to the previous block of neurons and to the next block of neurons.

The fully connected blocks often end with a softmax function which normalize the outputs delivered by the network between [0, 1], such that the sum of the outputs equal one. The outputs are named imprecisely "probabilities". We will keep this denomination. So, in the usual binary steganalysis scenario, the network delivers two values as output: one giving the probability of classifying into the first class (e.g. the cover class), and the other giving the probability of classifying into the second class (e.g. the stego class). The classification decision is then obtained by returning the class with the highest probability.

Note that in front of this classification module, we can find a particular pooling operation such as a global average pooling, a Spatial Pyramid Pooling (SPP) [START_REF] He | Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition[END_REF], a statistical moments extractor [START_REF] Clement | Steganalyzing Images of Arbitrary Size with CNNs[END_REF], etc. Such pooling operations return a fixed-size vector of values, that is to say, a feature map of fixed dimensions. The next block to this pooling operation is thus always connected to a vector of fixed size. So, this block has a fixed input number of parameters. It is thus possible to present to the network images of any size without having to modify the topology of the network. For example, this property is available in the Yedroudj-Net [START_REF] Yedroudj | Yedrouj-Net: An Efficient CNN for Spatial Steganalysis[END_REF] network, the Zhu-Net [START_REF] Zhang | Depth-Wise Separable Convolutions and Multi-Level Pooling for an Efficient Spatial CNN-Based Steganalysis; (previously named "efficient feature learning and multi-size image steganalysis based on cnn[END_REF] network, or the Tsang et al. network [START_REF] Clement | Steganalyzing Images of Arbitrary Size with CNNs[END_REF].

Also note that [START_REF] Clement | Steganalyzing Images of Arbitrary Size with CNNs[END_REF] is the only paper, at the time of writing this chapter, which has seriously considered the viability of an invariant network to the dimension of the input images. The problem remains open. The solution proposed in [START_REF] Clement | Steganalyzing Images of Arbitrary Size with CNNs[END_REF] is a variant of the concept of average pooling. For the moment, there has not been enough studies on the subject to determine what is the correct topology of the network, how to build the learning data-base, how much the number of embedded bits influences the learning, or if we should take into account the square root law for learning at a fixed security-level or any payload size, etc.

THE DIFFERENT STEPS OF THE CONVOLUTION MODULE

In Section 1.1.

CONVOLUTION

The first treatment within a block is often to apply the convolutions on the input feature maps.

Note that for the pre-processing block, see Figure 1.1, there is only one input image. A convolution is therefore carried out between the input image and a filter. In the Yedroudj-Net network, there are 30 high-pass filters extracted from SRM filters [START_REF] Fridrich | Rich Models for Steganalysis of Digital Images[END_REF]. In older networks, there is only one pre-processing filter [START_REF] Qian | Deep Learning for Steganalysis via Convolutional Neural Networks[END_REF][START_REF] Pibre | Deep Learning is a Good Steganalysis Tool when Embedding Key is Reused for Different Images, Even if There is a Cover Source-Mismatch[END_REF][START_REF] Xu | Structural Design of Convolutional Neural Networks for Steganalysis[END_REF]. Except for the pre-processing block, in the other blocks, once the convolution has been applied, we apply activation steps (see Section 1.2.2), pooling (see Section 1.2.3), and normalization (see Section 1.2.4). Then we obtain a new image named feature map.

Formally, let I (0) be the input image of the pre-processing block. Let F (l) k be the k th (k ∈ {1, ..., K (l) }) filter of the block of number l = {1, ..., L}, with L the number of blocks, and with K (l) the number of filters of the l th block.

The convolution within the pre-processing block with the k th filter results in a filtered image, denoted Ĩ(1) k , such that:

Ĩ(1) k = I (0) F (1) k . (1.2)
From the first block of the convolution module to the last block of convolution (see Figure 1.1), the convolution is less conventional because there is K (l-1) feature maps (K (l-1) images) as input, denoted

I (l-1) k with k = {1, ..., K (l-1) }.
The "convolution" that will lead to the k th filtered image, Ĩ(l) k , resulting from the convolution block numbered l, is actually the sum of K (l-1) convolutions, such as:

Ĩ(l) k = i=K (l-1) i=1 I (l-1) i F (l) k,i , (1.3)
with

{F (l) k,i } i=K (l-1)
i=1 a set of K (l-1) filters for a given k value. This operation is quite unusual since each feature map is obtained by a sum of K (l-1) convolutions with a different filter kernel for each convolution. This operation can be seen as a spatial convolution, plus a sum on the channels-axis 3 .

This combined operation can be replaced by a separate operation called SeparableConv or Depthwise Separable Convolutions [START_REF] Chollet | Xception: Deep Learning with Depthwise Separable Convolutions[END_REF], which allows us to integrate a non-linear operation (an activation function) such as a ReLU, between the spatial convolution and the convolution on the "depth" axis (for the "depth" axis we use a 1 × 1 filter). Thus, the Depthwise Separable Convolution can roughly be resumed as a weighted sum of convolution which is a more descriptive operation than just a sum of convolution (see Equation 1.3).

If we replace the operation previously described in equation 1.3, by a Depth-wise Separable Convolutions operation integrated within an Inception module (the Inception allows us to mainly use filters of variable sizes), we obtain a performance improvement [START_REF] Chollet | Xception: Deep Learning with Depthwise Separable Convolutions[END_REF]. In steganalysis, this has been observed in the article [START_REF] Zhang | Depth-Wise Separable Convolutions and Multi-Level Pooling for an Efficient Spatial CNN-Based Steganalysis; (previously named "efficient feature learning and multi-size image steganalysis based on cnn[END_REF], when modifying the first two blocks of the convolution module of Figure 1.1. As a reminder, in this document, we name a convolution block the set of operations made by one convolution (or many convolutions performed in parallel in the case of an Inception, and/or two convolutions in the case of a Depthwise Separable convolution), a few activation functions, a pooling, and a normalization. These steps can be formally expressed in a simplified way (except in cases with Inception or Depthwise Separable Convolution) in recursive form by linking a feature map at the input of a block and the feature map at the output of this block:

I (l) k = norm   pool   f   b (l) k + i=K (l-1) i=1 I (l-1) i F (l) k,i       , (1.4) with b (l)
k ∈ R the scalar standing for the convolution bias, f () the activation function applied pixel by pixel on the filtered image, pool(), the pooling function that is applied to a local neighborhood, and finally a normalization function.

Note that the kernels of the filters (also called weights) and the bias must be learned and are therefore modified during the back-propagation phase.

ACTIVATION

Once each convolution of a convolution block has been applied, an activation function, f () (see Eq. 1.4), is applied on each value of the filtered image, Ĩ(l) k (Eq. 1.2 and Eq. 1.3). This function is called the activation function with reference to the notion of binary activation found in the very first work on neuron networks. The activation function can be one of several, for example be an absolute value function f (x) = |x|, a sinusoidal function f (x) = sinus(x), a Gaussian function as in [START_REF] Qian | Deep Learning for Steganalysis via Convolutional Neural Networks[END_REF] f (x) = e -x 2 σ 2 , a ReLU (for Rectified Linear Unit): f (x) = max(0, x), etc. Figure 1.3 illustrates some activation functions.

These functions break the linearity resulting from linear filtering performed during convolutions. Non-linearity is a mandatory property that is also exploited in two-step machine-learning approaches, such as in the ensemble classifier [START_REF] Kodovský | Ensemble Classifiers for Steganalysis of Digital Media[END_REF] during the weak-classifiers thresholding, or through the final majority vote, or in Rich Models with Min-Max features [START_REF] Fridrich | Rich Models for Steganalysis of Digital Images[END_REF]. The chosen activation function must be differentiable to perform back-propagation.

The most often retained solution for the selection of an activation function is one whose derivative requires little calculation to be evaluated. Besides, functions that have low slope regions, such as the hyperbolic tangent, are also avoided, since this type of function can cause the value of the backpropagated gradient to be canceled during back-propagation (the phenomenon of the vanishing gradient), and thus will make learning impossible. Therefore, in many networks, we very often find the ReLU activation function, or one of its variants. For example, in the Yedroudj-Net network (see figure 1.1) we have the absolute value function, the parameterized Hard Tanh function (Trunc function), and the ReLU function. In the SRNet network [START_REF] Boroumand | Deep Residual Network for Steganalysis of Digital Images[END_REF] we only find the ReLU function.

POOLING

The pooling operation is used to calculate the average or the maximum in a local neighborhood. In the field of classification of objects in images, the maximum pooling guarantees a local invariance in translation when recomputing the features. That said, in most steganalysis networks, it is preferred to use average pooling to preserve stego noise which is of very low power. Figure 1.4 illustrates the two pooling operations. Moreover, pooling is often coupled to a down-sampling operation (when the stride is greater than 1) to reduce the size (i.e., the height and width) of the resulting feature map compared to feature maps from the previous block. For example, in Yedroudj-Net (see figure 1.1), blocks 2, 3, and 4, reduce by a four-factor the size of the input feature maps. We can consider the pooling operation, accompanied by a stride greater than 1, as conventional sub-sampling with preliminary low-pass filtering. This is useful for reducing the amount of used-memory in the GPU. This step can also be perceived as denoising, and from the point of view of the signal processing, it induces a loss of information. It is probably better not to sub-sample in the first blocks as it was initially highlighted in [START_REF] Pibre | Deep Learning is a Good Steganalysis Tool when Embedding Key is Reused for Different Images, Even if There is a Cover Source-Mismatch[END_REF], set up in Xu-Net [START_REF] Xu | Structural Design of Convolutional Neural Networks for Steganalysis[END_REF], Ye-Net [START_REF] Ye | Deep Learning Hierarchical Representations for Image Steganalysis[END_REF], Yedroudj-Net [START_REF] Yedroudj | Yedrouj-Net: An Efficient CNN for Spatial Steganalysis[END_REF], and evaluated again in SRNet [START_REF] Boroumand | Deep Residual Network for Steganalysis of Digital Images[END_REF].

NORMALIZATION

In the first proposed networks in steganalysis, during the period 2014beginning of 2016 (Tan and Li [START_REF] Tan | Stacked Convolutional Auto-Encoders for Steganalysis of Digital Images[END_REF], Qian et al. [START_REF] Qian | Deep Learning for Steganalysis via Convolutional Neural Networks[END_REF], Pibre and al. [START_REF] Pibre | Deep Learning is a Good Steganalysis Tool when Embedding Key is Reused for Different Images, Even if There is a Cover Source-Mismatch[END_REF]), if there was a normalization, it remained local to the spatial neighborhood, with Local Constrast Normalization, or inter-feature, with the Local Response Normalization.

A big improvement occurred with the arrival of batch normalisation. Batch normalization (BN) was proposed in 2015 [START_REF] Ioffe | Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift[END_REF], and was widely adopted. This normalization is present in most of the new networks for steganalysis. BN [START_REF] Ioffe | Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift[END_REF] (see Eq. 1.5) consists of normalizing the distribution of each feature of a feature map, so that the average is zero and the variance is unitary, and, if necessary allows re-scaling and re-translating the distribution.

Given a random variable X whose realization is a value x ∈ R of the feature map, the BN of this value x is:

BN (x, γ, β) = β + γ x -E[X] V ar[X] + , (1.5)
with E[X] the expectation, V ar[X] the variance, and γ and β two scalars representing a re-scaling and a re-translation. The expectation E[X] and the variance V ar[X] are updated at each batch, while γ and β are learned by back-propagation. In practice, the BN makes the learning less sensitive to the initialization of parameters [START_REF] Ioffe | Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift[END_REF], allows us to use a higher learning rate which speeds up the learning process, and improves the accuracy of classification [START_REF] Mo Chen | JPEG-Phase-Aware Convolutional Neural Network for Steganalysis of JPEG Images[END_REF]. In Yedroudj-Net, the terms γ and β are treated by an independent layer called Scale Layer (See Figure 1.1), in the same way as in ResNet [START_REF] He | Deep Residual Learning for Image Recognition[END_REF]. The increment in performance is very minor.

MEMORY / TIME COMPLEXITY AND EFFICIENCY

Learning a network can be considered as the optimization of a function with many unknown parameters, thanks to the use of a well-thought out stochastic gradient descent. In the same way as traditional neural networks, the CNNs used for steganalysis have a large number of parameters to learn. As an example, without taking into account Batch Normalization and Scale parameters, the Xu-Net [START_REF] Xu | Structural Design of Convolutional Neural Networks for Steganalysis[END_REF] network described in the paper [START_REF] Yedroudj | Yedrouj-Net: An Efficient CNN for Spatial Steganalysis[END_REF] has a number of parameters in the order of 50,000. In comparison, the network Yedroudj-Net [START_REF] Yedroudj | Yedrouj-Net: An Efficient CNN for Spatial Steganalysis[END_REF], has a number of unknown parameters in the order of 500,000. In practice, using a previous-generation GPU (Nvidia TitanX) on an Intel Core i7-5930K at 3.50 GHz × 12 with 32 GB of RAM, it takes less than a day to learn the Yedroudj-Net network using 4,000 pairs of 256 × 256 cover/stego images of the " BOSS" [START_REF] Bas | Break Our Steganographic System': The Ins and Outs of Organizing BOSS[END_REF], three days on 14,000 pairs of 256 × 256 cover/stego images of "BOSS + BOWS2" [START_REF] Bas | BOWS-2 Contest (Break Our Watermarking System)[END_REF], and more than seven days on the 112,000 pairs of 256 × 256 cover/stego images of "BOSS + BOWS2 + a virtual database augmentation" [START_REF] Yedroudj | How to Augment a Small Learning Set for Improving the Performances of a CNN-Based Steganalyzer?[END_REF]. These long learning times are because the databases are large and have to be browsed repeatedly, so that the back-propagation process makes converge the network.

Due to the large number of parameters to be learned, neural networks need a database containing a large number of examples to be in the power-law region [START_REF] Hestness | Deep Learning Scaling is Predictable, Empirically[END_REF] allowing comparisons between different networks. In addition, the examples within the learning database must be sufficiently diversified to obtain a good generalization of the network. For CNN steganalysis, with current networks (in 2018), the number of examples needed to reach a region of good performance (that is, as good as using a Rich Model [START_REF] Fridrich | Rich Models for Steganalysis of Digital Images[END_REF] with an Ensemble Classifier [START_REF] Kodovský | Ensemble Classifiers for Steganalysis of Digital Media[END_REF]), in the case where there is no cover-source mismatch, is most likely in the order of 10,000 images (5,000 covers and 5,000 stegos) when the size is 256 × 256 pixels [START_REF] Yedroudj | How to Augment a Small Learning Set for Improving the Performances of a CNN-Based Steganalyzer?[END_REF]. However, the number of examples is still insufficient [START_REF] Yedroudj | How to Augment a Small Learning Set for Improving the Performances of a CNN-Based Steganalyzer?[END_REF] in the sense that performance can be increased simply by increasing the number of examples. The so-called irreducible error region [START_REF] Hestness | Deep Learning Scaling is Predictable, Empirically[END_REF] probably requires more than a million images [START_REF] Zeng | Large-Scale JPEG Image Steganalysis Using Hybrid Deep-Learning Framework[END_REF]; Therefore, there should be at least 100 times more images for the learning phase. In addition to this, it is necessary to be able to work with larger images. It is therefore evident that in the future it will be essential to find one or more solutions to reach the region of irreducible error. This can be done with huge databases, and several weeks or months of apprenticeships, or by transfer learning, by using better networks, or with solutions yet to be conceived.

Note that of course, there are recommendations to increase performance and it may be possible to achieve the irreducible error region faster. We can use transfer learning [START_REF] Qian | Learning and Transferring Representations for Image Steganalysis Using Convolutional Neural Network[END_REF] and/or curriculum learning [START_REF] Ye | Deep Learning Hierarchical Representations for Image Steganalysis[END_REF] to start learning from a network that has already learned. We can use a set of CNNs [START_REF] Xu | Ensemble of CNNs for Steganalysis: An Empirical Study[END_REF], or a network made of sub-networks [START_REF] Li | ReST-Net: Diverse Activation Modules and Parallel Subnets-Based CNN for Spatial Image Steganalysis[END_REF], which can save a few percentage points on accuracy. We can virtually increase the database [START_REF] Krizhevsky | ImageNet Classification with Deep Convolutional Neural Networks[END_REF], but this does not solve the problem of increasing the learning time. We can add images of a database that is similar to the test database, for example when BOSS and BOWS2 are used for learning, in the case where the test is realized on BOSS [START_REF] Ye | Deep Learning Hierarchical Representations for Image Steganalysis[END_REF], [START_REF] Yedroudj | How to Augment a Small Learning Set for Improving the Performances of a CNN-Based Steganalyzer?[END_REF]. It is nevertheless not obvious that in practice we can have access to a database similar to the database to be tested. We can (i) predict the acquisition devices that produced the images of the test database, then (ii) make new acquisitions with these devices (to be purchased), and (iii) finally perform images development similar to the one used to generate the test database, and all this in order to increase the learning database [START_REF] Yedroudj | How to Augment a Small Learning Set for Improving the Performances of a CNN-Based Steganalyzer?[END_REF]. Again, this approach is difficult to implement and time-consuming.

Note that a general rule shared by people playing with Kaggle competitions is that the main practical rules to win are [START_REF] Kuzin | Camera Model Identification Using Convolutional Neural Networks[END_REF] 4 : (i) to use an ensemble of modern networks (ResNet, DenseNet, etc.) that have learned for example on ImageNet, and then use transfer learning, and (ii) to do data-augmentation, (iii) to eventually collect data to increase the learning database size.

LINK BETWEEN DEEP-LEARNING AND PAST APPROACHES

In previous Sections, we explained that deep-learning consisted of minimizing a function with many unknown parameters with a technique similar to gradient descent. In this subsection, we establish links with previous research on the subject in the steganography/steganalysis community. This sub-section tries to make links with past research in this domain and is an attempt to demystify deep learning.

Convolution is an essential part of CNN networks. Learning filter kernels (weights) are carried out by minimizing the classification error using the backpropagation procedure. It is, therefore, a simple optimization of filter kernels. Such a strategy can be found as early as 2012 in a two-step approach using Rich Models and an Ensemble Classifier in the article [START_REF] Holub | Optimizing Pixel Predictors for Steganalysis[END_REF]. The kernel values used to calculate the feature vector are obtained by optimization via the simplex algorithm. In this article, the goal is to minimize the probability of classification error given by an Ensemble Classifier in the same way as with a CNN. CNNs share the same goal of building custom kernels that are well suited to steganalysis.

Looking at the first block of convolution just after the pre-processing block (Ye-Net [START_REF] Ye | Deep Learning Hierarchical Representations for Image Steganalysis[END_REF], Yedroudj-Net [START_REF] Yedroudj | Yedrouj-Net: An Efficient CNN for Spatial Steganalysis[END_REF], ReST-Net [START_REF] Li | ReST-Net: Diverse Activation Modules and Parallel Subnets-Based CNN for Spatial Image Steganalysis[END_REF], etc.), the convolutions act as a multi-band filtering performed on the residuals obtained from the preprocessing block (see Figure 1.1). For this first block, the network analyzes the signal residue in different frequency bands. In the past, when computing Rich Models [START_REF] Fridrich | Rich Models for Steganalysis of Digital Images[END_REF], some approaches have applied a similar idea thanks to the use of a filter bank. Some approaches make a spatio-frequency decomposition via the use of Gabor filters (GFR Rich Models) [START_REF] Song | Steganalysis of Adaptive JPEG Steganography Using 2D Gabor Filters[END_REF], [START_REF] Xia | Improving GFR Steganalysis Features by Using Gabor Symmetry and Weighted Histograms[END_REF], some use Discrete Cosinus filters (DCTR Rich Models) [START_REF] Holub | Low-Complexity Features for JPEG Steganalysis Using Undecimated DCT[END_REF], some use Steerable Gaussian filters [START_REF] Hasan Abdulrahman | Color Image Steganalysis Based On Steerable Gaussian Filters Bank[END_REF], and some make a projection on random carriers (PSRM Rich Models) [START_REF] Holub | Random Projections of Residuals for Digital Image Steganalysis[END_REF], etc. For all these Rich Models, the results of the filtering process is then used to calculate a histogram (co-occurrence matrix) which is in turn used as a vector of features. The first convolution block of CNNs for steganalysis thus share similarities with the spatio-frequency decomposition of some Rich Models.

From the convolution blocks that start to down-sample the feature maps, there is a summation of the results of several different convolutions. This amounts to accumulating signs of the presence of a signal (the stego noise) by observing clues in several bands. We do not find such a principle in previous research. The only way to accumulate evidence was based on the computation of a histogram [START_REF] Fridrich | Rich Models for Steganalysis of Digital Images[END_REF][START_REF] Holub | Random Projections of Residuals for Digital Image Steganalysis[END_REF], but this approach is different from what is done in CNNs. Note that in the article [START_REF] Sedighi | Histogram Layer, Moving Convolutional Neural Networks Towards Feature-Based Steganalysis[END_REF], the authors explore how to incorporate the histogram computation mechanism into a CNN network, but the results are not encouraging. Thus, starting from the second block, the mechanism involved to create a latent space separating the two classes, i.e. to obtain a feature vector per image, which makes it possible to distinguish the covers from the stegos, is different from that used in Rich Models. Similarly, some past techniques such as non-uniform quantization [START_REF] Pevný | Co-occurrence Steganalysis in High Dimensions[END_REF], features selection [START_REF] Chaumont | Steganalysis by Ensemble Classifiers with Boosting by Regression, and Post-Selection of Features[END_REF], dimension reduction [START_REF] Pevný | The Challenges of Rich Features in Universal Steganalysis[END_REF], are not directly visible within a CNN.

A brick present in most convolution blocks is the normalization of feature maps. Normalization has often been used in steganalysis, for example in [START_REF] Kouider | Adaptive Steganography by Oracle (ASO)[END_REF], [START_REF] Cogranne | Theoretical Model of the FLD Ensemble Classifier Based on Hypothesis Testing Theory[END_REF], [START_REF] Boroumand | Nonlinear Feature Normalization in Steganalysis[END_REF], etc. Within a CNN, normalization is performed among other things to obtain comparable output values in each feature map.

The activation function introduces a non-linearity in the signal and thus makes it possible to have many convolution blocks. This non-linearity is found in the past, for exemple in the Ensemble Classifier through the majority vote [START_REF] Kodovský | Ensemble Classifiers for Steganalysis of Digital Media[END_REF], or in Rich Models with the Min or Max operations [START_REF] Fridrich | Rich Models for Steganalysis of Digital Images[END_REF].

The structure of a CNN network and the components that improve the performance of a network are now better understood in practice. As we saw previously, there is in a CNN, some parts that are similar to propositions made in steganalysis in the past. Some elements of a CNN are also explained by the fact that they are guided by computational constraints (uses of simple differentiable activation function like ReLU), or that they facilitates the convergence (non-linearity allows convergence, activation function should not be too flat or steep, in order to avoid vanishing gradient or rapid variation, the shortcut allows us to avoid vanishing gradient during back-propagation, and thus allows us to create deeper networks, the batch normalization, the initialization such as Xavier, the optimization such as Adam, etc). Note that some of the ideas present in CNNs also come from the theory of optimization of differentiable functions.

Although it is easy to use a network in practice, and to have some intuition about its behavior, it still lacks theoretical justification. For example, what is the right number of parameters according to the problem? In the coming years, there is no doubt that the building of a CNN network adapted for steganalysis could go through an automatic adjustment of its topology, in this spirit, the work on AutoML and Progressive Neural Architecture Search (PNAS) [START_REF] Liu | Progressive Neural Architecture Search[END_REF], [START_REF] Pham | Efficient Neural Architecture Search via Parameters Sharing[END_REF] are of interest. That said the theory must also try to explain what is happening inside the network. One can notably look at the work of Stéphane Mallat [START_REF] Mallat | Understanding Deep Convolutional Networks[END_REF] for an attempt to explain a CNN from a signal processing point of view. Machine learning theorists can also better explain what happens in a network and why this mathematical construction works so well.

To conclude this discussion on the links between two-step learning approaches and deep learning approaches, CNN as well as two-step (Rich Models + Ensemble Classifier) approaches are not able to cope with cover-source mismatch [START_REF] Cancelli | A Comparative Study of +/-1 Steganalyzers[END_REF][START_REF] Fridrich | Breaking HUGO -The Process Discovery[END_REF]. This is a defect used by detractors 5 of neural network approaches in domains such as object recognition [START_REF] Alcorn | Strike (with) a Pose: Neural Networks Are Easily Fooled by Strange Poses of Familiar Objects[END_REF]. CNNs learn a distribution, but if it differs in test phase, then the network cannot detect it. Maybe the ultimate goal is for the network to "understand" that the test database is not distributed as the learning database? ReST-Net for color images (WIReST-Net)

THE DIFFERENT NETWORKS USED OVER THE PERIOD 2015-2018

A chronology of the main CNNs proposed for steganography and steganalysis from 2015 to 2018 are given in Figure 1.5. The first attempt to use Deep Learning methods for steganalysis date back to the end of 2014 [START_REF] Tan | Stacked Convolutional Auto-Encoders for Steganalysis of Digital Images[END_REF] with auto-encoders. At the beginning of 2015, Qian et al. [START_REF] Qian | Deep Learning for Steganalysis via Convolutional Neural Networks[END_REF] proposed to use Convolutional Neural Networks. One year later Pibre et al. [START_REF] Pibre | Deep Learning is a Good Steganalysis Tool when Embedding Key is Reused for Different Images, Even if There is a Cover Source-Mismatch[END_REF] proposed to pursue the study.

In 2016, the first results, close to those of current state-of-the-art methods (Ensemble Classifier + Rich Models), were obtained with an ensemble of CNNs [START_REF] Xu | Ensemble of CNNs for Steganalysis: An Empirical Study[END_REF]; See Figure 1.6. The Xu-Net6 [START_REF] Xu | Structural Design of Convolutional Neural Networks for Steganalysis[END_REF] CNN is used as a base learner of an ensemble of CNNs.

Other networks were proposed in 2017, this time for JPEG steganalysis. In [START_REF] Zeng | Pre-Training via Fitting Deep Neural Network to Rich-Model Features Extraction Procedure and its Effect on Deep Learning for Steganalysis[END_REF] [113] (See Figures 1.7 and 1.8), authors proposed a pre-processing inspired by Rich Models, and the use of a large learning database. The results were close to those of existing state-of-the-art methods (Ensemble Classifier + Rich Models). In [START_REF] Mo Chen | JPEG-Phase-Aware Convolutional Neural Network for Steganalysis of JPEG Images[END_REF], the network is built with a phase-split inspired by the JPEG compression process. An ensemble of CNNs was required to obtain results that were slightly better than those obtained by current best approach. In Xu-Net-Jpeg [START_REF] Xu | Deep Convolutional Neural Network to Detect J-UNIWARD[END_REF], a CNN inspired by ResNet [START_REF] He | Deep Residual Learning for Image Recognition[END_REF] with the shortcut connection trick, and 20 blocks also improved the results in terms of accuracy. Note that in 2018 the ResDet [START_REF] Huang | Steganalysis of Adaptive JPEG Steganography based on ResDet[END_REF] proposed a variant of Xu-Net-Jpeg [START_REF] Xu | Deep Convolutional Neural Network to Detect J-UNIWARD[END_REF] with similar results. These results were highly encouraging, but regarding the gain obtained in other image processing tasks using Deep Learning methods [START_REF] Lecun | Deep learning[END_REF], the steganalysis results represented less than a 10% improvement compared to the classical approaches that use an Ensemble Classifier [START_REF] Kodovský | Ensemble Classifiers for Steganalysis of Digital Media[END_REF] with Rich Models [START_REF] Fridrich | Rich Models for Steganalysis of Digital Images[END_REF], [START_REF] Xia | Improving GFR Steganalysis Features by Using Gabor Symmetry and Weighted Histograms[END_REF] or Rich Models with a Selection-Channel Awareness [START_REF] Denemark | Selection-Channel-Aware Rich Model for Steganalysis of Digital Images[END_REF], [START_REF] Denemark | Improving Selection-Channel-Aware Steganalysis Features[END_REF], [START_REF] Denemark | Steganalysis Features for Content-Adaptive JPEG Steganography[END_REF]. The revolutionary significant gain in the use of deep learning, observed in other areas of signal processing, was not yet present for steganalysis. In 2017, the main trends to improve CNN results were using an ensemble of CNNs, modifying the topology by mimicking Rich Models extraction process or using ResNet.

In most of the cases, the design or the experimental effort was very high for a very limited improvement of performance in comparison to networks such as AlexNet [START_REF] Krizhevsky | ImageNet Classification with Deep Convolutional Neural Networks[END_REF], VGG16 [START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF], GoogleNet [START_REF] Szegedy | Going Deeper with Convolutions[END_REF], ResNet [START_REF] He | Deep Residual Learning for Image Recognition[END_REF], etc, that inspired this research.

By the end of 2017 and early 2018, the studies had strongly concentrated on spatial steganalysis. Ye-Net [START_REF] Ye | Deep Learning Hierarchical Representations for Image Steganalysis[END_REF] (See Figure 1 . All these networks clearly surpass the "old" two-step machine learning paradigm that was using an Ensemble Classifier [START_REF] Kodovský | Ensemble Classifiers for Steganalysis of Digital Media[END_REF] and Rich Models [START_REF] Fridrich | Rich Models for Steganalysis of Digital Images[END_REF]. Most of these networks can learn with a modest database size (i.e. around 15,000 pairs cover/stego of 8-bits-coded images of 256 × 256 pixels size from BOSS+BOWS2).

In 2018, the best networks were Yedroudj-Net [START_REF] Yedroudj | Yedrouj-Net: An Efficient CNN for Spatial Steganalysis[END_REF], ReST-Net [START_REF] Li | ReST-Net: Diverse Activation Modules and Parallel Subnets-Based CNN for Spatial Image Steganalysis[END_REF], and SRNet [START_REF] Boroumand | Deep Residual Network for Steganalysis of Digital Images[END_REF]. Yedroudj-Net is a small network that can learn on a very small database and can be effective even without using the tricks known to improve performance such as transfer learning [START_REF] Qian | Learning and Transferring Representations for Image Steganalysis Using Convolutional Neural Network[END_REF] or virtual augmentation of the database [START_REF] Ye | Deep Learning Hierarchical Representations for Image Steganalysis[END_REF], etc. This network is a good candidate when working on GANs. It is better than Ye-Net [START_REF] Ye | Deep Learning Hierarchical Representations for Image Steganalysis[END_REF], and can be improved to face other more recent networks [START_REF] Zhang | Depth-Wise Separable Convolutions and Multi-Level Pooling for an Efficient Spatial CNN-Based Steganalysis; (previously named "efficient feature learning and multi-size image steganalysis based on cnn[END_REF]. ReST-Net [START_REF] Li | ReST-Net: Diverse Activation Modules and Parallel Subnets-Based CNN for Spatial Image Steganalysis[END_REF] is a huge network made of three sub-networks which uses various pre-processing filter banks. SRNet [START_REF] Boroumand | Deep Residual Network for Steganalysis of Digital Images[END_REF] network that can be adapted to spatial or Jpeg steganalysis. It requires various tricks such as virtual augmentation and transfer learning, and therefore requires a bigger database compared to Yedroudj-Net. These three networks are described in Section 1.5.1.

To resume, from 2015 to 2016, publications were in spatial steganalysis, in 2017, the publications were mainly on JPEG steganalysis. In 2018, publications were again mainly concentrated on spatial steganalysis. Finally, at the end of 2017, the first publications using GANs appeared. In Section 1.6 we present the new propositions using steganography by deep-learning, and give classification per family.

In the next subsection, we report on the most successful networks until the end of 2018, for various scenarios. In Section 1.5.1, we describe the Not-Side-Channel-Aware (Not-SCA) scenario, in Section 1.5.2 we discuss the scenario known as Side-Channel-Aware (SCA), in Sections 1.5.3 we deal with JPEG steganalysis Not-SCA and SCA scenarios. In Section 1.5.4 we very briefly discuss cover-source mismatch, although for the moment the proposals using a CNN do not exist.

We will not tackle the scenario of CNN invariant to the size of the images because it is not yet mature enough. This scenario is briefly discussed in Section 1.1.4, and the papers of Yedroudj-Net [START_REF] Yedroudj | Yedrouj-Net: An Efficient CNN for Spatial Steganalysis[END_REF], Zhu-Net [START_REF] Zhang | Depth-Wise Separable Convolutions and Multi-Level Pooling for an Efficient Spatial CNN-Based Steganalysis; (previously named "efficient feature learning and multi-size image steganalysis based on cnn[END_REF], or Tsang et al. [START_REF] Clement | Steganalyzing Images of Arbitrary Size with CNNs[END_REF], give firsts solutions.

We will not approach the scenario of quantitative steganalysis per CNN, which consists in estimating the embedded payload size. This scenario is very well examined in the paper [START_REF] Mo Chen | Deep Learning Regressors for Quantitative Steganalysis[END_REF] and serves as a new state-of-the-art method. The approach surpasses the previous state-of-the-art approaches [START_REF] Kodovský | Quantitative Steganalysis Using Rich Models[END_REF] [111] that rely on Rich Models, an Ensemble of trees, and an efficient normalization of features.

Nor will we discuss batch steganography and pooled steganalysis with CNNs which has not yet been addressed, although the work presented in [START_REF] Zakaria | Pooled Steganalysis in JPEG:how to deal with the spreading strategy[END_REF] using two-stage machine learning can be extended to deep learning.

THE SPATIAL STEGANALYSIS NOT-SIDE-CHANNEL-AWARE (NOT-SCA)

In early 2018 the most successful spatial steganalysis approach is the Yedroudj-Net [START_REF] Yedroudj | Yedrouj-Net: An Efficient CNN for Spatial Steganalysis[END_REF] method (See Figure 1.9). The experiments comparisons were carried out on the BOSS database which contains 10,000 images sub-sampled to 256 × 256 pixels. For a fair comparison, the experiments were performed by comparing the approach to Xu-Net without Ensemble [START_REF] Xu | Structural Design of Convolutional Neural Networks for Steganalysis[END_REF], to the Ye-Net network in its Not-SCA version [START_REF] Ye | Deep Learning Hierarchical Representations for Image Steganalysis[END_REF], and also to Ensemble Classifier [START_REF] Kodovský | Ensemble Classifiers for Steganalysis of Digital Media[END_REF] fed by Spatial-Rich-Models [START_REF] Fridrich | Rich Models for Steganalysis of Digital Images[END_REF]. Note that Zhu-Net [START_REF] Zhang | Depth-Wise Separable Convolutions and Multi-Level Pooling for an Efficient Spatial CNN-Based Steganalysis; (previously named "efficient feature learning and multi-size image steganalysis based on cnn[END_REF] (not yet published when writing this chapter) offers three improvements to Yedroudj-Net that allows it to be even more efficient. The improvements reported by Zhu-Net [START_REF] Zhang | Depth-Wise Separable Convolutions and Multi-Level Pooling for an Efficient Spatial CNN-Based Steganalysis; (previously named "efficient feature learning and multi-size image steganalysis based on cnn[END_REF] are the update to the kernel filters of the pre-processing module (in the same vein as what has been proposed by Matthew Stamm's team in Forensics [START_REF] Bayar | A Deep Learning Approach to Universal Image Manipulation Detection Using a New Convolutional Layer[END_REF]), replacing the first two convolution blocks with two modules of Depthwise Separable Convolutions as proposed in [START_REF] Chollet | Xception: Deep Learning with Depthwise Separable Convolutions[END_REF], and finally replacing global average pooling with a Spatial Pyramid Pooling (SPP) module as in [START_REF] He | Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition[END_REF].

In May 2018 the ReST-Net [START_REF] Li | ReST-Net: Diverse Activation Modules and Parallel Subnets-Based CNN for Spatial Image Steganalysis[END_REF] approach was proposed (See Figures 1.7 and 1.8). It consists of agglomerating three networks to form a super-network. Each sub-net is a modified Xu-Net like network [START_REF] Xu | Structural Design of Convolutional Neural Networks for Steganalysis[END_REF] resembling the Yedroudj-Net [START_REF] Yedroudj | Yedrouj-Net: An Efficient CNN for Spatial Steganalysis[END_REF] network, with an Inception module on block 2 and block 4. This Inception module contains filters of the same size, with a different activation function for each "path" (TanH, ReLU, Sigmoid). The first subnet performs pre-processing with 16 Gabor filters, the second sub-network pre-processing with 16 SRM linear filters, and the third network pre-processing with 14 nonlinear residuals (min and max calculated on SRM). The learning process requires four steps (one step per subnet and then one step for the super-network). The results are 2-5% better than Xu-Net for S-UNIWARD [START_REF] Holub | Universal Distortion Function for Steganography in an Arbitrary Domain[END_REF], HILL [START_REF] Li | A New Cost Function for Spatial Image Steganography[END_REF], CMD-HILL [START_REF] Li | A Strategy of Clustering Modification Directions in Spatial Image Steganography[END_REF] on the BOSSBase v1.01 [START_REF] Bas | Break Our Steganographic System': The Ins and Outs of Organizing BOSS[END_REF] 512 × 512. Looking at the results, it is the concept of Ensemble that improves the performances. Taken separately, each sub-net has a lower performance. At the moment, no comparison in a fair framework was made between an Ensemble of Yedroudj-Net and ReST-Net.

In September 2018 the SRNet [START_REF] Boroumand | Deep Residual Network for Steganalysis of Digital Images[END_REF] approach became available online (See Figures 1.11). It proposes a deeper network than previous networks, which is composed of 12 convolution blocks. The network does not perform preprocessing (the filters are learned) and sub-samples the signal only from the 8th convolution block. To avoid the problem of vanishing gradient, blocks 2 to 11 use the shortcut mechanism. The Inception mechanism is also implemented from block 8 during the pooling (sub-sampling) phase. The learning database is augmented with the BOWS2 database as in [START_REF] Ye | Deep Learning Hierarchical Representations for Image Steganalysis[END_REF] or [START_REF] Yedroudj | How to Augment a Small Learning Set for Improving the Performances of a CNN-Based Steganalyzer?[END_REF], and a curriculum training mechanism [START_REF] Ye | Deep Learning Hierarchical Representations for Image Steganalysis[END_REF] is used to change from a standard payload size of 0.4 bpp to other payload sizes. Finally, gradient descent is performed by Adamax [START_REF] Diederik | Adam: A Method for Stochastic Optimization[END_REF]. The network can be used for spatial steganalysis (Not-SCA), for informed (SCA) spatial steganalysis (see Section 1.5.2) and for JPEG steganalysis (see Section 1.5.3 Not-SCA or SCA). Overall the philosophy remains similar to previous networks, with three parts: pre-processing (with learned filters), convolution blocks, and classification blocks. With a simplified vision, the network corresponds to the addition of 5 blocks of convolution without pooling, just after the first convolution block of Yedroudj-Net network. To be able to use this large number of blocks on a modern GPU, authors must reduce the number of feature maps to 16, and in order to avoid the problem of vanishing gradients, they must use the trick of residual shortcut within the blocks as proposed in [START_REF] He | Deep Residual Learning for Image Recognition[END_REF]. Note that preserving the size of the signal in the first seven blocks is a radical approach. This idea has been put forward in [START_REF] Pibre | Deep Learning is a Good Steganalysis Tool when Embedding Key is Reused for Different Images, Even if There is a Cover Source-Mismatch[END_REF] where the suppression of pooling had clearly improved the results. The use of modern brick like shortcuts or Inception modules also enhances performance.

It should also be noted that the training is completed end-to-end without particular initialization (except when there is a curriculum training mechanism). In the initial publication [START_REF] Boroumand | Deep Residual Network for Steganalysis of Digital Images[END_REF], SRNet network was not compared to Yedroudj-Net [START_REF] Yedroudj | Yedrouj-Net: An Efficient CNN for Spatial Steganalysis[END_REF], or to Zhu-Net [START_REF] Zhang | Depth-Wise Separable Convolutions and Multi-Level Pooling for an Efficient Spatial CNN-Based Steganalysis; (previously named "efficient feature learning and multi-size image steganalysis based on cnn[END_REF], but later, in 2019, in [START_REF] Zhang | Depth-Wise Separable Convolutions and Multi-Level Pooling for an Efficient Spatial CNN-Based Steganalysis; (previously named "efficient feature learning and multi-size image steganalysis based on cnn[END_REF] all these networks have been compared and the update of Yedroudj-Net i.e. Zhu-Net gives performances of 1% to 4% improvement over SRNet, and 4% to 9% improvement over Yedroudj-Net, when using the usual comparison protocol. Note that Zhu-Net is also better than the network Cov-Pool published at IH&MMSec'2019 [START_REF] Deng | Fast and Effective Global Covariance Pooling Network for Image Steganalysis[END_REF], and whose performances are similar to SRNet.

THE SPATIAL STEGANALYSIS SIDE-CHANNEL-INFORMED (SCA)

At the end of 2018, two approaches combined the knowledge of the selection channel, the SCA-Ye-Net (which is the SCA version of Ye-Net) [START_REF] Ye | Deep Learning Hierarchical Representations for Image Steganalysis[END_REF] and the SCA-SRNet (which is the SCA version of SRNet) [START_REF] Boroumand | Deep Residual Network for Steganalysis of Digital Images[END_REF]. The idea is to use a network which is used for non-informed steganalysis and to inject not only the image to be steganalyzed, but also the modification probability map. It is thus assumed that Eve knows, or can have a good estimation [START_REF] Sedighi | Effect of Imprecise Knowledge of the Selection Channel on Steganalysis[END_REF] of the modification probability map, i.e. Eve has access to side-channel information.

The modification probability map is given to the pre-processing block SCA-Ye-Net [START_REF] Ye | Deep Learning Hierarchical Representations for Image Steganalysis[END_REF], and equivalently to the first convolution block for SCA-SRNet [START_REF] Boroumand | Deep Residual Network for Steganalysis of Digital Images[END_REF], but the kernel values are replaced by their absolute values. After the convolution, each feature map is summed point-wise with the corresponding convolved "modification probability map" (see Figure 1.12). Note that the activation functions of the first convolutions in SCA-Ye-Net, i.e. the truncation activation function (truncated linear unit (TLU) in the article), are replaced by a ReLU. This makes it possible to propagate (forward pass) "virtually" throughout the network, an information related to the image, and another related to the modification probability map.

Note that this procedure to transform a Not-SCA-CNN into an SCA-CNN is inspired by the propagation of the modification probability map proposed in [START_REF] Denemark | Improving Selection-Channel-Aware Steganalysis Features[END_REF] and [START_REF] Denemark | Steganalysis Features for Content-Adaptive JPEG Steganography[END_REF]. These two papers come as an improvement on the previous maxSRM Rich Models [START_REF] Denemark | Selection-Channel-Aware Rich Model for Steganalysis of Digital Images[END_REF]. In maxSRM, instead of accumulating the number of occurrences in the co-occurrence matrix, an accumulation of the maximum of a local probability was used. In [START_REF] Denemark | Improving Selection-Channel-Aware Steganalysis Features[END_REF] and [START_REF] Denemark | Steganalysis Features for Content-Adaptive JPEG Steganography[END_REF], the idea was to transform the modification probability map in a similar way to the filtering of the image, and then to update the co-occurrence matrix using the transformed version of the modification probability map, instead of the original modification probability map. The imitation of this principle was initially integrated into Ye-Net for CNN steganalysis, and this concept is easily transposable to most of the

THE JPEG STEGANALYSIS

The best JPEG CNN at the end of 2018 was SRNet [START_REF] Boroumand | Deep Residual Network for Steganalysis of Digital Images[END_REF]. Note that this network, at this period, is the only one that has been proposed with a Side Channel Aware (SCA) version.

It is interesting to list and rapidly discuss the previous CNNs used for JPEG steganalysis. The first network, published in February 2017, was the Zeng et al. network and was evaluated with a million images, and does a limited evaluation of stego-mismatch [START_REF] Zeng | Pre-Training via Fitting Deep Neural Network to Rich-Model Features Extraction Procedure and its Effect on Deep Learning for Steganalysis[END_REF] [START_REF] Zeng | Large-Scale JPEG Image Steganalysis Using Hybrid Deep-Learning Framework[END_REF]. Then in June 2017 at IH&MMSec'2017, two networks have been proposed: PNet [START_REF] Mo Chen | JPEG-Phase-Aware Convolutional Neural Network for Steganalysis of JPEG Images[END_REF], and Xu-Net-Jpeg [START_REF] Xu | Deep Convolutional Neural Network to Detect J-UNIWARD[END_REF]. Finally, SRNet [START_REF] Boroumand | Deep Residual Network for Steganalysis of Digital Images[END_REF] was added online in Septembre 2018.

In Zeng et al.s' network [114] [113], the pre-processing block takes as input a de-quantized (real value) image, then convolved it with 25 DCT basis, and then quantized and truncated the 25 filtered images. This pre-processing block, uses handcrafted filter kernels (DCT basis), the kernels' values are fixed, and these filters are inspired by DCTR Rich Models [START_REF] Holub | Low-Complexity Features for JPEG Steganalysis Using Undecimated DCT[END_REF]. There are three different quantizations, so, the pre-processing block gives 3 × 25 residual images. The CNN is then made of 3 sub-networks which are each producing a feature vector of 512 dimension. The sub-networks are inspired by Xu-Net [START_REF] Xu | Structural Design of Convolutional Neural Networks for Steganalysis[END_REF]. The three feature vectors, outputed by the three sub-networks, are then given to a fully connected structure, and the final network ends with a softmax layer.

Similarly to what has been done for spatial steganalysis, this network is using a pre-processing block inspired by Rich Models [START_REF] Holub | Low-Complexity Features for JPEG Steganalysis Using Undecimated DCT[END_REF]. Note that the most efficient Rich Models today is the Gabor Filter Rich Models [START_REF] Xia | Improving GFR Steganalysis Features by Using Gabor Symmetry and Weighted Histograms[END_REF]. Also, note that this network takes advantage of the notion of an ensemble of features, which comes from the three different sub-networks. The network of Zeng et al. is less efficient than Xu-Net-Jpeg [START_REF] Xu | Deep Convolutional Neural Network to Detect J-UNIWARD[END_REF], but gives an interesting first approach guided by Rich Models.

The PNet main idea (and also VNet which is less efficient but takes less memory) [START_REF] Mo Chen | JPEG-Phase-Aware Convolutional Neural Network for Steganalysis of JPEG Images[END_REF] is to imitate Phase-Aware Rich Models, such as DCTR [START_REF] Holub | Low-Complexity Features for JPEG Steganalysis Using Undecimated DCT[END_REF], PHARM [START_REF] Holub | Phase-Aware Projection Model for Steganalysis of JPEG Images[END_REF], or GFR [START_REF] Xia | Improving GFR Steganalysis Features by Using Gabor Symmetry and Weighted Histograms[END_REF], and therefore to have a decomposition of an input image into 64 features maps which represents the 64 phases of the Jpeg images. The pre-processing block takes as input a de-quantized (real value) image, convolves it with four filters, the "SQUARE5×5" from the Spatial Rich Models [START_REF] Fridrich | Rich Models for Steganalysis of Digital Images[END_REF], a "point" high-pass filter (referenced as "catalyst kernel") which complements the "SQUARE5×5", and two directional Gabor Filters (angles 0 and π/2).

Just after the second block of convolution, a "PhaseSplit Module" splits the residual image into 64 feature maps (one map = one phase), similarly to what was done in Rich Models. Some interesting methods have been used such as (1) the succession of the fixed convolutions of the pre-processing block, and a second convolution with learnable values, (2) a clever update of BN parameters, (3) the use of the "Filter Group Option" which virtually builds sub-networks, (4) bagging on 5-cross-validation, (5) taking the 5 last evaluations in order to give the mean error for a network, [START_REF] Bengio | Representation Learning: A Review and New Perspectives[END_REF] shuffling the database at the beginning of each epoch, to have better BN behavior, and to help generalization, and (7) eventually using an Ensemble. With such know-how, PNet beat the classical two-step machine learning approaches in a Not-SCA, and also in a SCA version (Ensemble Classifier + GFR).

The Xu-Net-Jpeg [START_REF] Xu | Deep Convolutional Neural Network to Detect J-UNIWARD[END_REF] is even more attractive since the approach was slightly better than PNet, and does not require a strong domain inspiration like in PNet. The Xu-Net-Jpeg is strongly inspired by ResNet [START_REF] He | Deep Residual Learning for Image Recognition[END_REF], a wellestablished network from the machine learning community. ResNet allows the use of deeper networks thanks to the use of shortcuts. In Xu-Net-Jpeg, the pre-processing block takes as input a dequantized (real value) image, then convolves the image with 16 DCT basis (in the same spirit as Zeng et al. network [START_REF] Zeng | Pre-Training via Fitting Deep Neural Network to Rich-Model Features Extraction Procedure and its Effect on Deep Learning for Steganalysis[END_REF] [START_REF] Zeng | Large-Scale JPEG Image Steganalysis Using Hybrid Deep-Learning Framework[END_REF]), and then applies an absolute value, a truncation, and a set of convolutions, BN, ReLU until it obtains a feature vector of 384 dimension, which is given to a fully connected block. We can note that the max pooling or average pooling are replaced by convolutions. This network is really simple and was in 2017, the state-of-the-art method. In a way, these kind of results shows us that the networks proposed by machine learning community are very competitive and there is not so much domain-knowledge to integrate to the topology of a network in order to obtain a very efficient network.

In 2018 the state-of-the-art CNN for JPEG steganalysis (which can also be used for spatial steganalysis) was SRNet [START_REF] Boroumand | Deep Residual Network for Steganalysis of Digital Images[END_REF]. This network was previously presented in Section 1.5.1. Note that for the side channel aware version of SRNet, the embedding change probability per DCTs coefficient is, first, mapped back in the spatial domain using absolute values for the DCT basis. This sidechannel map then enters the network and is convolved with each kernel (this first convolution acts as a pre-processing block). Note that the convolutions in this first block for this side-channel map are such that the filter kernels are modified to their absolute values. After passing the convolution, the feature maps are summed with the square root of the values from the convolved sidechannel map. Note that this idea is similar to what was exposed in SCA Ye-Net version (SCA-TLU-CNN) [START_REF] Ye | Deep Learning Hierarchical Representations for Image Steganalysis[END_REF] about the integration of a Side-Channel map, and to the recent proposition for Side-Channel Aware steganalysis in JPEG with Rich Models [START_REF] Denemark | Steganalysis Features for Content-Adaptive JPEG Steganography[END_REF], where the construction of the side-channel map, and especially the quantity δ 1/2 uSA9 was defined. Note that a similar solution with more convolutions, applied to the sidechannel map, have been proposed in IH&MMSec'2019 [START_REF] Huang | A Customized Convolutional Neural Network with Low Model Complexity for JPEG Steganalysis[END_REF].

DISCUSSION ABOUT THE MISMATCH PHENOMENON SCENARIO

Mismatch (cover-source mismatch or stego-mismatch) is a phenomenon present in machine learning, and this issue sees classification performances decrease because of the inconsistency between the distribution of the learning database and the distribution of the test database. The problem is not due to an inability to generalize in machine learning algorithms, but due to the lack of similar examples occurring in the training and test database. The problem of mismatch is an issue that goes well beyond the scope of steganalysis.

In steganalysis the phenomenon can be caused by many factors. The coversource mismatch can be be caused by the use of different photo-sensors, by different digital processing, by different camera settings (focal length, ISO, lens, etc), by different image sizes, by different image resolutions, etc [START_REF] Gibouloto | Steganalysis into the Wild: How to Define a Source?[END_REF], [START_REF] Borghys | Facing the Cover-Source Mismatch on JPHide using Training-Set Design[END_REF]. The stego-mismatch can be caused by different amounts of embedded bits, or by different embedding algorithms.

Even if not yet fully explored and understood, the mismatch (cover-source mismatch (CSM) or stego mismatch) is a major area for examination in the coming years for the discipline. The results of the Alaska challenge [START_REF] Cogranne | The ALASKA Steganalysis Challenge: A First Step Towards Steganalysis[END_REF] 10 published at the ACM conference IH&MMSec'2019 will continue these considerations.

In 2018, CSM had been established for 10 years [START_REF] Cancelli | A Comparative Study of +/-1 Steganalyzers[END_REF]. There are two major current school of thought, as well as a third more exotic one:

• The first school of thought is the so-called holistic approach (that is to say, global, macroscopic, or systemic), and consists of learning all distributions [START_REF] Lubenko | Steganalysis with Mismatched Covers: Do Simple Classifiers Help[END_REF], [START_REF] Lubenko | Going From Small to Large Data in Steganalysis[END_REF]. The use of a single CNN with millions of images [START_REF] Zeng | Large-Scale JPEG Image Steganalysis Using Hybrid Deep-Learning Framework[END_REF] is in the logical continuation of this current school of thought. Note that this scenario does not consider that the test set can be used during learning. This scenario can be assimilated to an online scenario where the last player (from a game theory point of view) is the steganographer because in an online scenario the steganographer can change her strategy while the steganalyzer cannot.

• The second school of thought is atomistic (= partitioned, microscopic, analytical, of divide-and-conquer type, or individualized) and consists of partitioning the distribution [START_REF] Pasquet | Steganalysis with Cover-Source Mismatch and a Small Learning Database[END_REF], that is to say to create a partition and to associate a classifier for each cell of the partition. Note that an example of an atomistic approach for stego-mismatch management, using a CNN multi-classifier, is presented in [START_REF] Butora | Detection of Diversified Stego Sources with CNNs[END_REF] (a class is associated with each embedding algorithm -there is thus a latent partition). Note that this idea [START_REF] Butora | Detection of Diversified Stego Sources with CNNs[END_REF], among others, has been used by the winners of the Alaska challenge [START_REF] Yousfi | Breaking ALASKA: Color Separation for Steganalysis in JPEG Domain[END_REF]. Note that again, this scenario does not consider that the test set can be used during learning. This scenario can also be assimilated to an online scenario where the last player (from a game theory point of view) is the steganographer because in an online scenario the steganographer can change her strategy while the steganalyst cannot.

• Finally, the third exotic school of thought considers that there is a test database (with much more than one image), and that the database is available, and usable (without labels) during learning. This scenario can be assimilated to an offline scenario where the last player (from a game theory point of view) is the steganalyser, because in this offline scenario the steganalyser is playing a more forensic role. In this situation, there are approaches of type domain adaptation, or a transfer of features GTCA [START_REF] Li | Generalized Transfer Component Analysis for Mismatched JPEG Steganalysis[END_REF], IMFA [START_REF] Kong | Iterative Multi-order Feature Alignment for JPEG Mismatched Steganalysis[END_REF], CFT [START_REF] Feng | Contribution-Based Feature Transfer for JPEG Mismatched Steganalysis[END_REF], where the idea is to define an invariant latent space. Another approach is ATS [START_REF] Lerch | Unsupervised Steganalysis Based on Artificial Training Sets[END_REF] which performs an unsupervised classification using only the test database and requires the embedding algorithm in order to re-embed a payload in the images from the test database.

These three schools of thought can help derive approaches by CNN that integrate the ideas presented here. That said, the ultimate solution may be to detect the phenomenon of mismatch and raise the alarm or prohibit the decision [START_REF] Anil | SafePredict: A Meta-Algorithm for Machine Learning That Uses Refusals to Guarantee Correctness[END_REF]. In short, to integrate a more intelligent mechanism than just holistic or atomistic.

STEGANOGRAPHY BY DEEP-LEARNING

In Simmons' founding article [START_REF] Simmons | The Subliminal Channel and Digital Signatures[END_REF], steganography and steganalysis are defined as a 3-player game. The steganographers, usually named Alice and Bob, want to exchange a message without being suspected by a third party. They must use a harmless medium, such as an image, and hide the message in this medium. The steganalyst, usually called Eve, observes the exchanges between Alice and Bob. Eve must check whether these images are natural, that is to say, cover images, or whether they hide a message, i.e. stego images.

This notion of game between Alice, Bob and Eve corresponds to that found in game theory. Each player tries to find a strategy that maximizes their chances of winning. For this, we express the problem as a min-max problem that we seek to optimize. The solution to the optimum, if it exists, is called the solution at the Nash equilibrium. When all the players are using a strategy at the Nash equilibrium, any change of strategy from a player, leads to a counter attack from the other players allowing them to increase their gains.

In 2012, Schöttle and Böhme [START_REF] Schöttle | A Game-theoretic Approach to Content-adaptive Steganography[END_REF], [START_REF] Schöttle | Game Theory and Adaptive Steganography[END_REF] have modeled with a simplifying hypotheses a problem of steganography and steganalysis and proposed a formal solution. Schöttle and Böhme have named this approach the optimum adaptive steganography or strategic adaptive steganography in opposition to the so-called naive adaptive steganography that corresponds to what is currently used in algorithms like HUGO (2010) [START_REF] Pevný | Using High-Dimensional Image Models to Perform Highly Undetectable Steganography[END_REF], WOW (2012) [START_REF] Holub | Designing Steganographic Distortion Using Directional Filters[END_REF], S-UNIWARD / J-UNIWARD / SI-UNIWARD (2013) [START_REF] Holub | Universal Distortion Function for Steganography in an Arbitrary Domain[END_REF], HILL (2014) [START_REF] Li | A New Cost Function for Spatial Image Steganography[END_REF], MiPOD (2016) [START_REF] Sedighi | Content-Adaptive Steganography by Minimizing Statistical Detectability[END_REF], Synch-Hill (2015) [START_REF] Denemark | Improving Steganographic Security by Synchronizing the Selection Channel[END_REF], UED (2012) [START_REF] Guo | An Efficient JPEG Steganographic Scheme Using Uniform Embedding[END_REF], IUERD (2016) [START_REF] Pan | Improved Uniform Embedding for Efficient JPEG Steganography[END_REF], IUERD-UpDist-Dejoin2 (2018) [START_REF] Li | Defining Joint Distortion for JPEG Steganography[END_REF], etc.

That said, the mathematical formalization of the steganography / steganalysis problem by game theory is difficult and often far from practical in reality. Another way to determine a Nash equilibrium is to "simulate" the game. From a practical point of view, Alice plays the entire game alone, meaning that she does not interact with Bob or Eve to build her embedding algorithm. The idea is that she uses 3 algorithms (2 algorithms in the simplified version) that we name agents. Each of these agents will play the role of Alice, Bob 11 and Eve, and each agent runs at Alice's home. Let us note these three algorithms running at Alice's home: Agent-Alice, Agent-Bob, and Agent-Eve. With these notations, we thus make a distinction with the Human users: Alice (sender), Bob (receiver), and Eve (warden), and it allows us to highlight the fact that the three agents are executed from Alice's side. So, Agent-Alice's role is to embed a message into an image so that the resulting stego image is undetectable by Agent-Eve, and such that Agent-Bob can extract the message.

Alice can launch the game, that is to say the simulation, and the agents are "fighting" 12 . Once the agents have reached a Nash's equilibrium, Alice stops the simulation and can now keep Agent-Alice, which is her strategic adaptive embedding algorithm, and can send Agent-Bob i.e the extraction algorithm (or any equivalent information) to Bob 13 . The secret communication between Alice and Bob is now possible through the use of the Agent-Alice algorithm for embedding and Agent-Bob algorithm for the extraction.

The first precursor approaches aimed at simulating a strategic adaptive equilibrium, and therefore proposing strategic embedding algorithms date from 2011 and 2012. The two approaches are MOD [START_REF] Filler | Design of Adaptive Steganographic Schemes for Digital Images[END_REF] and ASO [START_REF] Kouider | Adaptive Steganography by Oracle (ASO)[END_REF] [56]; See Figure 1.13. Whether for MOD or ASO, the game is made by pitting Agent-Alice and Agent-Eve against each other. In this game, Agent-Bob is not used since Agent-Alice is simply generating a cost map, which is then used for coding and embedding the message thanks to an STC [START_REF] Filler | Minimizing Additive Distortion in Steganography Using Syndrome-Trellis Codes[END_REF]. Alice can generate a cost map for a source image with the Agent-Alice, and then she can easily use the STC [START_REF] Filler | Minimizing Additive Distortion in Steganography Using Syndrome-Trellis Codes[END_REF] algorithm to embed her message and obtain the stego image. From his side, Bob only has to use the STC [START_REF] Filler | Minimizing Additive Distortion in Steganography Using Syndrome-Trellis Codes[END_REF] algorithm to retrieve the message from the stego image. In both MOD or ASO, the "simulation" is such that the two following actions are iterated until a stop criterion is reached: teams that are competing (Agent-Alice plus Agent-Bob from one side, and Agent-Eve from the other side) in a zero-sum game. 13 Note that the exchange of any secret information between Alice and Bob, prior to the use of Agent-Alice and Agent-Bob, requires the use of another steganographic channel. Also note that this initial sending from Alice to Bob before been able to use Agent-Alice and Agent-Bob is equivalent to the classical stego-key exchange problem.

i) Agent-Alice updates its embedding cost map by asking an Oracle (the Agent-Eve) how best to update each embedding cost, to be even less detectable.

In MOD (2011) [START_REF] Filler | Design of Adaptive Steganographic Schemes for Digital Images[END_REF], Agent-Eve is an SVM. Agent-Alice updates their embedding costs by reducing the SVM margin separating the covers and the stegos.

In ASO (2012) [START_REF] Kouider | Adaptive Steganography by Oracle (ASO)[END_REF], Agent-Eve is an Ensemble Classifier [START_REF] Kodovský | Ensemble Classifiers for Steganalysis of Digital Media[END_REF] and is named an Oracle. Agent-Alice updates their embedding costs by transforming a stego in a cover.

In both cases, the idea is to find a displacement in the latent space (feature space) co-linear to the orthogonal axis to the hyperplane separating the cover and stego class. Note that in the current terminology, introduced by Ian Goodfellow in 2014 [START_REF] Goodfellow | Generative Adversarial Nets[END_REF], Agent-Alice runs an adversarial attack, and the Oracle (Agent-Eve), named a discriminator (or the classifier to be deceived), must learn to counter this attack.

ii) The Oracle (Agent-Eve) updates its classifier. Reformulated with the terminology from machine learning, this equates to the discriminant update by re-learning it, in order to steganalysis once more the stego images generated by Agent-Alice.

In 2014, Goodfellow et al. [START_REF] Goodfellow | Generative Adversarial Nets[END_REF] used neural networks to "simulate" a game with an image generator network and a discriminating network whose role was to decide whether an image was real or synthesized. The authors have named this Generative Adversarial Networks (GAN approach). The terminology used in this paper was subsequently widely adopted. Moreover, the use of neuron networks makes the expression of the min-max problem easy. The optimization is then carried out via the back-propagation optimization process. Moreover, thanks to deep-learning libraries it is now easy to build a GAN type system. As we have already mentioned before, the concept of game simulation, existed in steganography / steganalysis with MOD [START_REF] Filler | Design of Adaptive Steganographic Schemes for Digital Images[END_REF] and ASO [START_REF] Kouider | Adaptive Steganography by Oracle (ASO)[END_REF], but the implementation and the optimization becomes easier with neural networks.

From 2017, after a period of 5 years of stagnation, the concept of the simulated game is once again studied in the field of steganography / steganalysis, thanks to the emergence of deep learning and GAN approaches. At the end of 2018, we can define four groups or four families14 of approaches; some of which will probably merge:

• The family by synthesis,

• The family by generation of the modifications probability map,

• The family by adversarial-embedding iterated (approaches misleading a discriminant),

• The family by 3-player game,

THE FAMILY BY SYNTHESIS

The first approaches based on image synthesis via a GAN [START_REF] Goodfellow | Generative Adversarial Nets[END_REF] generator proposed the generation of cover images and then use them to make insertion by modification. These early propositions were approaches by modification.

The argument put forward for such approaches is that the generated database would be safer. A reference often cited is that of SGAN [START_REF] Volkhonskiy | Steganographic Generative Adversarial Networks[END_REF] found on ArXiv, which was rejected at ICLR'2017 and was subsequently never published. This unpublished paper has a lot of errors and lack of proof. We should rather prefer the reference of SSGAN [START_REF] Shi | SSGAN: Secure Steganography Based on Generative Adversarial Networks[END_REF] that was published in September 2017, and that proposes the same thing: generate images and then hide messages in them. However, this protocol seems to complicate the matter. It is more logical that Alice herself chooses natural images that are safe for embedding, i.e. images that are innocuous, never broadcasted before, adapted to the context, with lots of noise or textures [START_REF] Sedighi | Toss that BOSSbase, Alice![END_REF], not well classified by a classifier [START_REF] Kouider | Technical Points About Adaptive Steganography by Oracle (ASO)[END_REF] or with a small deflection coefficient [START_REF] Sedighi | Content-Adaptive Steganography by Minimizing Statistical Detectability[END_REF], rather than generating images, and then using them to hide a message. A much more interesting approach using synthesis is to directly generate images that will be considered stego. To my knowledge, the first approach exploiting the GAN mechanism for image synthesis using the principle of steganography without modifications [START_REF] Fridrich | Steganography in Digital Media[END_REF] is proposed in the article of Hu et al. [START_REF] Hu | A Novel Image Steganography Method via Deep Convolutional Generative Adversarial Networks[END_REF] and published in July 2018; See Figure 1.14.

The first step consists of deriving a network able to synthesize images. In this paper, the DCGAN generator [START_REF] Radford | Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks[END_REF] is used to synthesize images with a preliminary learning thanks to GAN methodology. When fed with a vector of a fixed-size uniformly distributed in [-1, 1] the generator synthesizes an image. The second step consists of learning to another network to extract a vector from a synthesized image; the extracted vector must correspond to the vector given at the input of the generator which synthesizes the image. Finally, the last step consists of sending Bob the extraction network. Now, Alice can map a message to a fixed-size uniformly distributed vector, and then synthesize an image with the given vector, and send it to Bob. Bob can extract the vector and retrieve the corresponding message.

The approaches with no modifications have been around for many years, and it is known that one of the problems is that the number of bits that can be communicated is lower compared to the approaches with modifications. That said, the gap between the approaches by modifications versus no-modifications is beginning to narrow.

Here is a rapid analysis of the efficiency of the method. In the paper of Hu et al. [START_REF] Hu | A Novel Image Steganography Method via Deep Convolutional Generative Adversarial Networks[END_REF], the capacity is around 0.018 bits per pixel (bpp) with images 64 × 64 pixels 15 . In the experiment carried out, the synthesized images are either faces or photographs of food. An algorithm like HILL [START_REF] Li | A New Cost Function for Spatial Image Steganography[END_REF] (one of the most powerful algorithms on the BOSS database [START_REF] Sedighi | Toss that BOSSbase, Alice![END_REF]) is detected by SRNet [START_REF] Boroumand | Deep Residual Network for Steganalysis of Digital Images[END_REF] (one of the most successful steganalysis approaches towards the end of 2018) with a probability of error of Pe = 31.3% (note that a Pe of 50% is equivalent to a random detector) on a 256 × 256 pixels BOSS database, for a payload size of 0.1 bpp. Due to the square root law, the Pe would be higher for the 64 × 64 pixels BOSS database.

Therefore, there is around 0.02 bpp for the unmodified synthetic approach of Hu et al. [START_REF] Hu | A Novel Image Steganography Method via Deep Convolutional Generative Adversarial Networks[END_REF] whose security has not yet been evaluated enough, against something around 0.1 bpp for HILL, with less than one chance in three to be detected with a clairvoyant steganalysis i.e. a laboratory steganalysis (un- 15 The vector dimension is 100. This vector is used to synthesize images of a size 64 × 64 × 3. There are 100 × 3 bits (see the mapping) per image, i.e. about 0.02 bits per pixel (bpp). The Bit Error Rate is BER = 1 -0.94 = 6%. It is, therefore, necessary to add an Error Correcting Code (ECC) so that the approach is without errors. With the use of a Hamming code [START_REF] Mo Chen | Deep Learning Regressors for Quantitative Steganalysis[END_REF][START_REF] Butora | Detection of Diversified Stego Sources with CNNs[END_REF][START_REF] Bas | BOWS-2 Contest (Break Our Watermarking System)[END_REF]] that corrects at best 6% of errors, the payload size is therefore around 0.018 bpp.

realistic and much more efficient than a "real-world" / "into the wild" steganalysis [48] [18]). Therefore, there is still a margin in terms of the number of bits transmitted between the no-modification synthesis-based approaches, such as that of Hu et al. approach [START_REF] Hu | A Novel Image Steganography Method via Deep Convolutional Generative Adversarial Networks[END_REF], and modification approaches such as S-UNIWARD [START_REF] Holub | Universal Distortion Function for Steganography in an Arbitrary Domain[END_REF], HILL [START_REF] Li | A New Cost Function for Spatial Image Steganography[END_REF], MiPod [START_REF] Sedighi | Content-Adaptive Steganography by Minimizing Statistical Detectability[END_REF] or even Synch-Hill [START_REF] Denemark | Improving Steganographic Security by Synchronizing the Selection Channel[END_REF], but this margin has been reduced 16 . Also, note that there are still some issues to be addressed to ensure that approaches such as the one proposed by Hu et al. are entirely safe. In particular, it must be ensured that the detection of synthetic images [START_REF] Quan | Distinguishing Between Natural and Computer-Generated Images Using Convolutional Neural Networks[END_REF] does not compromise the communication channel in the long term. It must also be ensured that the absence of a secret key does not jeopardize the approach. Indeed, if one considers that the generator is public, is it possible to use this information to deduce that a synthesis approach without modification has been used?

THE FAMILY BY GENERATION OF THE MODIFICATIONS PROBABILITY MAP

The family by generation of the modification probability map is summarized in late 2018 in two papers: ASDL-GAN [START_REF] Tang | Automatic Steganographic Distortion Learning Using a Generative Adversarial Network[END_REF], and UT-6HPF-GAN [START_REF] Yang | An Embedding Cost Learning Framework Using GAN; (previously named "spatial image steganography based on generative adversarial network[END_REF]; See Figure 1.15. In this approach, there is a generator network and a discriminant network. From a cover, the generator network generates a map which is named the modification probability map. This modification probability map is then passed to an equivalent of the random draw function used in the STC [START_REF] Filler | Minimizing Additive Distortion in Steganography Using Syndrome-Trellis Codes[END_REF] simulator. We then obtain a map whose values belong to {-1, 0, +1}. This map is called the modification map and corresponds to the so-called stego-noise. The discriminant network takes as input a cover or an image resulting from the summation (point-to-point sum) of the cover and the stego-noise generated by the generator. The discriminant's objective is to distinguish between the cover and the "cover + stego-noise" image. The generator's objective is to generate a modification map which makes it possible to mislead the discriminant the most. Of course, the generator is forced to generate a non-zero probability map by adding in the loss term, a term constraining the size of the payload in addition to the term misleading the discriminant. In practice, taking the latest approach UT-6HPF-GAN [START_REF] Yang | An Embedding Cost Learning Framework Using GAN; (previously named "spatial image steganography based on generative adversarial network[END_REF], the generator is a U-Net type network, the draw function is obtained by a differentiable function double Tanh, and the discriminant is the Xu-Net [START_REF] Xu | Structural Design of Convolutional Neural Networks for Steganalysis[END_REF] enriched with 6 high-pass filters for the pre-processing in the same spirit as Ye-Net [START_REF] Ye | Deep Learning Hierarchical Representations for Image Steganalysis[END_REF] or Yedroudj-Net [START_REF] Yedroudj | Yedrouj-Net: An Efficient CNN for Spatial Steganalysis[END_REF].

The system learns on a first database, and then security comparisons are made on the 256 × 256 pixels BOSS [START_REF] Bas | Break Our Steganographic System': The Ins and Outs of Organizing BOSS[END_REF], LIRMMBase [START_REF] Pibre | Deep Learning is a Good Steganalysis Tool when Embedding Key is Reused for Different Images, Even if There is a Cover Source-Mismatch[END_REF], and BOWS2 [START_REF] Bas | BOWS-2 Contest (Break Our Watermarking System)[END_REF] databases. The steganalysis is done with the Ensemble Classifier (EC) [START_REF] Kodovský | Ensemble Classifiers for Steganalysis of Digital Media[END_REF] fed by SRM [START_REF] Fridrich | Rich Models for Steganalysis of Digital Images[END_REF], with EC plus the MaxSRM [START_REF] Denemark | Selection-Channel-Aware Rich Model for Steganalysis of Digital Images[END_REF], and with Xu-Net [START_REF] Xu | Structural Design of Convolutional Neural Networks for Steganalysis[END_REF]. Note that using Xu-Net is not a good choice since it is less efficient than EC+SRM or EC+MaxSRM, and also because it is the discriminant in the UT-6HPF-GAN (there is a risk of falling into an "incompleteness" issue; see papers [START_REF] Kodovský | On Completeness of Feature Spaces in Blind Steganalysis[END_REF] [54]). So, only looking at the results with EC+SRM, on the BOSS database, with real embedding using STC [START_REF] Filler | Minimizing Additive Distortion in Steganography Using Syndrome-Trellis Codes[END_REF], the performances are equivalent to those of HILL [START_REF] Li | A New Cost Function for Spatial Image Steganography[END_REF], which is one of the most efficient embedding algorithms on BOSS [START_REF] Sedighi | Toss that BOSSbase, Alice![END_REF]. It is therefore a very promising family.

Additionally, the generator does not seem to be impacted when used on a database that is different from the learning database. Nevertheless, curriculum learning has to be used when the target payload is changed, which seems to indicate a kind of sensitivity to the mismatch. Further reflexions have also to be achieved related to the generator's loss, and the mixing of both a securityrelated term and a payload-size term. Usually, one of the two criteria is fixed, so that we have to be in a payload-limited sender scenario or a securitylimited sender scenario. Note that a version for JPEG has been proposed in IH&MMSec'2019, JS-GAN [START_REF] Yang | Towards Automatic Embedding Cost Learning for JPEG Steganography[END_REF].

THE FAMILY BY ADVERSARIAL-EMBEDDING ITERATED (APPROACHES MISLEADING A DISCRIMINANT)

The family by adversarial-embedding iterated re-uses the concept of game simulation which was presented in the beginning of Section 1.6 with a simplification of the problem since there are only two-players: Agent-Alice and Agent-Eve. Historically MOD [START_REF] Filler | Design of Adaptive Steganographic Schemes for Digital Images[END_REF] and ASO [START_REF] Kouider | Adaptive Steganography by Oracle (ASO)[END_REF] were the first algorithms of this type.

Recently some papers have used the adversarial concept 17 by generating a deceiving example (see [START_REF] Zhang | Adversarial Examples Against Deep Neural Network Based Steganalysis[END_REF]), but these approaches are not adversarialembedding iterated. Nor are they dynamic, they contain no game simulation, they are not trying to reach a Nash equilibrium, there is no learning alternation between the embedder and the steganalysis.

A paper whose spirit is more in tune with a simulation of a game, which takes the principle of ASO [START_REF] Kouider | Adaptive Steganography by Oracle (ASO)[END_REF], and whose objective is to update the cost map is the algorithm ADV-EMB [START_REF] Tang | CNN-based Adversarial Embedding for Image Steganography[END_REF] (previously named AMA on ArXiv arXiv:1803.09043). In this article, the authors propose to make an adversarialembedding iterated, by letting Agent-Alice access the gradient of the loss of Agent-Eve (similarly to ASO, where Agent-Alice has access to its Oracle (the Agent-Eve)). In ADV-EMB, Agent-Alice uses the gradient, of the direction to the class frontier (between classes cover and stego), to modify the cost map, and in ASO, Agent-Alice directly uses the direction of the class frontier to modify the cost map.

In ADV-EMB [START_REF] Tang | CNN-based Adversarial Embedding for Image Steganography[END_REF], the cost map is initialized with the cost of in S-UNIWARD (for ASO it was the cost of HUGO [START_REF] Pevný | Using High-Dimensional Image Models to Perform Highly Undetectable Steganography[END_REF]). During the iterations, the cost map is updated, but there is only a β percentage of values that are updated 18 . When the ADV-EMB iterations are stopped, the cost map is composed of a β -1 percent of positions having a cost defined by S-UNIWARD, and β percent of positions having a cost coming from a change in the initial cost given by S-UNIWARD.

Note that updating a cost causes a cost asymmetry since the cost of a +1 change is no longer equal to the cost of a -1 change, as in ASO. Besides, the update of the two costs of a pixel is rather rough since it is a simple division by 2 for a direction (+1 or -1) and multiplication by 2 for the other direction. The sign of the gradient of loss, calculated by choosing the cover label, for a given pixel, makes it possible to determine for each of the two directions (+ 1 / -1) if we should reduce or increase the cost. The idea is as in ASO, to 17 An adversarial attack does not necessarily require us to use a deep learning classifier. 18 In STC, before coding the message, the pixels position of the image are shuffled thanks to the use of a pseudo-random shuffler, seeded by the secret stego-key. Note that this stegokey is shared between Alice and Bob. After the shuffling step, ADV-EMB selects the last β percent pixels of the shuffled image, and modifies their associated cost and only those ones.

deceive the discriminant since when we decide to reduce the value of a cost, it is to favor the direction of modification associated with this cost, and thus we promote getting closer to the cover class.

With such a scheme, security is improved. The fact that it is preferable to have a small number of modifications to the initial cost map probably makes it possible to preserve the initial embedding approach, and therefore not to introduce too many traces that could be detected by another steganalyzer [START_REF] Kodovsky | On Dangers of Overtraining Steganography to Incomplete Cover Model[END_REF]. That said, the update to the costs should probably be refined to better take into account the value of the gradient. For the moment, the selection of the β percent of pixels that will be modified is suboptimal, and this selection should eventually be done by looking at the initial cost of the whole pixel. Finally, as it is the case for ASO, if the discriminant is not powerful enough to carry out a steganalysis, then it can be totally counterproductive for the Agent-Alice. Therefore, there are many open questions regarding the convergence criterion, the stopping criterion, the number of iterations in the alternation between Agent-Alice and Agent-Eve, and the definition of a metric for measuring the relevance of Agent-Eve, etc. Note that an adversarial embedding iterated with Agent-Alice countering multiple versions of Agent-Eve has been proposed in IH&MMSec'2019 [START_REF] Bernard | Exploiting Adversarial Embeddings for Better Steganography[END_REF].

THE FAMILY BY 3-PLAYER GAME

The 3-player game concept is an extension of the previous family (see the family "adversarial-embedding iterated"), but this time with three agents and all are neural networks. Here, the three agents: Agent-Alice, Agent-Bob, and Agent-Eve are present (see Section 1.6 for an overview of the game). Note that Agent-Alice and Agent-Bob are "linked" since Agent-Bob is only there to add a constraint on the solution obtained by Agent-Alice. Thus, the primary "game" is an antagonistic (or adversarial) game between Agent-Alice and Agent-Eve, while the "game" between Agent-Alice and Agent-Bob is rather cooperative, since these two agents share the common purpose of communicating (Agent-Alice and Agent-Bob both want Agent-Bob to be able to extract the message without errors). Figure 1.16, from [START_REF] Yedroudj | Steganography using a 3 player game[END_REF] summarizes the principle of the 3-player game. Agent-Alice takes a cover image, a message and a stego-key, and after a discretisation step generates a stego image. This stego image is used by Agent-Bob to retrieve a message. On the other side, Agent-Eve has to decide whether an image is cover or stego; this agent outputs a score.

Historically, after MOD and ASO, which only included two players, we can see the premise of the idea of three players appear in 2016 with the paper of Abadi and Andersen [START_REF] Abadi | Learning to Protect Communications with Adversarial Neural Cryptography[END_REF]. In this paper, Abadi and Andersen [START_REF] Abadi | Learning to Protect Communications with Adversarial Neural Cryptography[END_REF] from Google Brain, proposed a cryptographic toy-example for an encryption based on the use of three neural networks. The use of neural networks makes it easy to obtain a strategic equilibrium since the problem is expressed as a min- max problem and its optimization can be carried out by the back-propagation process. Naturally, this 3-player game concept can be transposed to steganography with the use of deep learning.

In December 2017 (GSIVAT; [START_REF] Hayes | Generating Steganographic Images Via Adversarial Training[END_REF]), and in September 2018 (HiDDeN; [START_REF] Zhu | HiDDeN: Hiding Data With Deep Networks[END_REF]), two different teams from the machine learning community proposed, in NIPS'2017, then in ECCV'2018, to achieve strategic embedding thanks to 3 CNNs, iteratively updated, who play the role of Agent-Alice, Agent-Bob, and agent Agent-Eve. These two articles do not rigorously define the concept of the 3-player game, and there are erroneous assertions, mainly because the security and its evaluation are not correctly handled. If we place ourself in the standard framework to evaluate the empirical security of an embedding algorithm, that is to say with a clairvoyant Eve, the two approaches are very detectable. The most significant issues with these two papers are first, neither of the two approaches uses a stego-key; which is the equivalent to always using the same key, and it leads to very detectable schemes [START_REF] Pibre | Deep Learning is a Good Steganalysis Tool when Embedding Key is Reused for Different Images, Even if There is a Cover Source-Mismatch[END_REF], second, there is no discretization of pixel values issued from Agent-Alice, third, the computational complexity, due to the use of fully connected blocks, leads to un-practical approaches, and fourthly, the security evaluation is not carried out with a state-of-the-art steganalyzer.

At the beginning of 2019, Yedroudj et al. [START_REF] Yedroudj | Steganography using a 3 player game[END_REF] redefined the 3-player concept, by integrating the possibility of using a stego-key, treating the problem of discretization, going through convolution modules to have a scalable solution, and using a suitable steganalyzer. The proposition is not comparable to classical adaptive embedding approaches, but there is a real potential to such an approach. The Bit Error Rate is sufficiently small to be nullified, the embedding is done in the texture parts, and security could be improved in the future. As an example, the probability of error with a steganalysis by Yedroudj-Net [START_REF] Yedroudj | Yedrouj-Net: An Efficient CNN for Spatial Steganalysis[END_REF], under equal errors prior, for a real payload size 0,3 bpp 19for images of from BOWS2 database is 10.8%. This can, for example, be compared to the steganalysis of WOW [START_REF] Holub | Designing Steganographic Distortion Using Directional Filters[END_REF] using the same conditions, which give a probability error of 22.4%. There is still a security gap, but this approach paves the way to much research. There are still open questions on the link between Agent-Alice and Agent-Bob, on the use of GANs, and on the definition of losses and the tuning of the compromises between the different constraints.

CONCLUSION

In this chapter, we have practically completed a full presentation of the subject on deep learning in steganography and steganalysis, since its appearance in 2015. As a reviewer of many papers related to this subject during the period 2015 -2018, I think and I hope this chapter will help the community to understand what has been done and what are the next directions to explore.

In this chapter, we recalled the main elements of a CNN. We discussed the memory and time complexity, and practical problems for efficiency. We explored the link between some past approaches sharing similarities with what is currently carried out in a CNN. We presented the various main networks until the beginning of 2019, and multiple scenarios, finally we touched on the recent approaches for steganography with deep learning.

As mentioned in this chapter, many things have not been solved yet, and the major issue is to be able to experiment with more realistic hypotheses to be more "into the wild". The "holy grail" is cover-source mismatch and stego-mismatch, but in a way, the mismatch is a problem shared by the whole machine learning community. CNNs are now very present in the steganalysis community, and the next question is probably: how to go a step further and produce clever networks?

REFERENCE

and thus a rate of 0.3 bpp for these images.

Figure 1 . 1

 11 Figure 1.1 Yedroudj-Net network [108].

Figure 1 . 2

 12 Figure 1.2 Principle of a convolution.

Figure 1 . 3

 13 Figure 1.3 Three main activation functions and their derivatives.

Figure 1 . 4

 14 Figure 1.4 Illustration of a maximum pooling and an average pooling.

Figure 1 . 5

 15 Figure 1.5 Chronology of the main CNNs for steganography and steganalysis from 2015 to 2018.

Figure 1 . 6

 16 Figure 1.6 Xu-Net overall architecture.

Figure 1 . 7

 17 Figure 1.7 ReST-Net overall architecture.

Figure 1 . 8

 18 Figure 1.8 ReST-Net sub-network.

 .9), Yedroudj-Net 7 [107, 108] (See Figure 1.10), ReST-Net [62] (See Figures 1.7 and 1.8), SRNet 8 [10] (See Figures 1.11) have been published respectively in November 2017, January 2018, May 2018, and May 2019 (with an online version in September 2018)

Figure 1 . 9

 19 Figure 1.9 Ye-Net overall architecture.

Figure 1 .

 1 Figure 1.10 Comparison of Yedroudj-Net, Xu-Net, and Ye-Net architectures.

Figure 1 .

 1 Figure 1.11 SRNet network.

Figure 1 .

 1 Figure 1.12 Integration of the modification probability map in a CNN.

Figure 1 .

 1 Figure 1.13 General scheme of ASO [57] [56].

Figure 1 .

 1 Figure 1.14 Hu et al. [44] approach by synthesis without modification.

Figure 1 .

 1 Figure 1.15 ASDL approach; generation of the modifications probability map

Figure 1 .

 1 Figure 1.16 The overall architecture of the 3-players game.

Qian et al. [Tan] EI'2015 1ere description CNN Pibre et al. [Chaumont] EI'2016 Same keys Xu et al. [Shi] IEEE Sig. Proc. Letters 1st reference CNN (close to AlexNet) Xu-Net Xu et al. [Shi] IH&MMSec'2016 Ensemble version Qian et al. [Tan] ICIP'2016 Transfer learning IH&MMSec ICIP Y e et al. [Yi] TIFS'2017 2nd reference network Ye-Net Tang et al. [Li & Huang]

	2015		2016		2017		
	jan	june	jan	june	jan	june	dec
	EI		EI				
						IEEE Sig. Proc. Letters
						Simulation of embedding with GAN
						(ASDL-GAN)	

Zeng et al. [Huang] EI'2017 JPEG : Large Scale Chen et al. [Fridrich] IH&MMSec'2017 JPEG : ad hoc topology IH&MMSec EI Xu (Xu-Net-Jpeg) IH&MMSec'2017 JPEG : close to Res-Net Zeng et al. [Huang]

		jan 2018	june	dec	NOT PUBLISHED
					YET
	Stacked auto-encoder S. Tan and B. Li Asia-Pacific'2014	[Chaumont] Yedroudj et al. EI		IH&MMSec
		Data-base augmentation		
		Fuji Tsang and Fridrich		
		EI'2018		
		Images of arbitrary size		
		Chen et al. [Fridrich]		
		EI'2018		
		Quantitative Steganalysis		
		Li et al.	
	SPATIAL	IEEE Sig. Proc Letters 2018 ReST-Net : Combinaison of 3 CNNs	Boroumand et al. [Fridrich] TIFS'2018 For Spatial and JPEG
					Another reference CNN
					SRNet
	JPEG	TIFS'2018 JPEG : Large Scale		
	GAN		Zhang et al. IH&MMSec 2018 Adverserial	Yang et al. [Shi & Huang] Simulation of
			construction;	embedding with GAN
			No iterations	(UT-6HPF-GAN)
		Hayes & Danezis NIPS'2017	Hu et al. [Li]
		3 players ;	IEEE Access 2018
		security badly treated	Synthesis of the stego /
			Small bitrate

GitHub link on Yedroudj-Net: https://github.com/yedmed/steganalysis_with_CNN_ Yedroudj-Net.

The channels axis is also referred by "feature maps"-axis, or "depth"-axis.

The authors of[START_REF] Kuzin | Camera Model Identification Using Convolutional Neural Networks[END_REF] finished second at the Kaggle competition for IEEE's Signal Processing Society -Camera Model Identification -Identify from which camera an image was taken.https://www.kaggle.com/c/sp-society-camera-model-identification. https://towardsdatascience.com/forensic-deep-learning-kaggle-camera-model-identificationchallenge-f6a3892561bd.

In this chapter, we reference Xu-Net a CNN similar to the one given in[START_REF] Xu | Structural Design of Convolutional Neural Networks for Steganalysis[END_REF], and not to the ensemble version[START_REF] Xu | Ensemble of CNNs for Steganalysis: An Empirical Study[END_REF].

Yedroudj-Net source code: https://github.com/yedmed/steganalysis_with_CNN_Yedroudj-Net.

SRNet source code: https://github.com/Steganalysis-CNN/residual-steganalysis.

uSA stands for Upper bounded Sum of Absolute values.

Alaska: A challenge of steganalysis into the wilderness of the real world. https:// alaska.utt.fr/.

Bob is deleted in the simplified version.

"Deep Learning in Steganography and Steganalysis since 2015", tutorial given at the "Image Signal & Security Mini-Workshop", the 30th of October 2018, IRISA / Inria Rennes, France, DOI: 10.13140/RG.2.2.25683.22567, http://www.lirmm.fr/ chaumont/publications. See the slides here, and the video of the talk here.

The other families of steganography by deep learning, which are modification based, will probably help to maintain this performance gap for a few years more.

A Hamming error correcting code ensures a null BER theoretically for most of the images,

ACKNOWLEDGMENTS

I would like to thank the PhD students (and the Masters' students) who directly or indirectly worked on the topic: Sarra Kouider, Amel Tuama, Jerôme Pasquet, Hasan Abdulrahman, Lionel Pibre, Mehdi Yedroudj, Ahmad Zakaria, during the period (2015-2018). Without all of them, this chapter would never have been possible.

I would also like to thank my two colleagues, Frédéric Comby and Gérard Subsol, who helped me supervise this nice small-world.

I thank the French working group, Caroline Fontaine, Patrick Bas, Rémi Cogranne, with whom I have many interesting discussion and who encourage me to write this chapter. I would like to thank the Direction Générale de l'Armement (DGA) for its support on steganalysis through the Alaska project ANR (ANR-18-ASTR-0009).

I thank the LIRMM (the lab), ICAR (my team -with all the members), the Montpellier University and the Nîmes university, HPC@LR, for all the given resources which allowed me to run such a work.

Finally, I would like to thank my wife, Nathalie, my four little smurfs, Noam, Naty, Coline, Mila, and Louis, who are the guardian of my sanity : -)

AUTHOR BIOGRAPHY