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ABSTRACT
For almost 10 years, the detection of a hidden message in an image has been mainly
carried out by the computation of Rich Models (RM), followed by classi�cation using
an Ensemble Classi�er (EC). In 2015, the �rst study using a convolutional neural net-
work (CNN) obtained the �rst results of steganalysis by Deep Learning approaching
the performances of the two-step approach (EC + RM). Between 2015-2018, numer-
ous publications have shown that it is possible to obtain improved performances,
notably in spatial steganalysis, JPEG steganalysis, Selection-Channel-Aware ste-
ganalysis, and in quantitative steganalysis. This chapter deals with deep learning in
steganalysis from the point of view of current methods, by presenting di�erent neural
networks from the period 2015-2018, that have been evaluated with a methodology
speci�c to the discipline of steganalysis. The chapter is not intended to repeat the
basic concepts of machine learning or deep learning. So, we will present the struc-
ture of a deep neural network, in a generic way and present the networks proposed
in existing literature for the di�erent scenarios of steganalysis, and �nally, we will
discuss steganography by deep learning.

Keywords: Steganography, steganalysis, Deep Learning, GAN

Neural networks have been studied since the 1950s. Initially, they were pro-

1
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2 CHAPTER 1 Deep Learning in steganography and steganalysis

posed to model the behavior of the brain. In computer science, especially in
arti�cial intelligence, they have been used for around 30 years for learning
purposes. Ten or so years ago [37], neural networks were considered to have
a lengthy learning time and to be less e�ective than classi�ers such as SVMs
or random forests.

With recent advances in the �eld of neuron networks [6], thanks to the
computing power provided by graphics cards (GPUs), and because of the
profusion of available data, deep learning approaches have been proposed as
a natural extension of neural networks. Since 2012, these deep networks have
profoundly marked the �elds of signal processing and arti�cial intelligence,
because their performances make it possible to surpass current methods, but
also to solve problems that scientists had not managed to solve until now[60].

In steganalysis, for the last 10 years, the detection of a hidden message in an
image was mainly carried out by calculating Rich Models (RM) [28] followed
by a classi�cation using a classi�er (EC) [51]. In 2015, the �rst study using a
convolutional neural network (CNN) obtained the �rst results of deep-learning
steganalysis approaching the performances of the two-step approach (EC +
RM 1) [80]. During the period 2015 - 2018, many publications have shown
that it is possible to an obtain improved performance in spatial steganalysis,
JPEG steganalysis, side-informed steganalysis, quantitative steganalysis, etc.

In Section 1.1 we present the structure of deep neural network generically.
This Section is centered on existing publications in steganalysis and should
be supplemented by reading about arti�cial learning and in particular gradi-
ent descent, and stochastic gradient descent. In Section 1.2 we explain the
di�erent steps of the convolution module. In Section 1.3 we will tackle the
complexity and learning times. In Section 1.4 we will present the links between
Deep Learning and previous approaches. In Section 1.5 we will revisit the dif-
ferent networks that were proposed during the period 2015-2018 for di�erent
scenarios of steganalysis. Finally, in Section 1.6 we will discuss steganography
by deep learning which sets up a game between two networks in the manner
of the precursor algorithm ASO [57].

1.1 THE BUILDING BLOCKS OF A DEEP
NEURONAL NETWORK

In the following sub-sections, we look back at the major concepts of a Con-
volutional Neural Network (CNN). But speci�cally, we will recall the basic

1 We will note EC + RM in order to indicate the two-step approach based on the calculation
of Rich Models (RM) then the use of an ensemble classi�er (EC).
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1.1 The building blocks of a deep neuronal network 3

Figure 1.1 Yedroudj-Net network [108].

building blocks of a network based on the Yedroudj-Net2 network that was
published in 2018 [108] (See Figure 1.1), and which takes up the ideas present
in Alex-Net [58], as well as the concepts present in networks developed for
steganalysis including the very �rst network of Qian et al. [80], and networks
of Xu-Net [101], and Ye-Net [106].

1.1.1 GLOBAL VIEW OF A CONVOLUTIONAL NEURAL
NETWORK

Before describing the structure of a neural network as well as its elementary
components, it is useful to remember that a neural network belongs to the
machine-learning family. In the case of supervised learning, which is the case
that most concerns us, it is necessary to have a database of images, with, for
each image, its label, that is to say, its class.

Deep Learning networks are large neural networks that can directly take
raw input data. In image processing, the network is directly powered by the
pixels forming the image. Therefore, a deep learning network learns in a
joint way, both the compact intrinsic characteristics of an image (we speak of
feature mapor of latent space) and at the same time, the separation boundary
allowing the classi�cation (we also talk of separator plans).

The learning protocol is similar to classical machine learning methods.
Each image is given as input to the network. Each pixel value is transmitted
to one or more neurons. The network consists of a given number ofblocks.
A block consists of neurons that take real input values, perform calculations,
and then transmit the actual calculated values to the next block. A neural
network can, therefore, be represented by an oriented graph where each node
represents a computing unit. The learning is then completed by supplying the
network with examples composed of an image and its label, and the network
modi�es the parameters of these calculation units (it learns) thanks to the
mechanism of back-propagation.

2 GitHub link on Yedroudj-Net: https://github.com/yedmed/steganalysis_with_CNN_
Yedroudj-Net .

https://github.com/yedmed/steganalysis_with_CNN_Yedroudj-Net
https://github.com/yedmed/steganalysis_with_CNN_Yedroudj-Net
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4 CHAPTER 1 Deep Learning in steganography and steganalysis

The Convolutional Neuronal Networks used for steganalysis are mainly
built in three parts, which we will call modules: the pre-processing module,
the convolution module, and the classi�cation module. As an illustration,
�gure 1.1 schematizes the network proposed by Yedroudjet al. in 2018 [108].
The network processes grayscale images of 256� 256 pixels.

1.1.2 THE PRE-PROCESSING MODULE

F (0) =
1
12

0

B
B
B
B
@

� 1 2 � 2 2 � 1
2 � 6 8 � 6 2

� 2 8 � 12 8 � 2
2 � 6 8 � 6 2

� 1 2 � 2 2 � 1

1

C
C
C
C
A

(1.1)

We can observe in Figure 1.1 that in thepre-processing module, the image
is �ltered by 30 high-pass �lters. The use of one or more high-pass �lters
as pre-processing is present in the majority of networks used for steganalysis
during the period 2015-2018.

Figure 1.2 Principle of a convolution.

An example of a kernel of a high-pass �lter { the square S5a �lter [28] { is
given in Equation 1.1. An illustration of the �ltering (convolution) principle
is given in Figure 1.2. This preliminary �ltering step allows the network to
converge faster and is probably needed to obtain good performance when the
learning database is too small [107] (only 4 000 pairs cover=stego images of
size 256� 256 pixels). The �ltered images are then transmitted to the �rst
convolution block of the network. Note that the recent SRNet [10] network
does not use any �xed pre-�lters, but learns the �lters. It therefore requires
a much larger database (more than 15 000 pairs cover=stego images of size
256� 256 pixels), and strong know-how for its initialization. Note that there
is a debate in the community if one should use �xed �lters, or initialize the
�lters with pre-chosen values and then continue the learning, or learn �lters
with random initialization. At the beginning of 2019, in practice (real-world
situation [48]), the best choice is probably in relation to the size of the learning
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1.1 The building blocks of a deep neuronal network 5

database (which is not necessary BOSS [4] or BOWS2 [3]), and the possibility
to use transfer learning.

1.1.3 THE CONVOLUTION MODULE

Within the convolution module, we �nd several macroscopic computation units
that we will call blocks. A blockis composed of calculation units that take real
input values, perform calculations, and return real values, which are supplied
to the next block. Speci�cally, a block takes a set offeature maps(= a set of
images) as input and returns a set offeature mapsas output (= a set of im-
ages). Inside a block, there are a number of operations including the following
four: the convolution (see Section 1.2.1), theactivation (see Section 1.2.2), the
pooling (see Section 1.2.3), and �nally thenormalization (see Section 1.2.4).

Note that the concept of neuron, as de�ned in existing literature, before
the emergence of convolutional networks, is still present, but it no longer
exists as a data structure in neural network libraries. In convolution modules,
we must imagine a neuron as a computing unit which, for a position in the
feature maptaken by the convolution kernel during the convolution operation,
performs the weighted sum between the kernel and the group of considered
pixels. The concept of neuron corresponds to the scalar product between the
input data (the pixels) and data speci�c to the neuron (the weight of the
convolution kernel), followed by the application of a function of R in R called
the activation function. Then, by extension, we can consider that pooling and
normalization are operations speci�c to neurons.

Thus, the notion of blockcorresponds conceptually to a \ layer " of neurons.
Note that in deep learning libraries, we call alayer any elementary operation
such as convolution, activation, pooling, normalization, etc. To remove any
ambiguity, for the convolution module we will talk about block, and operations,
and we will avoid using the term layer.

Without counting the pre-processing block, theYedroudj-Net network [108]
has a convolution module made of 5 convolution blocks, like the networks
of Qian et al. [80] and Xu et al. [101]. The Ye-Net network [106] has a
convolution module composed of 8 convolution blocks, and SRNet network
[10] has a convolution module built with 11 convolution blocks.

1.1.4 THE CLASSIFICATION MODULE

The last block of the convolution module (see the previous Section) is con-
nected to the classi�cation module which is usually a fully connected neural
network composed of one to three blocks. Thisclassi�cation module is of-
ten a traditional neural network where each neuron is fully connected to the
previous block of neurons and to the nextblock of neurons.

The fully connected blocks often end with a softmax function which nor-
malize the outputs delivered by the network between [0; 1], such that the sum
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6 CHAPTER 1 Deep Learning in steganography and steganalysis

of the outputs equal one. The outputs are named imprecisely \probabilities".
We will keep this denomination. So, in the usual binary steganalysis sce-
nario, the network delivers two values as output: one giving the probability
of classifying into the �rst class (e.g. the cover class), and the other giving
the probability of classifying into the second class (e.g. the stego class). The
classi�cation decision is then obtained by returning the class with the highest
probability.

Note that in front of this classi�cation module, we can �nd a particular
pooling operation such as aglobal average pooling, a Spatial Pyramid Pooling
(SPP) [34], a statistical moments extractor [97], etc. Such pooling operations
return a �xed-size vector of values, that is to say, a feature map of �xed
dimensions. The next block to thispooling operation is thus always connected
to a vector of �xed size. So, this block has a �xed input number of parameters.
It is thus possible to present to the network images of any size without having
to modify the topology of the network. For example, this property is available
in the Yedroudj-Net [108] network, the Zhu-Net [115] network, or the Tsang
et al. network [97].

Also note that [97] is the only paper, at the time of writing this chapter,
which has seriously considered the viability of an invariant network to the
dimension of the input images. The problem remains open. The solution
proposed in [97] is a variant of the concept of average pooling. For the moment,
there has not been enough studies on the subject to determine what is the
correct topology of the network, how to build the learning data-base, how
much the number of embedded bits in
uences the learning, or if we should
take into account the square root lawfor learning at a �xed security-level or
any payload size, etc.

1.2 THE DIFFERENT STEPS OF THE CONVOLUTION
MODULE

In Section 1.1.3, we indicated that a block within the convolution module
contained a variable number among the following four operations: theconvo-
lution (see Section 1.2.1), theactivation (see Section 1.2.2), thepooling (see
Section1.2.3), and �nally the normalization (see Section 1.2.4). Let's now
explain in more detail each step (convolution, activation, pooling, and nor-
malization) within a block.

1.2.1 CONVOLUTION

The �rst treatment within a block is often to apply the convolutions on the
input feature maps.

Note that for the pre-processingblock, see Figure 1.1, there is only one input
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1.2 The different steps of the convolution module 7

image. A convolution is therefore carried out between the input image and a
�lter. In the Yedroudj-Net network, there are 30 high-pass �lters extracted
from SRM �lters [28]. In older networks, there is only one pre-processing �lter
[80, 78, 101].

Except for the pre-processingblock, in the other blocks, once the convolu-
tion has been applied, we apply activation steps (see Section 1.2.2), pooling
(see Section 1.2.3), and normalization (see Section 1.2.4). Then we obtain a
new image namedfeature map.

Formally, let I (0) be the input image of the pre-processingblock. Let F ( l )
k

be the kth (k 2 f 1; :::; K ( l ) g) �lter of the block of number l = f 1; :::; Lg, with
L the number of blocks, and with K ( l ) the number of �lters of the l th block.
The convolution within the pre-processing block with the kth �lter results in
a �ltered image, denoted ~I (1)

k , such that:

~I (1)
k = I (0) ? F (1)

k : (1.2)

From the �rst block of the convolution moduleto the last block of con-
volution (see Figure 1.1), the convolution is less conventional because there
is K ( l � 1) feature maps (K ( l � 1) images) as input, denotedI ( l � 1)

k with k =
f 1; :::; K ( l � 1) g.

The \convolution" that will lead to the kth �ltered image, ~I ( l )
k , resulting

from the convolution block numbered l, is actually the sum of K ( l � 1) convo-
lutions, such as:

~I ( l )
k =

i = K ( l � 1)
X

i =1

I ( l � 1)
i ? F ( l )

k;i ; (1.3)

with f F ( l )
k;i gi = K ( l � 1)

i =1 a set of K ( l � 1) �lters for a given k value.
This operation is quite unusual since eachfeature mapis obtained by asum

of K ( l � 1) convolutions with a di�erent �lter kernel for each convolution. This
operation can be seen as a spatial convolution, plus a sum on the channels-axis
3.

This combined operation can be replaced by a separate operation called
SeparableConvor Depthwise Separable Convolutions[16], which allows us to
integrate a non-linear operation (an activation function) such as a ReLU, be-
tween the spatial convolution and the convolution on the \depth" axis (for
the \depth" axis we use a 1� 1 �lter). Thus, the Depthwise Separable Con-
volution can roughly be resumed as a weighted sum of convolution which is a
more descriptive operation than just a sum of convolution (see Equation 1.3).

If we replace the operation previously described in equation 1.3, by aDepth-

3 The channels axis is also referred by \feature maps"-axis, or \depth"-axis.
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8 CHAPTER 1 Deep Learning in steganography and steganalysis

wise Separable Convolutionsoperation integrated within an Inception module
(the Inception allows us to mainly use �lters of variable sizes), we obtain a
performance improvement [16]. In steganalysis, this has been observed in the
article [115], when modifying the �rst two blocks of the convolution module
of Figure 1.1.

As a reminder, in this document, we name aconvolution block the set
of operations made by one convolution (or many convolutions performed in
parallel in the case of an Inception, and/or two convolutions in the case of
a Depthwise Separable convolution), a few activation functions, a pooling,
and a normalization. These steps can be formally expressed in a simpli�ed
way (except in cases with Inception or Depthwise Separable Convolution) in
recursive form by linking a feature mapat the input of a block and the feature
map at the output of this block:

I ( l )
k = norm

0

@pool

0

@f

0

@b( l )
k +

i = K ( l � 1)
X

i =1

I ( l � 1)
i ? F ( l )

k;i

1

A

1

A

1

A ; (1.4)

with b( l )
k 2 R the scalar standing for the convolution bias, f () the activa-

tion function applied pixel by pixel on the �ltered image, pool(), the pooling
function that is applied to a local neighborhood, and �nally a normalization
function.

Note that the kernels of the �lters (also called weights) and the bias must
be learned and are therefore modi�ed during the back-propagation phase.

1.2.2 ACTIVATION

Once each convolution of aconvolution blockhas been applied, anactivation
function, f () (see Eq. 1.4), is applied on each value of the �ltered image,~I ( l )

k
(Eq. 1.2 and Eq. 1.3). This function is called the activation function with
reference to the notion of binary activation found in the very �rst work on
neuron networks. The activation function can be one of several, for example be
an absolute value functionf (x) = jxj, a sinusoidal function f (x) = sinus(x), a

Gaussian function as in [80]f (x) = e� x 2

� 2 , a ReLU (for Recti�ed Linear Unit ):
f (x) = max(0; x), etc. Figure 1.3 illustrates some activation functions.

These functions break the linearity resulting from linear �ltering performed
during convolutions. Non-linearity is a mandatory property that is also ex-
ploited in two-step machine-learning approaches, such as in the ensemble clas-
si�er [51] during the weak-classi�ers thresholding, or through the �nal majority
vote, or in Rich Models with Min-Max features [28]. The chosen activation
function must be di�erentiable to perform back-propagation.

The most often retained solution for the selection of an activation function
is one whose derivative requires little calculation to be evaluated. Besides,
functions that have low slope regions, such as the hyperbolic tangent, are
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Les courbes de ces fonctions d'activation sont tracées en Figure 2.11 et celles de
leurs dérivées en Figure 2.12.

La fonction d'activation de la couche de sortie dépend du type de problème que
l'on veut résoudre. Lorsqu'on souhaite prédire si oui ou non l'objet étudié appartient
à une classe donnée, on choisira généralement une fonction sigmoïde, nous donnant

Détection d'anomalies dans les données ouvertes 31
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Figure 1.3 Three main activation functions and their derivatives.

also avoided, since this type of function can cause the value of the back-
propagated gradient to be canceled during back-propagation (the phenomenon
of the vanishing gradient), and thus will make learning impossible. Therefore,
in many networks, we very often �nd the ReLU activation function, or one
of its variants. For example, in the Yedroudj-Net network (see �gure 1.1)
we have the absolute value function, the parameterized Hard Tanh function
(Trunc function), and the ReLU function. In the SRNet network [10] we only
�nd the ReLU function.

1.2.3 POOLING

The pooling operation is used to calculate theaverageor the maximum in a
local neighborhood. In the �eld of classi�cation of objects in images, the max-
imum pooling guarantees a local invariance in translation when recomputing
the features. That said, in most steganalysis networks, it is preferred to use
average pooling to preserve stego noise which is of very low power. Figure 1.4
illustrates the two pooling operations.

Moreover, pooling is often coupled to a down-sampling operation (when
the stride is greater than 1) to reduce the size (i.e., the height and width) of
the resulting feature map compared to feature maps from the previous block.
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10 CHAPTER 1 Deep Learning in steganography and steganalysis

Figure 1.4 Illustration of a maximum pooling and an average pooling.

For example, in Yedroudj-Net (see �gure 1.1), blocks 2, 3, and 4, reduce
by a four-factor the size of the input feature maps. We can consider the
pooling operation, accompanied by a stride greater than 1, as conventional
sub-sampling with preliminary low-pass �ltering. This is useful for reducing
the amount of used-memory in the GPU. This step can also be perceived as
denoising, and from the point of view of the signal processing, it induces a
loss of information. It is probably better not to sub-sample in the �rst blocks
as it was initially highlighted in [78], set up in Xu-Net [101], Ye-Net [106],
Yedroudj-Net [108], and evaluated again in SRNet [10].

1.2.4 NORMALIZATION

In the �rst proposed networks in steganalysis, during the period 2014� be-
ginning of 2016 (Tan and Li [94], Qian et al. [80], Pibre and al. [78]), if there
was a normalization, it remained local to the spatial neighborhood, withLocal
Constrast Normalization, or inter-feature, with the Local Response Normal-
ization.

A big improvement occurred with the arrival of batch normalisation. Batch
normalization (BN) was proposed in 2015 [47], and was widely adopted. This
normalization is present in most of the new networks for steganalysis. BN
[47] (see Eq. 1.5) consists of normalizing the distribution of each feature of a
feature map, so that the average is zero and the variance is unitary, and, if
necessary allows re-scaling and re-translating the distribution.

Given a random variableX whose realization is a valuex 2 R of the feature
map, the BN of this value x is:

BN (x; 
; � ) = � + 

x � E [X ]

p
V ar[X ] + �

; (1.5)
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with E [X ] the expectation, V ar[X ] the variance, and 
 and � two scalars
representing a re-scaling and a re-translation. The expectationE [X ] and the
variance V ar[X ] are updated at each batch, while 
 and � are learned by
back-propagation. In practice, the BN makes the learning less sensitive to the
initialization of parameters [47], allows us to use a higher learning rate which
speeds up the learning process, and improves the accuracy of classi�cation
[14].

In Yedroudj-Net, the terms 
 and � are treated by an independent layer
called Scale Layer (See Figure 1.1), in the same way as in ResNet [35]. The
increment in performance is very minor.

1.3 MEMORY / TIME COMPLEXITY AND
EFFICIENCY

Learning a network can be considered as the optimization of a function with
many unknown parameters, thanks to the use of a well-thought out stochastic
gradient descent. In the same way as traditional neural networks, the CNNs
used for steganalysis have a large number of parameters to learn. As an exam-
ple, without taking into account Batch Normalization and Scale parameters,
the Xu-Net [101] network described in the paper [108] has a number of param-
eters in the order of 50,000. In comparison, the network Yedroudj-Net [108],
has a number of unknown parameters in the order of 500,000.

In practice, using a previous-generation GPU (Nvidia TitanX) on an Intel
Core i7-5930K at 3.50 GHz� 12 with 32 GB of RAM, it takes less than a day to
learn the Yedroudj-Net network using 4,000 pairs of 256� 256 cover/stego im-
ages of the \ BOSS" [4], three days on 14,000 pairs of 256� 256 cover/stego im-
ages of \BOSS + BOWS2" [3], and more than seven days on the 112,000 pairs
of 256� 256 cover/stego images of \BOSS + BOWS2 + a virtual database
augmentation" [107]. These long learning times are because the databases are
large and have to be browsed repeatedly, so that the back-propagation process
makes converge the network.

Due to the large number of parameters to be learned, neural networks
need a database containing a large number of examples to be inthe power-law
region [36] allowing comparisons between di�erent networks. In addition, the
examples within the learning database must be su�ciently diversi�ed to obtain
a good generalization of the network. For CNN steganalysis, with current
networks (in 2018), the number of examples needed to reach a region ofgood
performance (that is, as good as using a Rich Model[28] with an Ensemble
Classi�er [51]), in the case where there is no cover-source mismatch, is most
likely in the order of 10,000 images (5,000 covers and 5,000 stegos) when
the size is 256� 256 pixels [107]. However, the number of examples is still
insu�cient [107] in the sense that performance can be increased simply by
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12 CHAPTER 1 Deep Learning in steganography and steganalysis

increasing the number of examples. The so-calledirreducible error region [36]
probably requires more than a million images [113]; Therefore, there should
be at least 100 times more images for the learning phase. In addition to this,
it is necessary to be able to work with larger images. It is therefore evident
that in the future it will be essential to �nd one or more solutions to reach the
region of irreducible error . This can be done with huge databases, and several
weeks or months of apprenticeships, or by transfer learning, by using better
networks, or with solutions yet to be conceived.

Note that of course, there are recommendations to increase performance
and it may be possible to achieve theirreducible error region faster. We can
use transfer learning [79] and/or curriculum learning [106] to start learning
from a network that has already learned. We can use a set of CNNs [103],
or a network made of sub-networks [62], which can save a few percentage
points on accuracy. We can virtually increase the database [58], but this does
not solve the problem of increasing the learning time. We can add images
of a database that is similar to the test database, for example when BOSS
and BOWS2 are used for learning, in the case where the test is realized on
BOSS [106], [107]. It is nevertheless not obvious that in practice we can
have access to a database similar to the database to be tested. We can (i)
predict the acquisition devices that produced the images of the test database,
then (ii) make new acquisitions with these devices (to be purchased), and (iii)
�nally perform images development similar to the one used to generate the
test database, and all this in order to increase the learning database [107].
Again, this approach is di�cult to implement and time-consuming.

Note that a general rule shared by people playing with Kaggle competitions
is that the main practical rules to win are [59] 4: (i) to use an ensemble of
modern networks (ResNet, DenseNet, etc.) that have learned for example on
ImageNet, and then use transfer learning, and (ii) to do data-augmentation,
(iii) to eventually collect data to increase the learning database size.

1.4 LINK BETWEEN DEEP-LEARNING AND PAST
APPROACHES

In previous Sections, we explained that deep-learning consisted of minimizing a
function with many unknown parameters with a technique similar to gradient
descent. In this subsection, we establish links with previous research on the

4 The authors of [59] �nished second at the Kaggle competition for IEEE's Signal Pro-
cessing Society - Camera Model Identi�cation - Identify from which camera an image was
taken.
https://www.kaggle.com/c/sp-society-camera-model-identification .
https://towardsdatascience.com/forensic-deep-learning-kaggle-camera-model-identi�cation-
challenge-f6a3892561bd .

https://www.kaggle.com/c/sp-society-camera-model-identification
https://towardsdatascience.com/forensic-deep-learning-kaggle-camera-model-identification-challenge-f6a3892561bd
https://towardsdatascience.com/forensic-deep-learning-kaggle-camera-model-identification-challenge-f6a3892561bd
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subject in the steganography/steganalysis community. This sub-section tries
to make links with past research in this domain and is an attempt to demystify
deep learning.

Convolution is an essential part of CNN networks. Learning �lter kernels
(weights) are carried out by minimizing the classi�cation error using the back-
propagation procedure. It is, therefore, a simple optimization of �lter kernels.
Such a strategy can be found as early as 2012 in a two-step approach using
Rich Models and an Ensemble Classi�er in the article [38]. The kernel val-
ues used to calculate the feature vector are obtained by optimization via the
simplex algorithm. In this article, the goal is to minimize the probability of
classi�cation error given by an Ensemble Classi�er in the same way as with
a CNN. CNNs share the same goal of building custom kernels that are well
suited to steganalysis.

Looking at the �rst blockof convolution just after the pre-processingblock
(Ye-Net [106], Yedroudj-Net [108], ReST-Net [62], etc.), the convolutions act
as a multi-band �ltering performed on the residuals obtained from the pre-
processing block (see Figure 1.1). For this �rst block, the network analyzes
the signal residue in di�erent frequency bands. In the past, when computing
Rich Models [28], some approaches have applied a similar idea thanks to the
use of a �lter bank. Some approaches make a spatio-frequency decomposition
via the use of Gabor �lters (GFR Rich Models) [92], [100], some use Discrete
Cosinus �lters (DCTR Rich Models) [41], some use Steerable Gaussian �lters
[2], and some make a projection on random carriers (PSRM Rich Models)
[40], etc. For all these Rich Models, the results of the �ltering process is then
used to calculate a histogram (co-occurrence matrix) which is in turn used
as a vector of features. The �rst convolution block of CNNs for steganalysis
thus share similarities with the spatio-frequency decomposition of some Rich
Models.

From the convolution blocks that start to down-sample the feature maps,
there is a summation of the results of several di�erent convolutions. This
amounts to accumulating signs of the presence of a signal (the stego noise) by
observing clues in several bands. We do not �nd such a principle in previous
research. The only way to accumulate evidence was based on the computation
of a histogram [28, 40], but this approach is di�erent from what is done in
CNNs. Note that in the article [86], the authors explore how to incorporate
the histogram computation mechanism into a CNN network, but the results
are not encouraging. Thus, starting from the second block, the mechanism
involved to create a latent space separating the two classes, i.e. to obtain a
feature vector per image, which makes it possible to distinguish the covers
from the stegos, is di�erent from that used in Rich Models. Similarly, some
past techniques such as non-uniform quantization [74], features selection [13],
dimension reduction [75], are not directly visible within a CNN.

A brick present in most convolution blocks is the normalization of feature
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14 CHAPTER 1 Deep Learning in steganography and steganalysis

maps. Normalization has often been used in steganalysis, for example in [57],
[17], [9], etc. Within a CNN, normalization is performed among other things
to obtain comparable output values in each feature map.

The activation function introduces a non-linearity in the signal and thus
makes it possible to have many convolution blocks. This non-linearity is found
in the past, for exemple in the Ensemble Classi�er through the majority vote
[51], or in Rich Models with the Min or Max operations [28].

The structure of a CNN network and the components that improve the
performance of a network are now better understood in practice. As we saw
previously, there is in a CNN, some parts that are similar to propositions
made in steganalysis in the past. Some elements of a CNN are also explained
by the fact that they are guided by computational constraints (uses of sim-
ple di�erentiable activation function like ReLU), or that they facilitates the
convergence (non-linearity allows convergence, activation function should not
be too 
at or steep, in order to avoid vanishing gradient or rapid variation,
the shortcut allows us to avoid vanishing gradient during back-propagation,
and thus allows us to create deeper networks, the batch normalization, the
initialization such as Xavier, the optimization such as Adam, etc). Note that
some of the ideas present in CNNs also come from the theory of optimization
of di�erentiable functions.

Although it is easy to use a network in practice, and to have some intuition
about its behavior, it still lacks theoretical justi�cation. For example, what is
the right number of parameters according to the problem? In the coming years,
there is no doubt that the building of a CNN network adapted for steganalysis
could go through an automatic adjustment of its topology, in this spirit, the
work on AutoML and Progressive Neural Architecture Search (PNAS) [67],
[77] are of interest. That said the theory must also try to explain what is
happening inside the network. One can notably look at the work of St�ephane
Mallat [70] for an attempt to explain a CNN from a signal processing point
of view. Machine learning theorists can also better explain what happens in
a network and why this mathematical construction works so well.

To conclude this discussion on the links between two-step learning ap-
proaches and deep learning approaches, CNN as well as two-step (Rich Mod-
els + Ensemble Classi�er) approaches are not able to cope with cover-source
mismatch [12, 29]. This is a defect used by detractors5 of neural network
approaches in domains such as object recognition [71]. CNNs learn a distribu-
tion, but if it di�ers in test phase, then the network cannot detect it. Maybe
the ultimate goal is for the network to \understand" that the test database is
not distributed as the learning database?

5 See Gary Marcus' web-press article https://medium.com/@GaryMarcus/
the-deepest-problem-with-deep-learning-91c5991f5695 .

https://medium.com/@GaryMarcus/the-deepest-problem-with-deep-learning-91c5991f5695
https://medium.com/@GaryMarcus/the-deepest-problem-with-deep-learning-91c5991f5695
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Pibre et al.  
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Xu et al. [Shi]  
IEEE Sig. Proc. Letters 
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 Xu-Net 

Xu et al. [Shi]  
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Ensemble version 

Qian et al. [Tan]  
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Transfer learning 

IH&MMSec ICIP 

Ye et al. [Yi]  
�d�/�&�^�[�î�ì�í�ó 
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network Ye-Net 

Tang et al. [Li & Huang]  
IEEE Sig. Proc. Letters  
Simulation of embedding with GAN 
(ASDL-GAN) 

Zeng et al. [Huang]  
���/�[�î�ì�í�ó 
JPEG : Large Scale 

Chen et al. [Fridrich]  
�/�,�˜�D�D�^�����[�î�ì�í�ó 
JPEG : ad hoc topology 
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Xu  (Xu-Net-Jpeg) 
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JPEG : close to Res-Net 
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Hayes & Danezis  
�E�/�W�^�[�î�ì�í�ó 
3 players ; 
security  badly treated 
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 of 3 CNNs 
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 Hu et al. [Li] 
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IEEE ICASSP 
Another reference CNN 
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Zeng et al. [Li & Huang] 
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Figure 1.5 Chronology of the main CNNs for steganography and steganalysis from 2015 to 2018.

1.5 THE DIFFERENT NETWORKS USED OVER THE
PERIOD 2015-2018

A chronology of the main CNNs proposed for steganography and steganalysis
from 2015 to 2018 are given in Figure 1.5. The �rst attempt to use Deep
Learning methods for steganalysis date back to the end of 2014 [94] with
auto-encoders. At the beginning of 2015, Qianet al. [80] proposed to use
Convolutional Neural Networks. One year later Pibre et al. [78] proposed to
pursue the study.

In 2016, the �rst results, close to those of current state-of-the-art methods
(Ensemble Classi�er + Rich Models), were obtained with an ensemble of CNNs
[103]; See Figure 1.6. The Xu-Net6 [101] CNN is used as abase learnerof an
ensemble of CNNs.

Other networks were proposed in 2017, this time for JPEG steganalysis.
In [114] [113] (See Figures 1.7 and 1.8), authors proposed a pre-processing
inspired by Rich Models, and the use of a large learning database. The results
were close to those of existing state-of-the-art methods (Ensemble Classi�er
+ Rich Models). In [14], the network is built with a phase-split inspired
by the JPEG compression process. An ensemble of CNNs was required to
obtain results that were slightly better than those obtained by current best
approach. In Xu-Net-Jpeg [102], a CNN inspired by ResNet [35] with the
shortcut connection trick, and 20 blocks also improved the results in terms of

6 In this chapter, we reference Xu-Net a CNN similar to the one given in [101], and not to
the ensemble version [103].
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Figure 1.6 Xu-Net overall architecture.

accuracy. Note that in 2018 the ResDet [46] proposed a variant ofXu-Net-
Jpeg [102] with similar results.
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Figure 1.7 ReST-Net overall architecture.

These results were highly encouraging, but regarding the gain obtained in
other image processing tasks using Deep Learning methods [60], the steganal-
ysis results represented less than a 10% improvement compared to the classical
approaches that use an Ensemble Classi�er [51] with Rich Models [28], [99]
or Rich Models with a Selection-Channel Awareness [20], [22], [21]. The revo-
lutionary signi�cant gain in the use of deep learning, observed in other areas
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Figure 1.8 ReST-Net sub-network.

of signal processing, was not yet present for steganalysis. In 2017, the main
trends to improve CNN results were using an ensemble of CNNs, modifying
the topology by mimicking Rich Models extraction process or using ResNet.
In most of the cases, the design or the experimental e�ort was very high for a
very limited improvement of performance in comparison to networks such as
AlexNet [58], VGG16 [91], GoogleNet [93], ResNet [35], etc, that inspired this
research.

By the end of 2017 and early 2018, the studies had strongly concen-
trated on spatial steganalysis. Ye-Net [106] (See Figure 1.9), Yedroudj-Net7

[107, 108] (See Figure 1.10), ReST-Net [62] (See Figures 1.7 and 1.8), SRNet8

[10] (See Figures 1.11) have been published respectively in November 2017,
January 2018, May 2018, and May 2019 (with an online version in September
2018). All these networks clearly surpass the \old" two-step machine learning
paradigm that was using an Ensemble Classi�er [51] and Rich Models [28].
Most of these networks can learn with a modest database size (i.e. around
15,000 pairs cover/stego of 8-bits-coded images of 256� 256 pixels size from
BOSS+BOWS2).

In 2018, the best networks were Yedroudj-Net [108], ReST-Net [62], and
SRNet [10]. Yedroudj-Net is a small network that can learn on a very small
database and can be e�ective even without using the tricks known to im-
prove performance such as transfer learning [79] or virtual augmentation of
the database [106], etc. This network is a good candidate when working on
GANs. It is better than Ye-Net [106], and can be improved to face other
more recent networks [115]. ReST-Net [62] is a huge network made of three
sub-networks which uses various pre-processing �lter banks. SRNet [10] is a

7 Yedroudj-Net source code: https://github.com/yedmed/steganalysis_with_CNN_Yedroudj-Net .
8 SRNet source code: https://github.com/Steganalysis-CNN/residual-steganalysis .

https://github.com/yedmed/steganalysis_with_CNN_Yedroudj-Net
https://github.com/Steganalysis-CNN/residual-steganalysis
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Figure 1.9 Ye-Net overall architecture.

Figure 1.10 Comparison of Yedroudj-Net, Xu-Net, and Ye-Net architectures.

network that can be adapted to spatial or Jpeg steganalysis. It requires var-
ious tricks such as virtual augmentation and transfer learning, and therefore
requires a bigger database compared to Yedroudj-Net. These three networks
are described in Section 1.5.1.

To resume, from 2015 to 2016, publications were in spatial steganalysis, in
2017, the publications were mainly on JPEG steganalysis. In 2018, publica-
tions were again mainly concentrated on spatial steganalysis. Finally, at the
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Figure 1.11 SRNet network.

end of 2017, the �rst publications using GANs appeared. In Section 1.6 we
present the new propositions using steganography by deep-learning, and give
classi�cation per family.

In the next subsection, we report on the most successful networks until the
end of 2018, for various scenarios. In Section 1.5.1, we describe theNot-Side-
Channel-Aware (Not-SCA) scenario, in Section 1.5.2 we discuss the scenario
known as Side-Channel-Aware(SCA), in Sections 1.5.3 we deal with JPEG
steganalysisNot-SCA and SCA scenarios. In Section 1.5.4 we very brie
y
discuss cover-source mismatch, although for the moment the proposals using
a CNN do not exist.

We will not tackle the scenario of CNN invariant to the size of the images
because it is not yet mature enough. This scenario is brie
y discussed in
Section 1.1.4, and the papers of Yedroudj-Net [108], Zhu-Net [115], or Tsang
et al. [97], give �rsts solutions.

We will not approach the scenario of quantitative steganalysis per CNN,
which consists in estimating the embedded payload size. This scenario is very
well examined in the paper [15] and serves as a new state-of-the-art method.
The approach surpasses the previous state-of-the-art approaches [53] [111] that
rely on Rich Models, an Ensemble of trees, and an e�cient normalization of
features.

Nor will we discuss batch steganography and pooled steganalysis with
CNNs which has not yet been addressed, although the work presented in
[112] using two-stage machine learning can be extended to deep learning.

1.5.1 THE SPATIAL STEGANALYSIS
NOT-SIDE-CHANNEL-AWARE (NOT-SCA)

In early 2018 the most successful spatial steganalysis approach is the Yedroudj-
Net [108] method (See Figure 1.9). The experiments comparisons were car-
ried out on the BOSS database which contains 10,000 images sub-sampled to
256� 256 pixels. For a fair comparison, the experiments were performed by
comparing the approach to Xu-Net without Ensemble [101], to the Ye-Net
network in its Not-SCA version [106], and also to Ensemble Classi�er [51] fed
by Spatial-Rich-Models [28]. Note that Zhu-Net [115] (not yet published when
writing this chapter) o�ers three improvements to Yedroudj-Net that allows
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it to be even more e�cient. The improvements reported by Zhu-Net [115]
are the update to the kernel �lters of the pre-processing module (in the same
vein as what has been proposed by Matthew Stamm's team in Forensics [5]),
replacing the �rst two convolution blocks with two modules of Depthwise Sep-
arable Convolutionsas proposed in [16], and �nally replacing global average
pooling with a Spatial Pyramid Pooling (SPP) module as in [34].

In May 2018 the ReST-Net [62] approach was proposed (See Figures 1.7
and 1.8). It consists of agglomerating three networks to form asuper-network.
Each sub-net is a modi�ed Xu-Net like network [101] resembling the Yedroudj-
Net [108] network, with an Inception module on block 2 and block 4. This
Inception module contains �lters of the same size, with a di�erent activation
function for each \path" (TanH, ReLU, Sigmoid). The �rst subnet performs
pre-processing with 16 Gabor �lters, the second sub-network pre-processing
with 16 SRM linear �lters, and the third network pre-processing with 14 non-
linear residuals (min and max calculated on SRM). The learning process re-
quires four steps (one step per subnet and then one step for thesuper-network).
The results are 2-5% better than Xu-Net for S-UNIWARD [43], HILL [63],
CMD-HILL [64] on the BOSSBase v1.01 [4] 512� 512. Looking at the re-
sults, it is the concept of Ensemble that improves the performances. Taken
separately, each sub-net has a lower performance. At the moment, no com-
parison in a fair framework was made between an Ensemble of Yedroudj-Net
and ReST-Net.

In September 2018 the SRNet [10] approach became available online (See
Figures 1.11). It proposes a deeper network than previous networks, which
is composed of 12 convolution blocks. The network does not perform pre-
processing (the �lters are learned) and sub-samples the signal only from the
8th convolution block. To avoid the problem of vanishing gradient, blocks 2 to
11 use the shortcut mechanism. The Inception mechanism is also implemented
from block 8 during the pooling (sub-sampling) phase. The learning database
is augmented with the BOWS2 database as in [106] or [107], and a curricu-
lum training mechanism [106] is used to change from a standard payload size
of 0.4 bpp to other payload sizes. Finally, gradient descent is performed by
Adamax [49]. The network can be used for spatial steganalysis (Not-SCA),
for informed (SCA) spatial steganalysis (see Section 1.5.2) and for JPEG ste-
ganalysis (see Section 1.5.3 Not-SCA or SCA). Overall the philosophy remains
similar to previous networks, with three parts: pre-processing (with learned
�lters), convolution blocks, and classi�cation blocks. With a simpli�ed vision,
the network corresponds to the addition of 5 blocks of convolution without
pooling, just after the �rst convolution block of Yedroudj-Net network. To
be able to use this large number of blocks on a modern GPU, authors must
reduce the number of feature maps to 16, and in order to avoid the problem
of vanishing gradients, they must use the trick of residual shortcut within the
blocks as proposed in [35]. Note that preserving the size of the signal in the
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�rst seven blocks is a radical approach. This idea has been put forward in [78]
where the suppression of pooling had clearly improved the results. The use of
modern brick like shortcuts or Inception modules also enhances performance.

It should also be noted that the training is completed end-to-end without
particular initialization (except when there is a curriculum training mecha-
nism). In the initial publication [10], SRNet network was not compared to
Yedroudj-Net [108], or to Zhu-Net [115], but later, in 2019, in [115] all these
networks have been compared and the update of Yedroudj-Net i.e. Zhu-Net
gives performances of 1% to 4% improvement over SRNet, and 4% to 9%
improvement over Yedroudj-Net, when using the usual comparison protocol.
Note that Zhu-Net is also better than the network Cov-Pool published at
IH&MMSec'2019 [23], and whose performances are similar to SRNet.

1.5.2 THE SPATIAL STEGANALYSIS
SIDE-CHANNEL-INFORMED (SCA)

At the end of 2018, two approaches combined the knowledge of the selection
channel, the SCA-Ye-Net (which is the SCA version of Ye-Net) [106] and the
SCA-SRNet (which is the SCA version of SRNet) [10]. The idea is to use a
network which is used for non-informed steganalysis and to inject not only
the image to be steganalyzed, but also the modi�cation probability map. It
is thus assumed that Eve knows, or can have a good estimation [85] of the
modi�cation probability map, i.e. Eve has access to side-channel information.

The modi�cation probability map is given to the pre-processing block SCA-
Ye-Net [106], and equivalently to the �rst convolution block for SCA-SRNet
[10], but the kernel values are replaced by their absolute values. After the
convolution, each feature map is summed point-wise with the corresponding
convolved \modi�cation probability map" (see Figure 1.12). Note that the ac-
tivation functions of the �rst convolutions in SCA-Ye-Net, i.e. the truncation
activation function ( truncated linear unit (TLU) in the article), are replaced
by a ReLU. This makes it possible to propagate (forward pass) \virtually"
throughout the network, an information related to the image, and another
related to the modi�cation probability map.

Note that this procedure to transform a Not-SCA-CNN into an SCA-CNN
is inspired by the propagation of the modi�cation probability map proposed
in [22] and [21]. These two papers come as an improvement on the previous
maxSRM Rich Models [20]. In maxSRM, instead of accumulating the number
of occurrences in the co-occurrence matrix, an accumulation of the maximum
of a local probability was used. In [22] and [21], the idea was to transform the
modi�cation probability map in a similar way to the �ltering of the image,
and then to update the co-occurrence matrix using the transformed version of
the modi�cation probability map, instead of the original modi�cation proba-
bility map. The imitation of this principle was initially integrated into Ye-Net
for CNN steganalysis, and this concept is easily transposable to most of the
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Figure 1.12 Integration of the modi�cation probability map in a CNN.

modern CNNs.

1.5.3 THE JPEG STEGANALYSIS

The best JPEG CNN at the end of 2018 was SRNet [10]. Note that this
network, at this period, is the only one that has been proposed with a Side
Channel Aware (SCA) version.

It is interesting to list and rapidly discuss the previous CNNs used for JPEG
steganalysis. The �rst network, published in February 2017, was the Zenget
al. network and was evaluated with a million images, and does a limited eval-
uation of stego-mismatch [114] [113]. Then in June 2017 at IH&MMSec'2017,
two networks have been proposed: PNet [14], and Xu-Net-Jpeg [102]. Finally,
SRNet [10] was added online in Septembre 2018.

In Zeng et al.s' network [114] [113], the pre-processing block takes as input
a de-quantized (real value) image, then convolved it with 25 DCT basis, and
then quantized and truncated the 25 �ltered images. This pre-processing
block, uses handcrafted �lter kernels (DCT basis), the kernels' values are
�xed, and these �lters are inspired by DCTR Rich Models [41]. There are
three di�erent quantizations, so, the pre-processing block gives 3� 25 residual
images. The CNN is then made of 3 sub-networks which are each producing
a feature vector of 512 dimension. The sub-networks are inspired by Xu-Net
[101]. The three feature vectors, outputed by the three sub-networks, are then
given to a fully connected structure, and the �nal network ends with a softmax
layer.

Similarly to what has been done for spatial steganalysis, this network is
using a pre-processing block inspired by Rich Models [41]. Note that the most
e�cient Rich Models today is the Gabor Filter Rich Models [100]. Also, note
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that this network takes advantage of the notion of an ensemble of features,
which comes from the three di�erent sub-networks. The network of Zeng et al.
is less e�cient than Xu-Net-Jpeg [102], but gives an interesting �rst approach
guided by Rich Models.

The PNet main idea (and also VNet which is less e�cient but takes less
memory) [14] is to imitate Phase-Aware Rich Models, such as DCTR [41],
PHARM [42], or GFR [100], and therefore to have a decomposition of an
input image into 64 features maps which represents the 64 phases of the Jpeg
images. The pre-processing block takes as input a de-quantized (real value)
image, convolves it with four �lters, the \SQUARE5 � 5" from the Spatial Rich
Models [28], a \point" high-pass �lter (referenced as \catalyst kernel") which
complements the \SQUARE5� 5", and two directional Gabor Filters (angles
0 and �= 2).

Just after the second block of convolution, a \PhaseSplit Module" splits
the residual image into 64 feature maps (one map = one phase), similarly
to what was done in Rich Models. Some interesting methods have been used
such as (1) the succession of the �xed convolutions of the pre-processing block,
and a second convolution with learnable values, (2) a clever update of BN pa-
rameters, (3) the use of the \Filter Group Option" which virtually builds
sub-networks, (4) bagging on 5-cross-validation, (5) taking the 5 last evalua-
tions in order to give the mean error for a network, (6) shu�ing the database
at the beginning of each epoch, to have better BN behavior, and to help gener-
alization, and (7) eventually using an Ensemble. With such know-how, PNet
beat the classical two-step machine learning approaches in a Not-SCA, and
also in a SCA version (Ensemble Classi�er + GFR).

The Xu-Net-Jpeg [102] is even more attractive since the approach was
slightly better than PNet, and does not require a strong domain inspiration
like in PNet. The Xu-Net-Jpeg is strongly inspired by ResNet [35], a well-
established network from the machine learning community. ResNet allows the
use of deeper networks thanks to the use of shortcuts. In Xu-Net-Jpeg, the
pre-processing block takes as input a dequantized (real value) image, then
convolves the image with 16 DCT basis (in the same spirit as Zeng et al.
network [114] [113]), and then applies an absolute value, a truncation, and a set
of convolutions, BN, ReLU until it obtains a feature vector of 384 dimension,
which is given to a fully connected block. We can note that the max pooling
or average pooling are replaced by convolutions. This network is really simple
and was in 2017, the state-of-the-art method. In a way, these kind of results
shows us that the networks proposed by machine learning community are very
competitive and there is not so much domain-knowledge to integrate to the
topology of a network in order to obtain a very e�cient network.

In 2018 the state-of-the-art CNN for JPEG steganalysis (which can also
be used for spatial steganalysis) was SRNet [10]. This network was previously
presented in Section 1.5.1. Note that for the side channel aware version of
SRNet, the embedding change probabilityper DCTs coe�cient is, �rst, mapped
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back in the spatial domain using absolute values for the DCT basis. Thisside-
channel mapthen enters the network and is convolved with each kernel (this
�rst convolution acts as a pre-processing block). Note that the convolutions
in this �rst block for this side-channelmap are such that the �lter kernels are
modi�ed to their absolute values. After passing the convolution, the feature
maps are summed with the square root of the values from the convolvedside-
channelmap. Note that this idea is similar to what was exposed in SCA Ye-Net
version (SCA-TLU-CNN) [106] about the integration of a Side-Channel map,
and to the recent proposition for Side-Channel Aware steganalysis in JPEG
with Rich Models [21], where the construction of theside-channelmap, and
especially the quantity � 1=2

uSA
9 was de�ned.

Note that a similar solution with more convolutions, applied to the side-
channel map, have been proposed in IH&MMSec'2019 [45].

1.5.4 DISCUSSION ABOUT THE MISMATCH
PHENOMENON SCENARIO

Mismatch (cover-source mismatch or stego-mismatch) is a phenomenon
present in machine learning, and this issue sees classi�cation performances
decrease because of the inconsistency between the distribution of the learning
database and the distribution of the test database. The problem is not due to
an inability to generalize in machine learning algorithms, but due to the lack
of similar examples occurring in the training and test database. The problem
of mismatch is an issue that goes well beyond the scope of steganalysis.

In steganalysis the phenomenon can be caused by many factors. The cover-
source mismatch can be be caused by the use of di�erent photo-sensors, by
di�erent digital processing, by di�erent camera settings (focal length, ISO,
lens, etc), by di�erent image sizes, by di�erent image resolutions, etc [30], [8].
The stego-mismatch can be caused by di�erent amounts of embedded bits, or
by di�erent embedding algorithms.

Even if not yet fully explored and understood, the mismatch (cover-source
mismatch (CSM) or stego mismatch) is a major area for examination in the
coming years for the discipline. The results of the Alaska challenge [18]10

published at the ACM conference IH&MMSec'2019 will continue these con-
siderations.

In 2018, CSM had been established for 10 years [12]. There are two major
current school of thought, as well as a third more exotic one:

� The �rst school of thought is the so-called holistic approach (that is
to say, global, macroscopic, or systemic), and consists of learning all

9 uSA stands for Upper bounded Sum of Absolute values.
10 Alaska: A challenge of steganalysis into the wilderness of the real world. https://
alaska.utt.fr/ .
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distributions [69], [68]. The use of a single CNN with millions of images
[113] is in the logical continuation of this current school of thought. Note
that this scenario does not consider that the test set can be used during
learning. This scenario can be assimilated to anonline scenario where
the last player (from a game theory point of view) is the steganographer
because in an online scenario the steganographer can change her strategy
while the steganalyzer cannot.

� The second school of thought isatomistic (= partitioned, microscopic,
analytical, of divide-and-conquer type, or individualized) and consists
of partitioning the distribution [73], that is to say to create a partition
and to associate a classi�er for each cell of the partition. Note that
an example of an atomistic approach for stego-mismatch management,
using a CNN multi-classi�er, is presented in [11] (a class is associated
with each embedding algorithm - there is thus a latent partition). Note
that this idea [11], among others, has been used by the winners of the
Alaska challenge [110]. Note that again, this scenario does not consider
that the test set can be used during learning. This scenario can also
be assimilated to anonline scenario where the last player (from a game
theory point of view) is the steganographer because in an online scenario
the steganographer can change her strategy while the steganalyst cannot.

� Finally, the third exotic school of thought considers that there is a test
database (with much more than one image), and that the database is
available, and usable (without labels) during learning. This scenario
can be assimilated to ano�ine scenario where the last player (from a
game theory point of view) is the steganalyser, because in this o�ine
scenario the steganalyser is playing a more forensic role. In this situa-
tion, there are approaches of type domain adaptation, or a transfer of
features GTCA [66], IMFA [55], CFT[24], where the idea is to de�ne an
invariant latent space. Another approach is ATS [61] which performs an
unsupervised classi�cation using only the test database and requires the
embedding algorithm in order to re-embed a payload in the images from
the test database.

These three schools of thought can help derive approaches by CNN that
integrate the ideas presented here. That said, the ultimate solution may be
to detect the phenomenon of mismatch and raise the alarm or prohibit the
decision [50]. In short, to integrate a more intelligent mechanism than just
holistic or atomistic.



\RunYourChapter"
2019/10/15
page 26

i

i

i

i

i

i

i

i

26 CHAPTER 1 Deep Learning in steganography and steganalysis

1.6 STEGANOGRAPHY BY DEEP-LEARNING
In Simmons' founding article [90], steganography and steganalysis are de�ned
as a 3-player game. The steganographers, usually named Alice and Bob,
want to exchange a message without being suspected by a third party. They
must use a harmless medium, such as an image, and hide the message in this
medium. The steganalyst, usually called Eve, observes the exchanges between
Alice and Bob. Eve must check whether these images are natural, that is to
say, cover images, or whether they hide a message, i.e. stego images.

This notion of gamebetween Alice, Bob and Eve corresponds to that found
in game theory. Each player tries to �nd a strategy that maximizes their
chances of winning. For this, we express the problem as a min-max problem
that we seek to optimize. The solution to the optimum, if it exists, is called the
solution at the Nash equilibrium. When all the players are using a strategy at
the Nash equilibrium, any change of strategy from a player, leads to a counter
attack from the other players allowing them to increase their gains.

In 2012, Sch•ottle and B•ohme [83], [84] have modeled with a simplifying hy-
potheses a problem of steganography and steganalysis and proposed a formal
solution. Sch•ottle and B•ohme have named this approach theoptimum adap-
tive steganographyor strategic adaptive steganographyin opposition to the
so-callednaive adaptive steganographythat corresponds to what is currently
used in algorithms like HUGO (2010) [76], WOW (2012) [39], S-UNIWARD /
J-UNIWARD / SI-UNIWARD (2013) [43], HILL (2014) [63], MiPOD (2016)
[87], Synch-Hill (2015) [19], UED (2012) [32], IUERD (2016) [72], IUERD-
UpDist-Dejoin2 (2018) [65], etc.

That said, the mathematical formalization of the steganography / steganal-
ysis problem by game theory is di�cult and often far from practical in reality.
Another way to determine a Nash equilibrium is to \simulate" the game. From
a practical point of view, Alice plays the entire game alone, meaning that she
does not interact with Bob or Eve to build her embedding algorithm. The
idea is that she uses 3 algorithms (2 algorithms in the simpli�ed version) that
we nameagents. Each of these agents will play the role of Alice, Bob11 and
Eve, and each agent runs at Alice's home. Let us note these three algorithms
running at Alice's home: Agent-Alice, Agent-Bob, and Agent-Eve. With these
notations, we thus make a distinction with the Human users: Alice (sender),
Bob (receiver), and Eve (warden), and it allows us to highlight the fact that
the three agents are executed from Alice's side. So, Agent-Alice's role is to em-
bed a message into an image so that the resulting stego image is undetectable
by Agent-Eve, and such that Agent-Bob can extract the message.

Alice can launch the game, that is to say the simulation, and the agents are
\�ghting" 12. Once the agents have reached a Nash's equilibrium, Alice stops

11 Bob is deleted in the simpli�ed version.
12 The reader should be aware that from a game theory point of view there are only two
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the simulation and can now keep Agent-Alice, which is herstrategic adaptive
embeddingalgorithm, and can send Agent-Bob i.e the extraction algorithm (or
any equivalent information) to Bob 13. The secret communication between
Alice and Bob is now possible through the use of the Agent-Alice algorithm
for embedding and Agent-Bob algorithm for the extraction.

The �rst precursor approaches aimed at simulating a strategic adaptive
equilibrium, and therefore proposingstrategic embeddingalgorithms date from
2011 and 2012. The two approaches are MOD [25] and ASO [57] [56]; See
Figure 1.13. Whether for MOD or ASO, the game is made by pitting Agent-
Alice and Agent-Eve against each other. In this game, Agent-Bob is not used
since Agent-Alice is simply generating a cost map, which is then used for
coding and embedding the message thanks to an STC [26]. Alice can generate
a cost map for a source image with the Agent-Alice, and then she can easily
use the STC [26] algorithm to embed her message and obtain the stego image.
From his side, Bob only has to use the STC [26] algorithm to retrieve the
message from the stego image.

Figure 1.13 General scheme of ASO [57] [56].

In both MOD or ASO, the \simulation" is such that the two following
actions are iterated until a stop criterion is reached:

teams that are competing (Agent-Alice plus Agent-Bob from one side, and Agent-Eve from
the other side) in a zero-sum game.
13 Note that the exchange of any secret information between Alice and Bob, prior to the use
of Agent-Alice and Agent-Bob, requires the use of another steganographic channel. Also
note that this initial sending from Alice to Bob before been able to use Agent-Alice and
Agent-Bob is equivalent to the classical stego-key exchange problem.
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i) Agent-Alice updates its embedding cost map by asking an Oracle (the
Agent-Eve) how best to update each embedding cost, to be even less
detectable.

In MOD (2011) [25], Agent-Eve is an SVM. Agent-Alice updates
their embedding costs by reducing the SVM margin separating the
covers and the stegos.

In ASO (2012) [57], Agent-Eve is an Ensemble Classi�er [51] and is
named an Oracle. Agent-Alice updates their embedding costs by
transforming a stego in a cover.

In both cases, the idea is to �nd a displacement in the latent space
(feature space) co-linear to the orthogonal axis to the hyperplane sepa-
rating the cover and stego class. Note that in the current terminology,
introduced by Ian Goodfellow in 2014 [31], Agent-Alice runs an adver-
sarial attack, and the Oracle (Agent-Eve), named a discriminator (or
the classi�er to be deceived), must learn to counter this attack.

ii) The Oracle (Agent-Eve) updates its classi�er. Reformulated with the
terminology from machine learning, this equates to the discriminant
update by re-learning it, in order to steganalysis once more the stego
images generated by Agent-Alice.

In 2014, Goodfellowet al. [31] used neural networks to \simulate" a game
with an image generator networkand a discriminating network whose role
was to decide whether an image was real or synthesized. The authors have
named this Generative Adversarial Networks (GAN approach). The termi-
nology used in this paper was subsequently widely adopted. Moreover, the
use of neuron networks makes the expression of the min-max problem easy.
The optimization is then carried out via the back-propagation optimization
process. Moreover, thanks to deep-learning libraries it is now easy to build a
GAN type system. As we have already mentioned before, the concept of game
simulation, existed in steganography / steganalysis with MOD [25] and ASO
[57], but the implementation and the optimization becomes easier with neural
networks.

From 2017, after a period of 5 years of stagnation, the concept of the sim-
ulated game is once again studied in the �eld of steganography / steganalysis,
thanks to the emergence of deep learning and GAN approaches. At the end
of 2018, we can de�ne four groups or four families14 of approaches; some of
which will probably merge:

14 \Deep Learning in Steganography and Steganalysis since 2015", tutorial given at the
\Image Signal & Security Mini-Workshop", the 30th of October 2018, IRISA / Inria Rennes,
France, DOI: 10.13140/RG.2.2.25683.22567, http://www.lirmm.fr/ chaumont/publications .
See the slides here, and the video of the talk here.
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� The family by synthesis,

� The family by generation of the modi�cations probability map,

� The family by adversarial-embedding iterated (approaches misleading a
discriminant),

� The family by 3-player game,

1.6.1 THE FAMILY BY SYNTHESIS

The �rst approaches based onimage synthesisvia a GAN [31] generator pro-
posed the generation of cover images and then use them to make insertion
by modi�cation. These early propositions were approachesby modi�cation .
The argument put forward for such approaches is that the generated database
would be safer. A reference often cited is that of SGAN [98] found on ArXiv,
which was rejected at ICLR'2017 and was subsequently never published. This
unpublished paper has a lot of errors and lack of proof. We should rather
prefer the reference of SSGAN [89] that was published in September 2017,
and that proposes the same thing: generate images and then hide messages
in them. However, this protocol seems to complicate the matter. It is more
logical that Alice herself chooses natural images that are safe for embedding,
i.e. images that are innocuous, never broadcasted before, adapted to the con-
text, with lots of noise or textures [88], not well classi�ed by a classi�er [56]
or with a small de
ection coe�cient [87], rather than generating images, and
then using them to hide a message.

A much more interesting approach usingsynthesisis to directly generate
images that will be considered stego. To my knowledge, the �rst approach
exploiting the GAN mechanism for image synthesis using the principle of
steganographywithout modi�cations [27] is proposed in the article of Huet al.
[44] and published in July 2018; See Figure 1.14.

The �rst step consists of deriving a network able to synthesize images. In
this paper, the DCGAN generator [82] is used to synthesize images with a
preliminary learning thanks to GAN methodology. When fed with a vector of
a �xed-size uniformly distributed in [ � 1; 1] the generator synthesizes an image.
The second step consists of learning to another network to extract a vector
from a synthesized image; the extracted vector must correspond to the vector
given at the input of the generator which synthesizes the image. Finally, the
last step consists of sending Bob the extraction network. Now, Alice can map
a message to a �xed-size uniformly distributed vector, and then synthesize an
image with the given vector, and send it to Bob. Bob can extract the vector
and retrieve the corresponding message.

The approaches with no modi�cations have been around for many years,
and it is known that one of the problems is that the number of bits that can be
communicated is lower compared to the approaches with modi�cations. That
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Figure 1.14 Hu et al. [44] approach by synthesis without modi�cation.

said, the gap between the approaches bymodi�cations versusno-modi�cations
is beginning to narrow.

Here is a rapid analysis of the e�ciency of the method. In the paper of
Hu et al. [44], the capacity is around 0.018 bits per pixel (bpp) with images
64� 64 pixels 15. In the experiment carried out, the synthesized images are
either faces or photographs of food. An algorithm like HILL[63] (one of the
most powerful algorithms on the BOSS database [88]) is detected by SRNet
[10] (one of the most successful steganalysis approaches towards the end of
2018) with a probability of error of Pe = 31.3% (note that a Pe of 50% is
equivalent to a random detector) on a 256� 256 pixels BOSS database, for a
payload size of 0.1 bpp. Due to the square root law, the Pe would be higher
for the 64 � 64 pixels BOSS database.

Therefore, there is around 0.02 bpp for the unmodi�ed synthetic approach
of Hu et al. [44] whose security has not yet been evaluated enough, against
something around 0.1 bpp for HILL, with less than one chance in three to
be detected with a clairvoyant steganalysis i.e. a laboratory steganalysis (un-

15 The vector dimension is 100. This vector is used to synthesize images of a size 64 � 64 � 3.
There are 100 � 3 bits (see the mapping) per image, i.e. about 0.02 bits per pixel (bpp).
The Bit Error Rate is BER = 1 � 0:94 = 6%. It is, therefore, necessary to add an Error
Correcting Code (ECC) so that the approach is without errors. With the use of a Hamming
code [15; 11; 3] that corrects at best 6% of errors, the payload size is therefore around 0.018
bpp.
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realistic and much more e�cient than a \real-world" / \into the wild" ste-
ganalysis [48] [18]). Therefore, there is still a margin in terms of the number
of bits transmitted between the no-modi�cation synthesis-based approaches,
such as that of Hu et al. approach [44], andmodi�cation approaches such
as S-UNIWARD [43], HILL [63], MiPod [87] or even Synch-Hill [19], but this
margin has been reduced16. Also, note that there are still some issues to
be addressed to ensure that approaches such as the one proposed by Huet
al. are entirely safe. In particular, it must be ensured that the detection of
synthetic images [81] does not compromise the communication channel in the
long term. It must also be ensured that the absence of a secret key does not
jeopardize the approach. Indeed, if one considers that the generator is pub-
lic, is it possible to use this information to deduce that a synthesis approach
without modi�cation has been used?

1.6.2 THE FAMILY BY GENERATION OF THE
MODIFICATIONS PROBABILITY MAP

The family by generation of the modi�cation probability map is summarized
in late 2018 in two papers: ASDL-GAN [95], and UT-6HPF-GAN [104]; See
Figure 1.15. In this approach, there is a generator network and a discriminant
network. From a cover, the generator network generates a map which is named
the modi�cation probability map. This modi�cation probability map is then
passed to an equivalent of the random draw function used in the STC [26]
simulator. We then obtain a map whose values belong tof -1, 0, +1g. This map
is called the modi�cation map and corresponds to the so-called stego-noise.
The discriminant network takes as input a cover or an image resulting from the
summation (point-to-point sum) of the cover and the stego-noise generated by
the generator. The discriminant's objective is to distinguish between the cover
and the \ cover + stego-noise" image. The generator's objective is to generate
a modi�cation map which makes it possible to mislead the discriminant the
most. Of course, the generator is forced to generate a non-zero probability
map by adding in the loss term, a term constraining the size of the payload
in addition to the term misleading the discriminant.

In practice, taking the latest approach UT-6HPF-GAN [104], the generator
is a U-Net type network, the draw function is obtained by a di�erentiable
function double Tanh, and the discriminant is the Xu-Net [101] enriched with
6 high-pass �lters for the pre-processing in the same spirit as Ye-Net [106] or
Yedroudj-Net [108].

The system learns on a �rst database, and then security comparisons are
made on the 256� 256 pixels BOSS [4], LIRMMBase [78], and BOWS2 [3]

16 The other families of steganography by deep learning, which are modi�cation based, will
probably help to maintain this performance gap for a few years more.
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Figure 1.15 ASDL approach; generation of the modi�cations probability map

databases. The steganalysis is done with the Ensemble Classi�er (EC) [51]
fed by SRM [28], with EC plus the MaxSRM [20], and with Xu-Net [101]. Note
that using Xu-Net is not a good choice since it is less e�cient than EC+SRM
or EC+MaxSRM, and also because it is the discriminant in the UT-6HPF-
GAN (there is a risk of falling into an \incompleteness" issue; see papers [52]
[54]). So, only looking at the results with EC+SRM, on the BOSS database,
with real embedding using STC [26], the performances are equivalent to those
of HILL [63], which is one of the most e�cient embedding algorithms on BOSS
[88]. It is therefore a very promising family.

Additionally, the generator does not seem to be impacted when used on a
database that is di�erent from the learning database. Nevertheless, curriculum
learning has to be used when the target payload is changed, which seems to
indicate a kind of sensitivity to the mismatch. Further re
exions have also to
be achieved related to the generator's loss, and the mixing of both a security-
related term and a payload-size term. Usually, one of the two criteria is
�xed, so that we have to be in a payload-limited sender scenario or a security-
limited sender scenario. Note that a version for JPEG has been proposed in
IH&MMSec'2019, JS-GAN [105].
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1.6.3 THE FAMILY BY ADVERSARIAL-EMBEDDING
ITERATED (APPROACHES MISLEADING A
DISCRIMINANT)

The family by adversarial-embedding iterated re-uses the concept ofgame
simulation which was presented in the beginning of Section 1.6 with a sim-
pli�cation of the problem since there are only two-players: Agent-Alice and
Agent-Eve. Historically MOD [25] and ASO [57] were the �rst algorithms of
this type.

Recently some papers have used the adversarial concept17 by generating
a deceiving example (see [116]), but these approaches are not adversarial-
embedding iterated. Nor are they dynamic, they contain no game simulation,
they are not trying to reach a Nash equilibrium, there is no learning alternation
between the embedder and the steganalysis.

A paper whose spirit is more in tune with a simulation of a game, which
takes the principle of ASO [57], and whose objective is to update the cost
map is the algorithm ADV-EMB [96] (previously named AMA on ArXiv
arXiv:1803.09043). In this article, the authors propose to make an adversarial-
embedding iterated, by letting Agent-Alice access the gradient of the loss of
Agent-Eve (similarly to ASO, where Agent-Alice has access to its Oracle (the
Agent-Eve)). In ADV-EMB, Agent-Alice uses the gradient, of the direction to
the class frontier (between classes cover and stego), to modify the cost map,
and in ASO, Agent-Alice directly uses the direction of the class frontier to
modify the cost map.

In ADV-EMB [96], the cost map is initialized with the cost of in S-
UNIWARD (for ASO it was the cost of HUGO [76]). During the iterations,
the cost map is updated, but there is only a� percentage of values that are
updated 18. When the ADV-EMB iterations are stopped, the cost map is com-
posed of a� � 1 percent of positions having a cost de�ned by S-UNIWARD,
and � percent of positions having a cost coming from a change in the initial
cost given by S-UNIWARD.

Note that updating a cost causes a cost asymmetry since the cost of a +1
change is no longer equal to the cost of a -1 change, as in ASO. Besides, the
update of the two costs of a pixel is rather rough since it is a simple division
by 2 for a direction (+1 or -1) and multiplication by 2 for the other direction.
The sign of the gradient of loss, calculated by choosing the cover label, for a
given pixel, makes it possible to determine for each of the two directions (+
1 / -1) if we should reduce or increase the cost. The idea is as in ASO, to

17 An adversarial attack does not necessarily require us to use a deep learning classi�er.
18 In STC, before coding the message, the pixels position of the image are shu�ed thanks
to the use of a pseudo-random shu�er, seeded by the secret stego-key. Note that this stego-
key is shared between Alice and Bob. After the shu�ing step, ADV-EMB selects the last �
percent pixels of the shu�ed image, and modi�es their associated cost and only those ones.
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deceive the discriminant since when we decide to reduce the value of a cost,
it is to favor the direction of modi�cation associated with this cost, and thus
we promote getting closer to the cover class.

With such a scheme, security is improved. The fact that it is preferable to
have a small number of modi�cations to the initial cost map probably makes
it possible to preserve the initial embedding approach, and therefore not to
introduce too many traces that could be detected by another steganalyzer [54].
That said, the update to the costs should probably be re�ned to better take
into account the value of the gradient. For the moment, the selection of the�
percent of pixels that will be modi�ed is suboptimal, and this selection should
eventually be done by looking at the initial cost of the whole pixel. Finally, as
it is the case for ASO, if the discriminant is not powerful enough to carry out
a steganalysis, then it can be totally counterproductive for the Agent-Alice.
Therefore, there are many open questions regarding the convergence criterion,
the stopping criterion, the number of iterations in the alternation between
Agent-Alice and Agent-Eve, and the de�nition of a metric for measuring the
relevance of Agent-Eve, etc. Note that an adversarial embeddingiterated with
Agent-Alice countering multiple versions of Agent-Eve has been proposed in
IH&MMSec'2019 [7].

1.6.4 THE FAMILY BY 3-PLAYER GAME

The 3-player game concept is an extension of the previous family (see the
family \adversarial-embedding iterated"), but this time with three agents and
all are neural networks. Here, the three agents: Agent-Alice, Agent-Bob,
and Agent-Eve are present (see Section 1.6 for an overview of the game).
Note that Agent-Alice and Agent-Bob are \linked" since Agent-Bob is only
there to add a constraint on the solution obtained by Agent-Alice. Thus,
the primary \game" is an antagonistic (or adversarial) game between Agent-
Alice and Agent-Eve, while the \game" between Agent-Alice and Agent-Bob
is rather cooperative, since these two agents share the common purpose of
communicating (Agent-Alice and Agent-Bob both want Agent-Bob to be able
to extract the message without errors). Figure 1.16, from [109] summarizes
the principle of the 3-player game. Agent-Alice takes a cover image, a message
and a stego-key, and after a discretisation step generates a stego image. This
stego image is used by Agent-Bob to retrieve a message. On the other side,
Agent-Eve has to decide whether an image is cover or stego; this agent outputs
a score.

Historically, after MOD and ASO, which only included two players, we
can see the premise of the idea of three players appear in 2016 with the pa-
per of Abadi and Andersen [1]. In this paper, Abadi and Andersen [1] from
Google Brain, proposed a cryptographic toy-example for an encryption based
on the use of three neural networks. The use of neural networks makes it
easy to obtain astrategic equilibrium since the problem is expressed as a min-
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Figure 1.16 The overall architecture of the 3-players game.

max problem and its optimization can be carried out by the back-propagation
process. Naturally, this 3-player game concept can be transposed to steganog-
raphy with the use of deep learning.

In December 2017 (GSIVAT; [33]), and in September 2018 (HiDDeN;
[117]), two di�erent teams from the machine learning community proposed,
in NIPS'2017, then in ECCV'2018, to achievestrategic embeddingthanks to
3 CNNs, iteratively updated, who play the role of Agent-Alice, Agent-Bob,
and agent Agent-Eve. These two articles do not rigorously de�ne the concept
of the 3-player game, and there are erroneous assertions, mainly because the
security and its evaluation are not correctly handled. If we place ourself in
the standard framework to evaluate the empirical security of an embedding
algorithm, that is to say with a clairvoyant Eve, the two approaches are very
detectable. The most signi�cant issues with these two papers are �rst, neither
of the two approaches uses a stego-key; which is the equivalent to always
using the same key, and it leads to very detectable schemes [78], second,
there is no discretization of pixel values issued from Agent-Alice, third, the
computational complexity, due to the use of fully connected blocks, leads to
un-practical approaches, and fourthly, the security evaluation is not carried
out with a state-of-the-art steganalyzer.

At the beginning of 2019, Yedroudj et al. [109] rede�ned the 3-player con-
cept, by integrating the possibility of using a stego-key, treating the problem
of discretization, going through convolution modules to have a scalable solu-
tion, and using a suitable steganalyzer. The proposition is not comparable
to classical adaptive embedding approaches, but there is a real potential to
such an approach. The Bit Error Rate is su�ciently small to be nulli�ed,
the embedding is done in the texture parts, and security could be improved
in the future. As an example, the probability of error with a steganalysis by
Yedroudj-Net[108], under equal errors prior, for a real payload size 0,3 bpp19

19 A Hamming error correcting code ensures a null BER theoretically for most of the images,
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for images of from BOWS2 database is 10.8%. This can, for example, be com-
pared to the steganalysis of WOW[39] using the same conditions, which give
a probability error of 22.4%. There is still a security gap, but this approach
paves the way to much research. There are still open questions on the link be-
tween Agent-Alice and Agent-Bob, on the use of GANs, and on the de�nition
of losses and the tuning of the compromises between the di�erent constraints.

CONCLUSION
In this chapter, we have practically completed a full presentation of the subject
on deep learning in steganography and steganalysis, since its appearance in
2015. As a reviewer of many papers related to this subject during the period
2015 - 2018, I think and I hope this chapter will help the community to
understand what has been done and what are the next directions to explore.

In this chapter, we recalled the main elements of a CNN. We discussed
the memory and time complexity, and practical problems for e�ciency. We
explored the link between some past approaches sharing similarities with what
is currently carried out in a CNN. We presented the various main networks
until the beginning of 2019, and multiple scenarios, �nally we touched on the
recent approaches for steganography with deep learning.

As mentioned in this chapter, many things have not been solved yet, and
the major issue is to be able to experiment with more realistic hypotheses
to be more \into the wild". The \holy grail" is cover-source mismatch and
stego-mismatch, but in a way, the mismatch is a problem shared by the whole
machine learning community. CNNs are now very present in the steganalysis
community, and the next question is probably: how to go a step further and
produce clever networks?
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