
HAL Id: lirmm-02087749
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02087749v1

Submitted on 2 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

PELICAN: deeP architecturE for the LIght Curve
ANalysis

Johanna Itam-Pasquet, Jérôme Pasquet, Marc Chaumont, Dominique Fouchez

To cite this version:
Johanna Itam-Pasquet, Jérôme Pasquet, Marc Chaumont, Dominique Fouchez. PELICAN: deeP
architecturE for the LIght Curve ANalysis. Astronomy & Astrophysics - A&A, 2019, 627 (A21),
pp.A21. �10.1051/0004-6361/201834473�. �lirmm-02087749�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02087749v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A&A 627, A21 (2019)
https://doi.org/10.1051/0004-6361/201834473
c© J. Pasquet et al. 2019

Astronomy
&Astrophysics

PELICAN: deeP architecturE for the LIght Curve ANalysis
Johanna Pasquet1, Jérôme Pasquet2,3,4, Marc Chaumont5, and Dominique Fouchez1

1 Aix Marseille Univ., CNRS/IN2P3, CPPM, Marseille, France
e-mail: pasquet@cppm.in2p3.fr

2 AMIS, Université Paul Valéry, Montpellier, France
3 TETIS, Univ. Montpellier, AgroParisTech, Cirad, CNRS, Irstea, Montpellier, France
4 Aix-Marseille Université, CNRS, ENSAM, Université De Toulon, LIS UMR 7020, France
5 LIRMM, Univ. Nîmes, CNRS, Univ., Nîmes, France

Received 19 October 2018 / Accepted 19 March 2019

ABSTRACT

We developed a deeP architecturE for the LIght Curve ANalysis (PELICAN) for the characterization and the classification of super-
novae light curves. It takes light curves as input, without any additional features. PELICAN can deal with the sparsity and the irregular
sampling of light curves. It is designed to remove the problem of non-representativeness between the training and test databases com-
ing from the limitations of the spectroscopic follow-up. We applied our methodology on different supernovae light curve databases.
First, we tested PELICAN on the Supernova Photometric Classification Challenge for which we obtained the best performance ever
achieved with a non-representative training database, by reaching an accuracy of 0.811. Then we tested PELICAN on simulated light
curves of the LSST Deep Fields for which PELICAN is able to detect 87.4% of supernovae Ia with a precision higher than 98%, by
considering a non-representative training database of 2k light curves. PELICAN can be trained on light curves of LSST Deep Fields
to classify light curves of the LSST main survey, which have a lower sampling rate and are more noisy. In this scenario, it reaches an
accuracy of 96.5% with a training database of 2k light curves of the Deep Fields. This constitutes a pivotal result as type Ia supernovae
candidates from the main survey might then be used to increase the statistics without additional spectroscopic follow-up. Finally we
tested PELICAN on real data from the Sloan Digital Sky Survey. PELICAN reaches an accuracy of 86.8% with a training database
composed of simulated data and a fraction of 10% of real data. The ability of PELICAN to deal with the different causes of non-
representativeness between the training and test databases, and its robustness against survey properties and observational conditions,
put it in the forefront of light curve classification tools for the LSST era.

Key words. methods: data analysis – techniques: photometric – supernovae: general

1. Introduction

A major challenge in cosmology is to understand the observed
acceleration of the expansion of the universe. A direct and very
powerful method to measure this acceleration is to use a class
of objects, called standard candles due to their constant intrin-
sic brightness, which are used to measure luminosity distances.
Type Ia supernovae (SNe Ia), a violent endpoint of stellar evo-
lution, are a very good example of such a class of objects as
they are considered as standardizable candles. The acceleration
of the expansion of the universe was derived from observations
of several tens of such supernovae at low and high redshift
(Perlmutter et al. 1999; Riess et al. 1998). Then, several dedi-
cated SNe Ia surveys have together measured light curves for
over a thousand SNe Ia, confirming the evidence for accelera-
tion expansion (e.g., Betoule et al. 2014; Scolnic et al. 2018).

The future Large Survey Synoptic Telescope (LSST;
LSST Science Collaboration 2009) will improve on past surveys
by observing a much higher number of supernovae. By increas-
ing statistics by at least an order of magnitude and controlling
systematic errors, it will be possible to pave the way for advances
in precision cosmology with supernovae.

A key element for such analysis is the identification of type
Ia supernovae. However, the spectroscopic follow-up will be
limited and LSST will discover more supernovae than can be
spectroscopically confirmed. Therefore an effective automatic

classification tool, based on photometric information, has to be
developed to distinguish between the different types of super-
novae with a minimum contamination rate to avoid bias in the
cosmology study. This issue has been raised before and led to
the launch of the Supernova Photometric Classification Chal-
lenge in 2010 (SPCC; Kessler et al. 2010a) to the astrophysi-
cal community. Several classification algorithms were proposed
with different techniques resulting in similar performance with-
out resolving the problem of non-representativeness between
the training and test databases. Nonetheless, the method devel-
oped by Sako et al. (2008, 2018) based on template fitting shows
the highest average figure of merit on a representative training
database, with an efficiency of 0.96 and an SN Ia purity of 0.79.

Since then, several machine learning methods have
been applied to classify supernovae light curves (e.g.,
Richards et al. 2012; Ishida & de Souza 2013; Karpenka et al.
2013; Varughese et al. 2015; Möller et al. 2016; Lochner et al.
2016; Dai et al. 2018). They show interesting results when they
are applied on a representative training dataset, but the perfor-
mance dramatically decreases when the learning stage is made
on a non-representative training subset, which represents, how-
ever, the real scenario.

We propose to explore in this paper a new branch of
machine learning called deep learning, proved to be very effi-
cient for image and time series classification (e.g., Szegedy et al.
2015; He et al. 2016; Schmidhuber et al. 2005). One of the main

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A21, page 1 of 15

https://doi.org/10.1051/0004-6361/201834473
https://www.aanda.org
http://www.edpsciences.org
http://creativecommons.org/licenses/by/4.0

A&A 627, A21 (2019)

61680 61700 61720 61740 61760
MJD (julian day)

0
20
40
60
80

100
120
140

Fl
ux

SN Ia in Deep Drilling Fields, z=0.313
u
g
r
i
z
y

62960 62980 63000 63020 63040 63060
MJD (julian day)

0
25
50
75

100
125
150
175

Fl
ux

SN Ia in Wide Fast Deep fields, z=0.325
u
g
r
i
z
y

Fig. 1. Example of two light curves of type Ia supernovae observed for
a high LSST cadence (Deep Drilling Fields), on the left and a low LSST
cadence (Wide Deep Fast), on the right, at two similar redshifts.

differences of this to the classical machine learning meth-
ods is that the raw data are directly transmitted to the algo-
rithm that extracts by itself the best feature representation for
a given problem. In the field of astrophysics, deep learning
methods have shown better results than the current method
applied to images for the classification of galaxy morpholo-
gies (Domínguez Sánchez et al. 2018), the classification of tran-
sients (du Buisson et al. 2015; Gieseke et al. 2017), and the esti-
mation of photometric redshifts (Pasquet et al. 2019) to name
a few. This method has also shown an impressive perfor-
mance for the classification of light curves (Mahabal et al. 2017;
Pasquet-Itam & Pasquet 2018) and especially the classification
of supernovae (Charnock & Moss 2017; Brunel et al. 2019).

In this work we develop a complex deep learning architec-
ture to classify light curves. We apply our study to the classifi-
cation of light curves of supernovae. Unlike the other studies,
our method overcomes the problem of non-representativeness
between the training and the test databases, while considering a
small training database. We apply our method to the SPCC chal-
lenge, then on LSST simulated data including a biased and small
training database. We also validate our method on real data from
the Sloan Digital Sky Survey (SDSS) data. The paper is orga-
nized as follows. In Sect. 2, we explain the different issues for the
classification of light curves. In Sect. 3, we introduce deep learn-
ing concepts that we used and developed in this work. In Sect. 4,
we present our architecture named PELICAN (deeP architec-
turE for the LIght Curve ANalysis). In Sect. 5, we describe
the different datasets used in this study. In Sect. 6 we present
the experimental protocol that we adapted to make PELICAN
robust against the differences of sampling and noise. In Sect. 7
we present our results for different databases. In Sect. 8 we ana-
lyze the behavior of PELICAN with respect to a number of light
curve properties and observational conditions. Finally we con-
clude and consider future avenues of research in Sect. 9.

2. Light curve classification issues

Light curves are fundamental signals to measure the variabil-
ity of astrophysical objects. They represent the flux of an object
over time in different photometric bands (e.g., ugriz system).
Due to the observational strategy and conditions, light curves
have an irregular sampling, often sparse. Therefore a sampling
with two different observational cadences presents several differ-
ences. Figure 1 shows, as an example, two simulated light curves
with two different cadence models (see Sect. 5.3). Compared to
an image, such light curves have incomplete and non-continuous
information, thus imposing dedicated training algorithms.

The other issue is the non-representativeness between the
training and the test databases. As the spectroscopic follow-up
used to label the light curves is limited, the coverage of the train-
ing database in brightness, redshift, and number is different from

Fig. 2. Distributions of LSST simulated data of the median r-band mag-
nitude (left) and the simulated redshift (right) for the training dataset in
blue and the test dataset in red. The mismatch is clearly visible as there
is a significant shift between the two distributions.

the test database as shown in Fig. 2. Moreover the absolute mag-
nitude of SNe Ia is correlated with two quantities. First, brighter
SNe Ia have wider, slower declining light curves. This variabil-
ity can be described as a timescale stretch of the light curve
(Phillips 1993). In addition brighter SNe Ia are bluer and a color
correction has to be applied to standardize them (van den Bergh
1995; Tripp 1998). So due to these correlations, the lower stretch
and redder supernovae are fainter and tend to have small recov-
ery efficiency (Malmquist bias) and so are under-represented in
the training database, which is limited in brightness. The non-
representativeness of the databases, which is a problem of mis-
match, is critical for the machine learning process. In general,
machine learning methods require a sufficiently large number of
training data in order to correctly classify, so the small size of
the training database involves another difficulty.

To provide a solution for each of these issues, we have
designed a specific architecture. First, light curves from the test
database are trained with a non-supervised model without using
the knowledge of labels. This allows us to reduce the mismatch
between the training and the test databases and provides a solu-
tion to the small training dataset, by extracting features from
the larger test database. To reduce again the problem of non-
representativeness, we performed a second training step to min-
imize the distances in the feature representation space between
bright and faint supernovae of the same label and to maximize
the distances of supernovae with different labels. Finally we inte-
grated a regularization term into the training to adapt the model
to the sparsity of data. The resulting deep architecture, dedicated
to the characterization and classification of light curves, is pre-
sented in Sect. 4.

3. Deep learning model

In this section, we present the main deep learning concepts that
were used to build our network architecture. Namely the con-
volution layer network, which describes the basics, the autoen-
coder, which is a non-supervised module where we detail the
notion of loss function, and finally the contrastive approach,
where an adapted loss function is defined to improve the clus-
tering of entries with the same label.

3.1. Convolutional neural network

The convolutional neural network (CNN) is a special type of
multilayered neural network that is made up of neurons that
have learnable weights and biases. The architecture of a CNN

A21, page 2 of 15

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834473&pdf_id=1
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834473&pdf_id=2

J. Pasquet et al.: PELICAN

is designed to take advantage of the 2D structure of an input
image. It takes as input a h × w × c image where h is the height,
w is the width of the image, and c is the number of channels.
As a light curve is a 1D signal, we transform it into a 2D “light
curve image” (LCI) as we did in Pasquet-Itam & Pasquet (2018).
The width of the LCI is the temporal axis (expressed in days)
and the height is the number of photometric bands. For exam-
ple, if we consider a light curve measured in ugriz bands over
200 days, the corresponding LCI is a 2D array of dimension
(5× 200) pixels. By treating the band as a second spatial dimen-
sion instead of as a channel, we can add the information of the
color deeper in the network or even at several levels as we did in
Pasquet-Itam & Pasquet (2018). As a light curve is not a contin-
uous signal, the corresponding array is composed of many blank
cells that we fill with zero values. A harmful consequence is the
overfitting of the position of missing data, which could dramat-
ically degrade the performance. In this case, the model learns
the exact position of missing data of the training light curves
and is not able to generalize to the unseen test data. To prevent
this overfitting and make the model invariant against the posi-
tion of missing data, we have integrated several techniques that
are explained in Sect. 6.

In this work, we developed a CNN instead of a recurrent neu-
ral network (RNN), which could, however, seem more suitable
for the classification of time series, as the treatment of missing
data needs to be considered in a different way. The missing data
can be interpolated (e.g., Charnock & Moss 2017), but this pre-
processing can add a bias in the classification task. Moreover
the interpolation of light curves depends on the observational
strategy. In the context of LSST, as there will be two differ-
ent cadence models, the interpolation of data is not trivial and
a common interpolation could degrade the performance of the
classification.

3.1.1. Convolution layers

In a convolution layer, each neuron applies a convolution oper-
ation to the input data using a 2D map of weights used as a
kernel. Then resulting convolved images are summed, a bias is
added, and a non-linearity function is applied to form a new
image called a feature map. In the first convolution layer, the
convolution operation is realized between the input LCI and
the set of convolution kernels to form feature maps that are
then convolved with convolution kernels in the next convolu-
tion layer. For the non-linearity function, we mainly use the most
commonly used activation function: the ReLU (Rectified Linear
Unit, Nair & Hinton 2010) defined by f (x) = max(x, 0). The
weights of the kernels are updated during the training by back-
propagation process.

3.1.2. Pooling layers

The network can be composed of pooling layers, which quantify
the information while reducing the data volume. The two most
used methods consist in selecting only the maximum or the aver-
age value of the data in a local region.

3.1.3. Fully connected layers

Finally, fully connected layers are composed of neurons that
are connected to every neuron of the previous layer and per-
form the classification process with features from previous con-
volution layers. More details on CNN models can be found in
Pasquet-Itam & Pasquet (2018), Pasquet et al. (2019).

Fig. 3. Schema of the autoencoder process.

3.2. Autoencoder

To benefit from the information of the light curves of the test
database and so reduce the mismatch between the training and
test databases, we have adapted a non-supervised autoencoder.
An autoencoder is an unsupervised learning algorithm that tries
to learn an approximation to the identity function such as out-
put should mimic the input. As a consequence the internal lay-
ers exhibit a good representation of the input data. The input
X ∈ RD, with D = h × w, is transformed into an embedding
Z ∈ RK , often such as K � D. The mapping from X to Z is
made by the encoder, denoted f , which can perform a dimen-
sion reduction to finally get a good representation of the data
in a compressed format. The reconstruction of the original sig-
nal, X′ ∈ RD, is obtained by the decoder, denoted g, which uses
the compressed embedding representation Z (see Fig. 3). The
objective of the autoencoder is to minimize the distance func-
tion (for example L2 distance), called the loss function, between
each input X and each output X′. The learning process of the
autoencoder consists in iteratively refining its internal param-
eters such that the evaluation of the loss function on all the
learning set is reduced. The loss function associated to the
autoencoder, denoted Lauto is defined as

Lauto = ||X − g(f (X))||, (1)

where X represents the input signal and ||.|| symbolizes the L2
distance.

The minimization of the loss function that maps from X to Z
in order to obtain X′ does not guarantee the extraction of useful
features. Indeed the network can achieve a perfect reconstruction
by simply “copying” the input data and thus obtaining a minimal
mapping error. Without any other constraints, the network can
miss a good representation of the input data. A strategy to avoid
this problem is to constrain the reconstruction criterion by clean-
ing or denoising partially corrupted input data with a denoising
autoencoder (Vincent et al. 2008).

The methodology consists in first applying noise, for exam-
ple an additive Gaussian noise, on input data to corrupt the ini-
tial input X into X̃. Then the autoencoder maps X̃ to Z via the
encoder f and attempt to reconstruct X via the decoder g (see
Fig. 4). Although Z is now obtained by applying the encoder on
corrupted data X̃, the autoencoder is still minimizing the recon-
struction loss between a clean X and its reconstruction from X̃
with the loss function

Ldenoising = ||X − g(f (X̃))||, (2)

where X̃ = X + ε, with ε an additive uniform noise with the same
dimension as X (see Fig. 4).

As the number of parameters of the autoencoder is high, light
curves are sparse, and the size of the training database that we
will have is small, the overfitting can seriously affect the per-
formance of the network in our case. A solution is to introduce
sparsity to the learned weights to avoid learning “noisy” patterns.

A21, page 3 of 15

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834473&pdf_id=3

A&A 627, A21 (2019)

Fig. 4. Schema of the denoising autoencoder process.

The sparsity concept makes the assumption that only a few neu-
rons are required in order to reconstruct a complete signal. Let
us consider that a neuron is active if its output value is close to
one and inactive if its output value is close to zero. We want a
very sparse representation such that the neurons of a given layer
should be inactive most of the time and so obtain an average
activation of neurons close to zero. Therefore the output signal
is reconstructed with a very limited number of activated neurons.

We note ρ̂ j the average activation of hidden unit j over the
training set. To force neurons to be inactive, we enforce the con-
straint ρ̂ j = ρ, with ρ being a sparsity parameter that is initialized
close to zero. Thus the average activation of each hidden neuron
has to be close to a small value and so most of the neurons have
to be inactive to satisfy this constraint.

In practice, a penalty term is added to the loss function
to penalize ρ̂ j = ρ deviating significantly from ρ. One of the
most frequently used penalty terms is the Kullback–Leibler (KL)
divergence (Hinton 2002) defined as

KL(ρ||ρ̂ j) = ρ log
ρ

ρ̂ j
+ (1 − ρ) log

(
1 − ρ
1 − ρ̂ j

)
· (3)

KL divergence measures how two distributions are different
from one another. It has the property that KL(ρ||ρ̂ j) = 0 if ρ̂ j = ρ
and otherwise it increases monotonically as ρ̂ j diverges from ρ.

The loss function now integrates this penalty term as

Lsparse = ||X − g(f (X))|| + αΩL, (4)

with α ∈ R being a scalar that weights the sparse regulariza-
tion term ΩL , which is the sum of the KL divergence term for
neurons of a chosen layer noted L defined as

ΩL =
∑

j

KL(ρ||ρ̂ j) =
∑

j

ρlog
ρ

ρ̂ j
+ (1 − ρ)log

1 − ρ
1 − ρ̂ j

, (5)

j ∈ {1, . . . ,N j} with N j the number of neurons of layer L.

3.3. Contrastive loss function

The contrastive loss function was introduced to perform a dimen-
sionality reduction by ensuring that semantically similar exam-
ples are embedded close together (Hadsell et al. 2006). It was
shown that this method provides invariance to certain transfor-
mations on images. The contrastive loss function is computed
over pairs of samples unlike traditional loss functions, which are
a sum over all the training database. We note (Z1, Z2) a pair of
input data and Y a binary label assigned to this pair. If Z1 and

Z2 have the same label, Y = 0, otherwise Y = 1. The distance
function between Z1 and Z2 is learned as the euclidean distance:
D = ||Z1 − Z2||. Thus the loss function tends to maximize D if
they have dissimilar labels and minimize D if Z1 and Z2 have
similar labels. So we can write the loss function as

L(D, (Y, Z1, Z2)) = (1 − Y)LS(D) + Y LD(D), (6)

with (Y, Z1, Z2) a labeled sample pair, LS the partial loss function
for a pair of similar labels, and LD the partial loss function for a
pair of dissimilar labels. To get low values of D for similar pairs
and high values of D for dissimilar pairs, LS and LD must be
designed to minimize L. We introduce the margin m > 0, which
defines a minimum distance between (Z1, Z2). Dissimilar pairs
contribute to the loss function only if their distance is below this
minimum distance so that pairs who share the same label will be
brought closer, and those who do not share the same label will be
driven away if their distance is less than m. The final contrastive
loss function is defined as

Lcontrastive = (1−Y) ||Z1−Z2||+Y max
(
0,m −

√
||Z1 − Z2||

)2
. (7)

4. Proposed architecture

We developed PELICAN to obtain the best feature-space repre-
sentation from light curves and perform a classification task. In
this work, we apply PELICAN for the classification of super-
novae light curves but it can be extended to the classification of
other variable or transient astrophysical objects.

PELICAN is composed of three successive modules (see
Fig. 7). Each of them has a specific purpose with a loss function
associated. The first module learns a deep representation of light
curves from the test database under an unsupervised autoencoder
method. The second module optimizes a contrastive loss func-
tion to learn invariance features between the bright and fainter
supernovae from the training database. Finally, the third mod-
ule performs the classification task. In this section we explain in
more detail the different mechanisms and objectives of the oper-
ations related to each module.

4.1. Autoencoder branch

To deal with the low number of examples in the training
database, which leads to overfitting and mismatch between the
spectroscopic and photometric distributions (see Fig. 2), we pro-
pose to train an unsupervised sparse autoencoder method on the
test database. In this way we can benefit from the information
of light curves in the test database without knowing the label
associated to each object.

The autoencoder takes as input a batch of LCIs of size h × w
from the test database, which are encoded and decoded through
a CNN architecture. To extract useful features, we applied an
uniform noise, which affects differently each magnitude on the
light curve by adding a random value ∈ [−0.5, 0.5] mag, before
passing through the encoder (see Fig. 4).

In the first part of the CNN, the encoder, which is com-
posed of nine convolution layers (conv 1 to conv 9 in Fig. 7)
and four pooling layers (Pool 1,4, 6, and 8), converts the input
noisy LCIs into an embedding representation. Then, the decoder
reconstructs the original LCIs from the embedding representa-
tion through two fully connected layers (FC10 and FC11) of
5000 neurons. So the output of the autoencoder is a reconstructed
LCI with the same size as the input, h×w. As this part is trained
on the test database, which contains a sufficiently large quan-
tity of data, it allows us to design a deep architecture with a

A21, page 4 of 15

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834473&pdf_id=4

J. Pasquet et al.: PELICAN

Fig. 5. Illustration of the overfitting of the missing data that could appear in the autoencoder process and the solution proposed to overcome it. The
input light curve is composed of different magnitudes (m0, m1, m2 m3) and missing values represented by zero values. In case 1, the algorithm has
completely overfitted the missing data by replacing them at the same position on the light curve. So the loss function, L(1)

auto , is ideally low. In case
2 the algorithm has completed the missing data by interpolating them. However, as the computation of the loss is made between the new values of
magnitudes, (m0

int, m1
int, m2

int, m3
int, m4

int), compared to zero values, the value of the loss L(2)
auto is overestimated. The solution that we provided is to

multiply the interpolated light curve by a mask M before the computation of the loss, L(3)
auto.

large number of parameters and so learn high-level features.
Moreover the first convolution layers are composed of a large
kernel size to extract large temporal patterns and capture the
maximum of observations, as the light curve is mainly composed
of zero values. Then the feature maps are reduced to the size of
the convolution kernels to limit the number of parameters. The
loss function associated to the autoencoder, called Autoencoder
Loss in Fig. 7, minimizes the difference between the original LCI
and the reconstructed one. However, we have to pay attention to
the overfitting of missing data on the light curve. The problem of
sparse data has already been the subject of few studies (Liu et al.
2018; Eldesokey et al. 2018; Hua & Gong 2018). In this work
we developed a different approach very specific to the classifica-
tion of light curves. An illustration of the overfitting problem and
the solution we propose is given in Fig. 5. By construction, the
input LCI is composed of many zero values (see Sect. 3.1) that
are propagated in the network as real data. If we compute a clas-
sical autoencoder loss function, two scenarios are possible. In
the first case, the model could learn to reconstruct the LCI with
the missing data that do not have a physical sense (see case 1 in
Fig. 5). In the second case, the model is able to interpolate data.
However, the autoencoder loss cannot take into account these
interpolated values as they are compared to zero values on the
initial LCI, and so lead to a divergence of the loss function (case
2 in Fig. 5). Therefore we propose to define a mask with the
same size as the considered original light curve, filling with one
if there is an observation on the light curve, and zero otherwise.
The reconstructed LCI is then multiplied by the mask before the
minimization of the loss function (case 3 in Fig. 5). Equation (1)
becomes

Lauto = ||X − g(f (X)) � M(X)||, (8)

with M(X) being the mask related to the input light curve X.
Finally, we compute the penalty term as defined in Eq. (5),

in the second fully connected layer, FC11, and call it sparsity
loss. It depends on two hyperparameters: the sparsity parameter

ρ and the weight of the sparse regularization α. To determine
the best values of ρ and α, we searched the best combination
using a 2D grid search among values in the following finite sets:
{10−5, 5×10−4, 5×10−3, 10−3, 5×10−2, 10−2, 5×10−1, 10−1} and
{10−3, 5 × 10−2, 10−2, 5 × 10−1, 10−1}, respectively.

However, the regularization term does not take into account
the number of observations on each light curve, which varies sig-
nificantly. It may cause overfitting as the number of active neu-
rons is then always the same whatever the number of data points
on each light curve. So the number of active neurons has to be
adapted depending on the number of observations in all filters.
Thus, we propose to express the sparsity parameter, ρ, as a lin-
ear function depending on the number of observations for each
light curve. This contribution allows us to increase the number of
active (inactive) neurons when the light curve is densely (poorly)
populated with observations. We define a new sparsity parameter
ρ′(l) for the specific light curve denoted l as

ρ′(l) = ρanl + ρb, (9)

with nl the number of observations on the light curve l; ρa and ρb
are two hyperparameters. They are determined at the same time
as α using a 3D grid search among the same values as ρ.

In this case, the sparse regularization term (see Eq. (5)) of
our autoencoder module takes the form

Ω′L(l) =
∑

j

ρ′(l)log
ρ′(l)
ρ̂ j

+ (1 − ρ′(l))log
1 − ρ′(l)
1 − ρ̂ j

· (10)

4.2. Contrastive branch

Once the autoencoder training has converged on the test database
the weights of its convolution and fully connected layers are
fixed. Another strategy is to fine-tune the weights of the autoen-
coder branch using the contrastive loss function. In our case, this
approach has two problems. The first one is to obtain features

A21, page 5 of 15

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834473&pdf_id=5

A&A 627, A21 (2019)

from the autoencoder module that are less representative of the
test database, which does not allow the model to overcome the
non-representativeness between the training and test databases.
The second problem is an overfitting of the training database due
to its small size, which decreases the performance. Then, the out-
put of a chosen layer of the encoder part is given as input to the
contrastive branch. This second module is designed to reduce
the mismatch between the training (higher magnitudes) and the
test (lower magnitudes) databases. This requires a specific con-
trastive loss function that is minimized through a CNN archi-
tecture. So we propose a loss function that minimizes the varia-
tions of intra-class light curves and maximizes the variations of
inter-class light curves. In this way, we split the training database
into four subsets following a cut magnitude mc in the i-band
magnitude.

If we denote mIa(l) the i-band median magnitude of a type
Ia light curve and mnon−Ia(l) the i-band median magnitude of a
non-Ia-type light curve, a given light curve can belong to one of
the four following subsets:

– LC1 : type Ia light curves with mIa(l) < mc,
– LC2 : type Ia light curves with mIa(l) > mc,
– LC3 : non-Ia-type light curves with mnon−Ia(l) < mc,
– LC4 : non-Ia-type light curves with mnon−Ia(l) > mc.

Therefore the goal is to define a loss function that minimizes
the variation between intra-class light curves, that is, between
the LC1–LC2 and LC3–LC4 sets, and maximizes the varia-
tion between inter-class light curves, that is, between LC1–LC3,
LC1–LC4, LC2–LC3, and LC2–LC4 sets.

Equation (7) becomes

L =
1
2

max
(
0,m −

√
||LC1 − LC3||

)2
+

1
2

max
(
0,m −

√
||LC1 − LC4||

)2

+
1
2

max
(
0,m −

√
||LC2 − LC3||

)2
+

1
2

max
(
0,m −

√
||LC2 − LC4||

)2

+ ||LC1 − LC2|| + ||LC3 − LC4||. (11)

We introduce 1
2 terms into the formula to weight the inter-class

distances so that the inter-class and the intra-class distances have
the same weight in the computation of the loss function.

In practice this means that the encoder is fed with sets of four
light curves from the training database, with one light curve from
each subset. At each iteration light curves are randomly selected.
If all light curve subsets have been transmitted, the training
database is randomly shuffled and the procedure continues. This
procedure allows us also to avoid overfitting as the number of
possible pair combinations is larger than the original training
database. The learning of the contrastive branch (see Fig. 7) is
done without updating the training weights of the autoencoder,
which have been adjusted during the non-supervised step on the
test database. This step allows us also to solve the problem of
asymmetry that exists between the classes as this module takes
as input both light curves of type Ia and non-Ia supernovae at the
same time. As this part of the network is trained only on the train-
ing database, the number of convolution layers is smaller than
in the first module of the autoencoder to avoid overfitting. Fea-
tures from the seventh convolution (conv 7 in Fig. 7) are given
as input to the contrastive branch where the training weights are
updated. Therefore the minimization of the contrastive loss is
made only on the training database. The choice of the seventh
convolution layer as input to the contrastive branch was made
for several reasons. First of all, as the encoder part of the first
module is dedicated to the extraction of relevant features from
the test light curves to characterize them precisely, while the
decoder part is designed to reconstruct the original light curve,

Fig. 6. Representation of the t-distributed stochastic neighbor embed-
ding (t-SNE) projections with features extracted from two layers of the
autoencoder module (Conv 7 and FC 10) and from two layers of the
contrastive module (Conv 9c and FC 11c).

we decided to extract features from the first part of the autoen-
coder to reduce the mismatch between the training and the test
databases. Figure 6, which represents the t-SNE1 projections of
features, offers a means of better understanding. If the projection
of features from the first fully connected layer (FC 10) of the
autoencoder part shows a better separation of type Ia and non-Ia
supernovae than from the seventh convolution layer, the extrac-
tion of these features for the contrastive branch degrades the
performance. This means that it is preferable to consider a fea-
ture representation space of light curves of high abstraction level
rather than a representation apparently more suited for classifica-
tion in the autoencoder layers, as it allows a significant reduction
of the mismatch between the training and the test databases. The
last layers of the contrastive module (conv 9c and FC 11c) mark
a clear separation between type Ia and non-Ia supernovae (bot-
tom panel of Fig. 6).

4.3. Classification branch

The last module of PELICAN is composed of three fully con-
nected layers (see Fig. 7) with a low number of neurons to reduce
overfitting. It takes its input features from the two first mod-
ules to perform the classification step. Indeed to make the final
classification, this part needs information from the first module
that fully characterizes the light curves of the test database and
so gives a large variety of features that allows us to reduce the
mismatch between the training and test databases. However, this
time we extract features from the decoder part as it was shown
that it is able to make a separation of the classes that is relevant
for this final step (see Fig. 6). Then the classification branch
must benefit from features of the second contrastive branch,
and particularly the fully connected layer (FC11c), which
reduce again the mismatch while marking a separation between
classes.

1 The t-distributed stochastic neighbor embedding (t-SNE,
van der Maaten & Hinton 2008) is a non-linear dimensionality
reduction technique well suited for embedding high-dimensional data
for visualization in a low-dimensional space of two or three dimensions.

A21, page 6 of 15

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834473&pdf_id=6

J. Pasquet et al.: PELICAN

Fig. 7. Representation of PELICAN architecture, which is composed of
three modules: the autoencoder, the contrastive, and the classification
modules. The first module optimizes the autoencoder loss containing a
sparsity parameter (see Eq. (10)). In the second module, the contrastive
loss (see Eq. (11)) is optimized to bring the features with the same label
together. Finally the third module performs the classification step opti-
mizing a standard classification loss.

Finally to combat the overfitting of missing data, the third
module takes also as input, features from the ninth and tenth
convolution layers of the contrastive branch (conv 9c and conv
10c). We apply a specific operation, called a global pooling,
which allows us to transform a 2D output feature vector of a
convolution layer into a 1D feature vector given as input to a
fully connected layer. We choose to apply a global max pool-
ing that will select only the maximum value on the 2D output
feature maps from the convolution layers, excluding zero values
and so missing data. We also make use of a dropout technique
(Srivastava et al. 2014) on the two fully connected layers FC13
and FC14 to combat overfitting.

5. Light curve data

We tested and adapted our method on three different databases.
First we evaluate the techniques on simulated data from
the Supernovae Photometric Classification Challenge (SPCC,
Kessler et al. 2010b,a) then on simulated LSST light curves for
the main survey and the deep fields. Finally we explore the pos-
sibility of making the learning step on simulated light curves and
then testing on real data. We apply this last work on SDSS super-
novae light curves (Frieman et al. 2008; Sako et al. 2008).

5.1. The SuperNova ANAlysis software (SNANA)

Light curves have been simulated using the SNANA simulator
(Kessler et al. 2009). This is an analysis package for supernovae
light curves that contains a simulation, a light curve fitter and
a cosmology fitter. It takes into account actual survey condi-
tions and so generates realistic light curves by using the mea-
sured observing conditions at each survey epoch and sky loca-
tion. First the supernovae properties are generated by choosing a
shape-luminosity and color parameters, which are used in addi-
tion to other internal model parameters to determine the rest-
frame magnitude at each epoch. Then K-corrections are applied
to transform rest-frame model magnitudes to observed magni-
tudes in the telescope system. Finally the ideal above atmosphere
magnitudes are translated into observed fluxes and uncertain-
ties. Observed magnitudes are also simulated and that is the
input we used for each light curve given as input to the net-
work. Type Ia supernovae light curves are simulated from spec-
tral adaptive light curve template (SALT2; Guy et al. 2007) or
multicolor light curve shapes (MLCS) models (Jha et al. 2007;
Kessler et al. 2009). However, there are no such models for non-
Ia types. So the simulations use a library of spectral templates
that give the supernovae flux as a function of epoch and wave-
length. Only well-sampled photometric light curves are used
because spectral templates are interpolated to cover all wave-
lengths and epochs. The current library contains composite and
individual templates for types Ib, Ibc, IIn, and IIP.

5.2. Supernova Photometric Classification Challenge data

The SPCC dataset is composed of simulated light curves of
supernovae in griz filters of the Dark Energy Survey (DES). The
dataset was subdivided in a spectroscopically confirmed subset
of 1103 light curves, which constitutes the training dataset, and a
test dataset of 20 216 light curves. However, the training dataset
is small and highly biased as it is not representative in brightness
and in redshift compared to the test set.

5.3. Simulated Large Survey Synoptic Telescope data

As LSST will observe a large number of supernovae, the pho-
tometric classification of supernovae types from multiband light
curves is necessary. There will be two main kind of cadences.
The first one dedicated to the main survey is called the Wide-
Fast-Deep (WFD). It will scan a very large area of the sky. The
second one, called Deep Drilling Fields (DDF), will focus on
small part of the sky with a higher cadence and deeper images.
Thus this will correspond to well-measured light curves (see
Fig. 1) but for a smaller sample.

To validate our method in the context of the future LSST
data, we simulated light curves of supernovae as observed with
the WFD and DDF observational strategies, with the minion
1016 baseline model (Biswas et al. 2017). The simulation was

A21, page 7 of 15

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834473&pdf_id=7

A&A 627, A21 (2019)

realized in the ugriz filters of the LSST. We assume a ΛCDM
cosmology with ΩM = 0.3156, ΩΛ = 0.6844, and w0 = −1. Sim-
ulations are made in a finite redshift range, z ∈ [0.05, 1.20]. We
consider an efficiency for the image subtraction pipelines reach-
ing 50% around a signal-to-noise ratio (S/N) of ∼5. Each object
must have two epochs in any band. For the simulation of type
Ia light curves, the color and the light curve shape’s parameters
vary in the following intervals: c ∈ [−0.3, 0.5], x1 ∈ [−3, 2].
The simulation of non-Ia types is based on a library of spectral
templates for types Ib, Ibc, IIn, and IIP.

Our simulation includes a spectroscopically confirmed sam-
ple from the DDF survey. It is based on observations from an
8 m class telescope with a limiting i-band magnitude of 23.5. In
this work we assume a different allocating time for the spectro-
scopic follow-up. A reasonable scenario allows a spectroscopic
follow-up of 10% of the observed light curves in DDF, that is, 2k
spectroscopically confirmed light curves of supernovae. How-
ever, we also consider a most restrictive case by assuming that
only 500 then 1000 light curves are spectroscopically confirmed.
Moreover, we explore two ideal cases for which 5k then 10k
supernovae have been followed up. Finally we also consider dif-
ferent numbers of photometric observations of light curves as it
is interesting to classify light curves before ten-years observation
of LSST. All the configurations are summarized on Table 2.

5.4. Sloan Digital Sky Survey data

As simulated data do not reproduce perfectly the real data, it is
interesting to test our method on real data. The ideal strategy is
to simulate light curves that correspond to the SDDS survey to
train the model and then test on real data. This is a challenging
methodology as there is a severe mismatch between the train-
ing and the test databases. However, making a model able to
remove this kind of mismatch is crucial for future surveys where
the spectroscopic follow-up is limited. Therefore we simulated
light curves of supernovae that correspond to SDSS data. Then,
we extracted light curves in ugriz filters from the SDSS-II Super-
nova Survey Data (Frieman et al. 2008; Sako et al. 2008). The
SDSS-II SN data were obtained during three month campaigns
in the Fall of 2005, 2006, and 2007 as part of the extension of the
original SDSS. The Stripe 82 region was observed with a rolling
cadence. Some spectroscopic measurements were performed for
promising candidates depending on the availability and capabil-
ities of telescopes (Sako et al. 2008). A total of 500 SN Ia and
82 core collapse SN were spectroscopically confirmed.

6. Experimental protocol

In this section, we explain the protocol and the different tech-
niques used for the training process.

6.1. Data augmentation

In this classification context, data augmentation is a crucial step.
Indeed, in order to make PELICAN robust against the differ-
ences between the training and the test databases (i.e., sampling,
mean magnitude, noise), it is essential to use different data aug-
mentation techniques. Moreover, when light curves that com-
pose the training and test databases are measured with different
observational strategies, the difference in sampling is increased
and the data augmentation has to be reinforced. This is the case
in the context of LSST if we compare light curves from the WFD
survey on the one hand, and light curves from the DDF survey

on the other hand. To enable PELICAN to learn on DDF light
curves and generalize on WFD light curves, the data augmenta-
tion has to be adapted.

Finally as supernovae from the test database are often fainter,
errors on their fluxes are often bigger. Therefore the data aug-
mentation also needs to be applied to the errors.

Thus, in addition to the uniform noise applied differently on
each magnitude of light curves given as input to the denoising
autoencoder, we add two other kinds of noise on magnitudes of
light curves:

– an uniform constant noise ∈ [−1.0, 1.0] mag, which is added
to all the magnitudes of the light curve,

– an uniform noise ∈ [0.93, 1.07], which is multiplied by all
the magnitudes of the light curve.

The variation of the noise has been chosen arbitrarily but is
large enough to increase the size of the training database and
include potential systematic errors that could not have been
included in the simulated error model. Then we randomly
remove one or several magnitudes or/and all magnitudes for a
given band. This process is particularly effective for the classifi-
cation of light curves of supernovae observed with a WFD strat-
egy based on a training on supernovae light curves from the DDF
survey.

Finally, to prevent the PELICAN model from learning the
missing value positions on each light curve, we perform random
time translations keeping all the data points but varying their
positions in time. So the learning becomes invariant to the posi-
tion of points.

6.2. Setting learning parameters

We used the Adam optimizer (Kingma & Ba 2014) for all the
training steps in different modules with a learning rate decreas-
ing by a factor of ten after 25 000 iterations. The batch size dur-
ing the learning is fixed to 96 light curves. For the autoencoder
learning, we optimized the values of the sparsity parameters over
one validation base and used them for all the different configura-
tions, as they are not sensitive to the database. We set ρa and ρb
equal to 5 × 10−4 and 0.0, respectively, and α to 0.01.

The cut parameter mc in the i-band magnitude from the sec-
ond module depends on the database. We chose its value in order
to have enough examples on both sides of the cut in magnitude.
We set mc to 23.5 mag, 24.5 mag, and 22.5 mag for the SPCC,
LSST, and SDSS databases, respectively. The values of these
parameters are not sensitive and a small variation in them did
not change the results.

6.3. Ensemble of classifiers

To increase the performance, we trained an ensemble of clas-
sifiers as it has been shown to be more accurate than individual
classifiers (e.g., Polikar 2006). Moreover the generalization abil-
ity of an ensemble is usually stronger than that of base learners.
This step involves training N times one model with the same
training database but a different initialization of the weights. We
chose N = 7 and the individual decisions were then averaged out
to obtain the final values of probabilities. This step allows us to
increase the accuracy by 2% on average.

7. Results

In this section we present the results that we obtained for each
dataset.

A21, page 8 of 15

J. Pasquet et al.: PELICAN

7.1. Metrics

To evaluate the performance of PELICAN in different contexts,
we use several commonly used statistic metrics, which are the
accuracy (Acc), the recall (R) or true positive rate (TPR), the
precision (P), and the false positive rate (FPR). They are defined
from the following confusion matrix:

Predictive label
Ia Non Ia

True
label

Ia True Positive (TP) True Negative (TN)
Non Ia False Positive (FP) True Negative (TN)

• Acc =
TP + TN

(TP + FP + TN + FN)
(12)

• R(or TPR) =
TP

(TP + FN)
(13)

• P =
TP

(TP + FP)
(14)

• FPR =
FP

(FP + TN)
· (15)

As a graphical performance measurement, we use the ROC
(receiver operating characteristic) curve, which is plotted with
TPR on the y-axis against FPR on the x-axis. It gives an estima-
tion of the performance of a classifier at different threshold set-
tings. The best possible prediction method would yield a point
in the upper left corner or coordinate (0,1) of the ROC space,
representing the lack of false negatives and false positives. A
random guess would give a point along a diagonal line from the
left bottom to the top right corners.

From the ROC graphic, we can extract the value of the AUC
(area under the curve), which captures the extent to which the
curve is up in the upper left corner. The score has to be higher
than 0.5, which is no better than random guessing.

7.2. Supernova Photometric Classification Challenge

The first evaluation of PELICAN is made on the SPCC dataset.
We trained the model with two different training datasets: a
representative training database and a non-representative train-
ing dataset. The representative training database is a simplified
theoretical scenario, in which there is no limitation in bright-
ness and redshift of the spectroscopic follow-up. It is built by
randomly selecting 1103 light curves from the whole dataset.
The non-representative training database, which represents the
real scenario, is the spectroscopically confirmed subset of 1103
light curves that was proposed for the challenge. This last data-
base is non-representative of the test dataset in brightness and
redshift.

As shown in Lochner et al. (2016; noted L16 hereafter) the
best average AUC is obtained by extracting SALT2 features and
using boosted decision trees (BDTs) as the classifier. Therefore
we compared the performance of PELICAN with the BDTs algo-
rithm that takes as input SALT2 features. We tested both meth-
ods with and without the information on the redshift inside the
training. The ROC curves for both methods are represented in
Fig. 8 (on left panels) and the values of statistics are reported in
Table 1.

By considering a non-representative training database, with-
out including the redshift during the training, PELICAN obtains
an accuracy of 0.856 and an AUC of 0.934, which outper-
forms the BDTs method, which reaches 0.705 and 0.818. If

we train both methods on a representative training database,
as expected, the performance increases. The accuracy and the
AUC become 0.911 and 0.970 with PELICAN, against 0.843
and 0.905 with the BDTs algorithm. It is interesting to note
that the gain in statistics obtained with PELICAN is lower than
BDTs values, which means that PELICAN is able to better deal
with the problem of mismatch. This ability will be confirmed by
the promising results obtained with a non-representative train-
ing database composed of LSST light curve simulations (see
Sect. 7.3).

The performance of PELICAN does not change by adding
the redshift information during the training, which is not the
case for the BDTs algorithm, for which the accuracy and the
AUC are slightly increased. This might mean that PELICAN is
able to extract by itself the redshift information during its train-
ing. Figure 8 shows the accuracy as a function of redshift, with
the corresponding redshift distributions and BDTs results for
comparison. If PELICAN is trained on a representative training
database, the accuracy tends to decrease at low redshifts and at
redshift above 1.0, as the corresponding redshift bins are poorly
populated at these extreme values. A further trend is observed for
BDTs, except at redshift above 1.0, and only if redshift values are
included as an additional feature for the training. By considering
a non-representative training database, the accuracy significantly
decreases at high redshift for both methods. As the addition of
redshift into the training does not change the tendency obtained
by PELICAN, this trend in function of redshift is likely due to
the too small number of examples at high redshifts.

7.3. Large Survey Synoptic Telescope simulated light curves

The next step is to evaluate PELICAN on simulated LSST light
curves under realistic conditions. In this way, we consider for
all the tests a non-representative spectroscopically confirmed
database from the DDF survey as represented in Fig. 2. We con-
sider different configurations of the training and test databases.
We constrain the number of spectroscopically confirmed light
curves to vary between 500 light curves to 10k. Even if the upper
bound corresponds to an ideal scenario in which roughly more
than 40% of light curves in the DDF have been followed up, it
is interesting to compare the performance of PELICAN with a
large training sample.

We simulated light curves with the minion 1016 cadence
model. This model includes a WFD survey and five DDF (see
Fig. 9). It is not certain that a spectroscopic follow-up will be
performed on supernovae light curves in WFD fields. So we use
a different approach that consists in training PELICAN on DDF
light curves and then adapting the pre-trained model to clas-
sify supernovae light curves observed in the WFD survey. This
strategy allows us to consider the possibility of benefiting from
SN Ia candidates from WFD fields to constrain the cosmologi-
cal parameters, without any spectroscopic follow-up of the main
survey.

7.3.1. Classification of Deep Drilling Fields light curves

The results of the different configurations are reported in Table 2
and the ROC curves for some of these configurations in Fig. 10.
In addition to the values of the accuracy and the AUC, we
compare the recall of SNe Ia by constraining the precision
to be higher than 95% and 98%. Such a level of contami-
nation becomes competitive with spectroscopy contamination.
Again we compared the performance of PELICAN with the best
method highlighted in L16, which is BDTs and SALT2 features.

A21, page 9 of 15

A&A 627, A21 (2019)

Fig. 8. Comparison of ROC curves with the AUC score in brackets (left panels) and the accuracy versus redshift (right panels) for PELICAN (in
red) and the BDTs method (in blue), with (solid lines) and without (dashed lines) the redshift included in the training. The representative case is
on the first line and the non-representative one on the second line.

Table 1. Statistics obtained for SPCC challenge by PELICAN, with
BDTs results in parenthesis.

SPCC Redshift
Training
database Accuracy AUC

Non-representative
training database
(SALT2+BDTs)

No 1103 spec
0.856

(0.705)
0.934

(0.818)

Yes 1103 spec
0.863

(0.713)
0.939

(0.855)

Representative
training database
(SALT2+BDTs)

No
1103

mix of spec
and phot

0.911
(0.843)

0.970
(0.905)

Yes
1103

mix of spec
and phot

0.917
(0.878)

0.971
(0.948)

Notes. The first part reports results for a non-representative training
database and the second part for a representative training database. We
consider both cases by adding or not the redshift values to the training.

Even if this method was not designed for such training configu-
rations, it allows us to compare a feature-based machine learning
method to PELICAN.

If we consider the most constraining configuration composed
of only 500 spectroscopically confirmed light curves for the
training and 1500 light curves for the test database, PELICAN
reaches an accuracy of 0.895, and an AUC of 0.966. Moreover
PELICAN is then able to detect 76.9% of SNe Ia with a preci-
sion higher than 95% and 60.2% with a precision higher than
98%. These results are quickly improved by considering more
examples on both training and test databases. The number of
light curves inside the test database is important, especially if
the number of examples in the training database is small, as
the autoencoder is trained on the test database. Indeed there is
about an 8% improvement factor of the recall by going from
1k to 3k light curves in the test database with a fixed number
of examples in the training database of 1k light curves. How-
ever, this factor becomes negligible if the number of spectro-
scopically confirmed light curves is sufficient, that is, from 5k
examples, with an improvement of around 0.2%. We can see a
weak degradation going from 10k total light curves to 24k total
light curves for the same number of training examples. How-
ever, this effect is low, on the order of 10−3. We can argue that
the autoencoder is better able to extract features that represent
data well if it is trained on a smaller database (except in the case
of an underfitting with a database of 2k). Actually the overfitting
of the feature representation of the test database improves the
performance.

A21, page 10 of 15

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834473&pdf_id=8

J. Pasquet et al.: PELICAN

Fig. 9. Spatial distribution of the accuracy obtained with PELICAN for
the classification of light curves simulated with minion 1016 cadence
model. The Deep Drilling Fields are represented by red squares.

The configuration that seems reasonable after ten years of
observations includes a spectroscopic follow-up of 10% of the
observed light curves, that is, 2k light curves of supernovae,
and a test database of 22k light curves. For this realistic sce-
nario, PELICAN reaches an accuracy of 0.942 and is able to
correctly classify 87.4% of SNe Ia with a precision higher than
98%, which constitutes a major result of our study meaning that
a large fraction of SNe Ia are well classified by PELICAN, with
a precision comparable to a spectroscopy measurement. By con-
sidering 10k light curves in the training database, the number of
detected SNe Ia is then increased by 9%. All results obtained by
PELICAN outperform those obtained by BDTs (the BDTs val-
ues are listed in parentheses in Table 2).

The right panel of Fig. 10 shows the accuracy as a function
of redshift, with the corresponding redshift distributions on both
training and test databases, and the BDTs results for compar-
ison. The accuracy of PELICAN does not depend on redshift
until 1.0 where it slightly decreases. This tendency is likely due
to the small number of training examples at redshifts higher
than 1.0. The BDTs method shows the same behavior at high
redshifts.

7.3.2. Classification of light curves in Wide-Fast-Deep survey

The spectroscopic follow-up of SNe Ia candidates is uncertain
on the WFD survey. Nevertheless to increase statistics of SNe
Ia for cosmological studies, it is interesting to make PELICAN
able to classify supernovae light curves from the WFD survey.
The strategy consists in training PELICAN on DDF light curves
and then testing on light curves observed on WFD fields. How-
ever, this methodology leads to another kind of mismatch over
and above the existing mismatch between spectroscopically con-
firmed light curves and unconfirmed ones. Indeed the uncon-
firmed supernovae from the DDF survey have a different cadence
and observational conditions from those of the WFD survey.
So the present mismatch is largely increased between the train-
ing and test databases. The non-supervised step allows us to
reduce the mismatch, as it does for the classification of DDF
light curves, but it is not sufficient. The other needed ingredi-
ent is the data augmentation to make DDF light curves look like
WFD light curves. Thus we performed a severe data augmen-
tation as WFD light curves are about an average of four times
more sparse in the u and g bands, and 1.5 times in the r, i and
z bands. So we randomly removed 85% of observations on each
DDF light curve.

Results are reported in Table 2 and ROC curves in Fig. 11.
We consider three configurations of the training and test
databases. First we trained PELICAN on a training database of
2k light curves, which could constitute a realistic scenario in
which 10% of supernovae in DDF have been spectroscopically
confirmed after ten years of observations. We also consider a
training database composed of 3k supernovae light curves from
DDF as it is still a realistic scenario that includes a spectroscopic
follow-up of 12.5% of supernovae in the DDF survey. Finally we
trained PELICAN on an ideal training database of 10k super-
novae light curves.

With only 2k DDF light curves for the training database
and 15k light curves for the test database, PELICAN reaches
an accuracy of 0.965. It is able to classify 98.2% of supernovae
with a precision higher than 95% and 90.5% with a precision
higher than 98%. If we consider 3k light curves for the train-
ing database and 40k for the testing database, the percentage of
well-classified light curves, with a precision higher than 98%, is
96.4%. With 10k light curves in the training database and 80k in
the testing database, the improvement factor is about 1%, where
97.3% of supernovae Ia are correctly classified by PELICAN
with a precision higher than 98%. It may seem surprising that
the performance is better than for the classification of DDF light
curves. This can be explained by the baseline cadence model
that we used to simulate data. In this observational model, the
supernovae on the main survey (WFD) are observed on several
dates often with one or only two different filters for each mea-
surement. However, in the deep fields, supernovae are observed
in several filters for a given date but less often over time. The
result of this is that a light curve observed in deep fields contains
more measurements in all filters but less observations on differ-
ent days (see Fig. 1 and histograms in the left panels of Fig. 12).
In the first module of our architecture, the autoencoder is more
efficient at interpolating light curves that contain more obser-
vations distributed over time. It means that our method reaches
better performance if the number of observations is large over
time even if each measurement is not done for each filter. These
encouraging results open the possibility of using SNe Ia candi-
dates from the WFD survey, whose the classification precision
is comparable to a spectroscopic identification, to constrain cos-
mological parameters.

The BDTs method obtained poor results for this complex
training configuration. This kind of feature-based algorithm has
to be adapted to overcome the problem of mismatch, which sig-
nificantly degrades the performance.

The accuracy as a function of redshift shows a behavior that
might seem strange (see Fig. 11). Indeed, the accuracy slightly
increases with redshift. This bias is probably due to the mismatch
of redshift distributions between the DDF and WFD lights curves.
Indeed, during the non-supervised step, low redshift examples are
under-represented in the test database, which causes a decrease in
the accuracy. This strange behavior is increased for BDTs results.
Indeed if the accuracy decreases until redshift 1.0, it increases at
redshifts above 1.0. This significant bias is due to the mismatch
between the DDF and WFD light curves. Indeed the BDTs algo-
rithm was not designed to deal with this kind of training configura-
tion. Finally, Fig. 9 exhibits no bias across the sky as the accuracy
is uniform on WFD survey.

7.4. Classification of real Sloan Digital Sky Survey light
curves

The last evaluation of PELICAN is made on real data. The
stakes are high as developing a method that can be trained on

A21, page 11 of 15

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834473&pdf_id=9

A&A 627, A21 (2019)

Fig. 10. Comparison of ROC curves for different training configurations of DDF survey, with the AUC score in brackets (left panel) and the
accuracy versus redshift (right panel) for PELICAN (in solid lines) and BDTs method (in dashed lines).

Table 2. Statistics for various training configurations on the DDF survey (first part) and the WFD survey (second part), with BDTs results in
parentheses.

Total (LC) Training database Test database Accuracy RecallIa RecallIa AUC
(Spec. only) (Phot. only) PrecisionIa > 0.95 PrecisionIa > 0.98

L
SS

T
D

D
F

2000 500 1500 0.895 0.769 0.602 0.966
(0.795) (0.382) (0.183) (0.885)

1000 1000 0.917 0.827 0.687 0.973
(0.888) (0.505) (0.353) (0.898)

4000 1000 3000 0.928 0.890 0.764 0.979
(0.850) (0.490) (0.246) (0.895)

2000 2000 0.938 0.927 0.806 0.984
(0.813) (0.594) (0.256) (0.905)

10 000 2000 8000 0.946 0.944 0.886 0.989
(0.796) (0.496) (0.284) (0.891)

3000 7000 0.950 0.950 0.903 0.990
(0.809) (0.548) (0.285) (0.905)

5000 5000 0.971 0.981 0.959 0.996
(0.818) (0.510) (0.315) (0.910)

24 000 2000 22 000 0.942 0.940 0.874 0.986
(0.792) (0.477) (0.209) (0.890)

3000 21 000 0.945 0.937 0.891 0.986
(0.797) (0.474) (0.254) (0.892)

5000 19 000 0.968 0.978 0.957 0.996
(0.805) (0.485) (0.228) (0.898)

10 000 14 000 0.971 0.983 0.965 0.997
(0.790) (0.465) (0.260) (0.888)

L
SS

T
W

FD

17 000 DDF Spec : 2,000 WFD : 15 000 0.965 0.982 0.905 0.992
(0.620) (0.041) (0.008) (0.703)

43 000 DDF Spec : 3000 WFD : 40 000 0.976 0.995 0.964 0.996
(0.623) (0.018) (0.000) (0.711)

90 000 DDF Spec : 10 000 WFD : 80 000 0.978 0.995 0.973 0.997
(0.620) (0.046) (0.000) (0.709)

Notes. The different metrics are defined in Sect. 7.1.

simulated data while reaching good performance on real data
offers a great opportunity for the future surveys. Indeed by using
simulated data, the size of the training database could be unlim-
ited and the problem of mismatch between the training database
and the test database could be removed. We evaluate PELICAN
only on spectroscopically confirmed supernovae, which corre-

sponds to 500 SNe Ia and 82 core collapse supernovae. In the
first step we trained PELICAN only on simulated data and tested
on real SDSS light curves, but it reaches poor performance due
to the mismatch between simulated and real data (see Table 3).
Indeed the sampling and the noise are ideal on simulated data
but it is not the case for real ones. Then PELICAN is trained

A21, page 12 of 15

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834473&pdf_id=10

J. Pasquet et al.: PELICAN

Fig. 11. Comparison of ROC curves for different training configurations of WFD survey, with the AUC score in brackets (left panel) and the
accuracy versus redshift (right panel) for PELICAN (in solid lines) and the BDTs method (in dashed lines).

Table 3. Statistics obtained on real SDSS data.

Training database Test database Accuracy AUC

SDSS simulations:
219,362

SDSS-II SN
confirmed: 582

0.462 0.722

SDSS-II SN confirmed:
80

SDSS-II SN
confirmed: 502

0.798 0.586

SDSS simulations:
219,362

SDSS-II SN confirmed:
80

SDSS-II SN
confirmed: 502

0.868 0.850

Notes. The first line reports results obtained by training PELICAN only
on simulated data. In the second line the training and the test databases
are only composed of real data. The third line shows an improvement of
results by including only 80 SDSS light curves in the training database,
which is also composed of simulated light curves.

and evaluated only on real data. The training database is com-
posed of 80 light curves evenly distributed between type Ia and
non-Ia-type light curves. The test database is strongly unbal-
anced and contains mainly type Ia supernovae light curves.
In this case, the value of the AUC better captures the perfor-
mance of the classifier as it takes into account the number of
false positives. PELICAN reaches better performance if it is
trained only on simulated data with an AUC of 0.722 com-
pared to 0.586 for the classification of only real light curves,
as the size of the training database is too small. To improve
results, we added 80 real light curves into the training database
composed of around 220k light curves. The accuracy and the
AUC obtained are 0.868 and 0.850, respectively. This improve-
ment is possible as the architecture of PELICAN overcomes
the problem of non-representativeness that appears by mixing
real and simulated data. This is a promising result as with
only a small subsample of real light curves PELICAN can be
trained on simulated data and reaches good performance on
real data.

8. Further analysis of the behavior of PELICAN

In this section, we study the impact of characteristics of the input
LSST simulated light curves relating to properties or observing
conditions.

8.1. Influence of the number of observations

As PELICAN takes only light curves as input, the method should
depend on the number of observations. Figure 12 (left panels)
shows the correlation between the number of observations on the
light curve in all bands, and the accuracy. For the classification
of DDF light curves, the accuracy decreases by a small factor
of about 9%, as the distributions of the number of observations
are the same in both the training and test databases. However, for
the classification of WFD light curves, the mismatch is present as
PELICAN is trained on DDF light curves that have more obser-
vations. So this non-representativeness leads to a further decline
of the accuracy, of about 20%.

8.2. Effect of noise

We analyze the impact of S/N, computed as the maximum S/N
from all bands, on the accuracy of PELICAN (see middle panels
of Fig. 12). For the classification of DDF light curves, the accu-
racy decreases at small S/N of roughly 10%. For the classifica-
tion of WFD light curves, this trend has reduced and PELICAN
is more robust at low S/N. This is probably due to the first step
of non-supervised learning, where PELICAN has “seen” light
curves with a low S/N, and the data augmentation that we per-
formed. Indeed by adding different noises on input light curves,
PELICAN has learned many noisy examples.

8.3. Peak magnitudes

The right panels of Fig. 12 show the accuracy as a function of
the maximum value of peak magnitude from all bands. For the
classification of DDF light curves, the accuracy decreases at low
magnitudes above 26 due to the low number of examples in the
training database in this magnitude range. However, PELICAN
is robust at low magnitudes for the classification of WFD light
curves. This robustness is due to the non-supervised learning
during which PELICAN has learned a light curve representa-
tion at low magnitudes. Nevertheless, in this case, the accuracy
decreases also at magnitudes below 23. This behavior may be
due to the mismatch between DDF light curves that made up the
training database and WFD light curves from the test database.
Indeed DDF light curves have, on average, brighter magnitudes
than light curves in the test database. To reduce the mismatch
between the training and test databases, PELICAN performs a
first non-supervised training on the test database. Nevertheless

A21, page 13 of 15

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834473&pdf_id=11

A&A 627, A21 (2019)

Fig. 12. Upper panels: classification of DDF light curves and lower panels: classification of WFD light curves. Left panels: accuracy as a function of
the total number of observations on different dates for all bands. Middle panels: accuracy as a function of S/N, which is computed as the maximum
S/N from all bands. Right panels: accuracy as a function of peak magnitude, which corresponds to the maximum value of peak magnitude from
all bands. For each case the distribution of the training database is represented in light green and that of the test database in gray.

this step may cause a bias at bright magnitudes as PELICAN
learned a representation of light curves at faint magnitudes from
the WFD survey.

9. Summary and discussion

We presented a deep learning architecture for light curve clas-
sification, PELICAN. It performs several tasks to find the best
feature representation space of light curves and classify them. In
this work, we applied PELICAN to the analysis of supernovae
light curves, but it can be applied to the analysis of other vari-
able and transient objects. Our model is able to reduce the prob-
lem of non-representativeness between the training and the test
databases thanks to the development of two modules. The first
one uses a non-supervised autoencoder that benefits from light
curves of the test set without knowing the labels in order to build
a representative feature space. The second module optimizes a
contrastive loss function adjusted to reduce the distance into the
feature representation space between brighter and fainter objects
of the same label.

PELICAN can also deal with the sparsity and the irregular
sampling of light curves by integrating a sparsity parameter in
the autoencoder module and performing an important data aug-
mentation.

Our model reached the best performance ever obtained for
the Supernovae Photometric Classification Challenge with a
non-representative training database, with an accuracy of 0.861
and an AUC of 0.937 against 0.713 and 0.855, respectively,
obtained by the BDTS algorithm and SALT2 features as shown

in Lochner et al. (2016). These kind of feature-based algorithms
do not overcome the problem of representativeness. Indeed, even
if the features used are relevant, they are not representative of the
test database as the spectroscopic follow-up is necessarily lim-
ited. Therefore this method offers poor performance in a real sce-
nario such as we consider in this work, and have to be adapted.

In the context of LSST, it is important to confront PELI-
CAN to the observational issues, in particular the uncertainties
related to the two main programs of LSST, which are the Wide-
Fast-Deep and the Deep Drilling Fields surveys. In this work we
addressed several points:

– uncertainties related to the spectroscopic follow-up in the
DDF survey. A subsample of light curves should be
spectroscopically confirmed in the DDF survey but it might
be very limited. PELICAN is able to reach good performance
with a small training database (2k light curves) for which it
detects 87.4% of SNe Ia with a precision comparable to the
spectroscopic one.

– uncertainties related to the spectroscopic follow-up in the
WFD survey. It is not certain that a sample of light curves
will be spectroscopically confirmed in WFD fields. So it is
crucial that PELICAN can classify SNe Ia observed on the
WFD survey, with a training composed only of DDF light
curves. By considering a training database of 2k–10k light
curves, PELICAN is able to classify from 90.5% to 97.3%
of SNe Ia with a precision higher than 98%. This result con-
stitutes one of our major contributions as it opens the pos-
sibility of using SNe Ia from WFD fields for cosmology
studies.

A21, page 14 of 15

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834473&pdf_id=12

J. Pasquet et al.: PELICAN

We also found that PELICAN is robust against an S/N above
five and magnitudes below 26 for the classification of DDF light
curves. The accuracy of PELICAN is very stable until redshift
1.0; above this value the number of examples in the training
database is not sufficient, which explains the decrease at high
redshifts. However, this tendency is significantly reduced if the
training database contains at least 5k light curves. In this case,
the accuracy is higher than 90% until 1.2 in redshift.

For the classification of WFD light curves the accuracy
decreases at low redshifts and bright magnitudes, due to the mis-
match between the training and test databases. Even if the step
of non-supervised training on the test database reduces it, PEL-
ICAN learns more on low redshifts and faint magnitudes from
the test database. It could be possible to reduce this bias by inte-
grating spectroscopically confirmed light curves into the training
of the autoencoder but it should be done carefully as DDF light
curves have to be transformed to look like WFD light curves to
avoid the mismatch. Nevertheless, PELICAN remains robust at
low S/N for the classification of WFD light curves.

PELICAN depends on the number of observations on the
light curve as it takes only this information as input. Neverthe-
less the sparsity term in the loss of the autoencoder and the data
augmentation help to reduce the bias.

A caveat for the tests done with simulations is the low num-
ber of non-Ia templates available, which may underestimate the
proportion of non-Ia supernovae that have similar light curves to
Ia supernovae. This point will be addressed with more detailed
simulators that will be available in the future.

Finally to complete validation of PELICAN, we tested it on
real SDSS data. In this case there is a new mismatch that appears
as we trained it on simulated data that do not reproduce well real
SDSS data. We demonstrated that an additional fraction of 10 %
of real light curves inside the training allows PELICAN to reach
an accuracy of 86.8%. This is a very encouraging result for the
classification of supernovae light curves as the spectroscopically
confirmed light curves can be completed by simulated ones to
increase the size of the training database and so be less depen-
dant on the costly spectroscopic follow-up.

The success of PELICAN under realistic conditions with
a training step on a small and biased database and a testing
stage on light curves with different sampling and more noisy
measurementss opens very promising perspectives for the classi-
fication of light curves of future large photometric surveys. Fur-
thermore it constitutes, up to now, the most appropriate tool to
overcome problems of representativeness on irregular and sparse
data.

Acknowledgements. This work has been carried out thanks to the support
of the OCEVU Labex (ANR-11-LABX-0060). We thank Rahul Biswas and
Philippe Gris for useful discussions. We gratefully acknowledge the support of
the NVIDIA Corporation with the donation of the Titan Xp GPU used for this
research. Funding for the creation and distribution of the SDSS Archive has been
provided by the Alfred P. Sloan Foundation, the Participating Institutions, the
National Aeronautics and Space Administration, the National Science Founda-
tion, the US Department of Energy, the Japanese Monbukagakusho, and the Max
Planck Society. The SDSS Web site is (http://www.sdss.org/). The SDSS is
managed by the Astrophysical Research Consortium (ARC) for the Participating
Institutions. The Participating Institutions are the University of Chicago, Fermi-
lab, the Institute for Advanced Study, the Japan Participation Group, The Johns
Hopkins University, the Korean Scientist Group, Los Alamos National Labora-
tory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute
for Astrophysics (MPA), New Mexico State University, University of Pittsburgh,
Princeton University, the United States Naval Observatory, and the University of
Washington.

References
Betoule, M., Kessler, R., Guy, J., et al. 2014, A&A, 568, A22
Biswas, R., Cinabro, D., & Kessler, R. 2017, simlib_minion, DOI: 10.5281/zen-

odo.1006719
Brunel, A., Pasquet, J., Pasquet, J., et al. 2019, Proceedings of the 2019 IS&T

International Symposium on Electronic Imaging (EI 2019)
Charnock, T., & Moss, A. 2017, ApJ, 837, L28
Dai, M., Kuhlmann, S., Wang, Y., & Kovacs, E. 2018, MNRAS, 477, 4142
Domínguez Sánchez, H., Huertas-Company, M., Bernardi, M., Tuccillo, D., &

Fischer, J. L. 2018, MNRAS, 476, 3661
du Buisson, L., Sivanandam, N., Bassett, B. A., & Smith, M. 2015, MNRAS,

454, 2026
Eldesokey, A., Felsberg, M., & Shahbaz Khan, F. 2018, ArXiv e-prints

[arXiv:1811.01791]
Frieman, J. A., Bassett, B., Becker, A., et al. 2008, AJ, 135, 338
Gieseke, F., Bloemen, S., van den Bogaard, C., et al. 2017, MNRAS, 472,

3101
Guy, J., Astier, P., Baumont, S., et al. 2007, A&A, 466, 11
Hadsell, R., Chopra, S., & LeCun, Y. 2006, 2006 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR’06), 2, 1735
He, K., Zhang, X., Ren, S., & Sun, J. 2016, 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 770
Hinton, G. E. 2002, Neural Comput., 14, 1771
Hua, J., & Gong, X. 2018, Proceedings of the Twenty-Seventh International

Joint Conference on Artificial Intelligence, IJCAI-18 (International Joint
Conferences on Artificial Intelligence Organization), 2283

Ishida, E. E. O., & de Souza, R. S. 2013, MNRAS, 430, 509
Jha, S., Riess, A. G., & Kirshner, R. P. 2007, ApJ, 659, 122
Karpenka, N. V., Feroz, F., & Hobson, M. P. 2013, MNRAS, 429, 1278
Kessler, R., Bernstein, J. P., Cinabro, D., et al. 2009, PASP, 121, 1028
Kessler, R., Conley, A., Jha, S., & Kuhlmann, S. 2010a, ArXiv e-prints

[arXiv:1001.5210]
Kessler, R., Bassett, B., Belov, P., et al. 2010b, PASP, 122, 1415
Kingma, D. P., & Ba, J. 2014, CoRR, abs/1412.6980
Liu, G., Reda, F. A., Shih, K. J., et al. 2018, ArXiv e-prints [arXiv:1804.07723]
Lochner, M., McEwen, J. D., Peiris, H. V., Lahav, O., & Winter, M. K. 2016,

ApJS, 225, 31
LSST Science Collaboration (Abell, P. A., et al.) 2009, ArXiv e-prints

[arXiv:0912.0201]
Mahabal, A., Sheth, K., Gieseke, F., et al. 2017, IEEE Symposium Series on

Computational Intelligence (SSCI), Honolulu, HI, USA, 2757
Möller, A., Ruhlmann-Kleider, V., Leloup, C., et al. 2016, J. Cosmol. Astropart.

Phys., 12, 008
Nair, V., & Hinton, G. E. 2010, in Proceedings of the 27th International

Conference on Machine Learning (ICML-10), eds. J. Fürnkranz, & T.
Joachims (Omnipress), 807

Pasquet-Itam, J., & Pasquet, J. 2018, A&A, 611, A97
Pasquet, J., Bertin, E., Treyer, M., Arnouts, S., & Fouchez, D. 2019, A&A, 621,

A26
Perlmutter, S., Aldering, G., Goldhaber, G., et al. 1999, ApJ, 517, 565
Phillips, M. M. 1993, ApJ, 413, L105
Polikar, R. 2006, IEEE Circuit Syst. Mag., 6, 21
Richards, J. W., Homrighausen, D., Freeman, P. E., Schafer, C. M., & Poznanski,

D. 2012, MNRAS, 419, 1121
Riess, A. G., Filippenko, A. V., Challis, P., et al. 1998, AJ, 116, 1009
Sako, M., Bassett, B., Becker, A., et al. 2008, AJ, 135, 348
Sako, M., Bassett, B., Becker, A. C., et al. 2018, PASP, 130, 064002
Schmidhuber, J., Wierstra, D., & Gomez, F. 2005, Proceedings of the 19th

International Joint Conference on Artificial Intelligence (IJCAI) (Morgan),
853

Scolnic, D. M., Jones, D. O., Rest, A., et al. 2018, ApJ, 859, 101
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R.

2014, J. Mach. Learn. Res., 15, 1929
Szegedy, C., Liu, W., & Jia, Y. 2015, Computer Vision and Pattern Recognition

(CVPR)
Tripp, R. 1998, A&A, 331, 815
van den Bergh, S. 1995, ApJ, 453, L55
van der Maaten, L., & Hinton, G. 2008, J. Mach. Learn. Res., 9, 2579
Varughese, M. M., von Sachs, R., Stephanou, M., & Bassett, B. A. 2015,

MNRAS, 453, 2848
Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P. A. 2008, in

Proceedings of the Twenty-fifth International Conference on Machine
Learning (ICML’08), eds. W. W. Cohen, A. McCallum, & S. T. Roweis
(ACM), 1096

A21, page 15 of 15

http://www.sdss.org/
http://linker.aanda.org/10.1051/0004-6361/201834473/1
http://linker.aanda.org/10.1051/0004-6361/201834473/2
https://doi.org/10.5281/zenodo.1006719
https://doi.org/10.5281/zenodo.1006719
http://linker.aanda.org/10.1051/0004-6361/201834473/3
http://linker.aanda.org/10.1051/0004-6361/201834473/3
http://linker.aanda.org/10.1051/0004-6361/201834473/4
http://linker.aanda.org/10.1051/0004-6361/201834473/5
http://linker.aanda.org/10.1051/0004-6361/201834473/6
http://linker.aanda.org/10.1051/0004-6361/201834473/7
http://linker.aanda.org/10.1051/0004-6361/201834473/7
https://arxiv.org/abs/1811.01791
http://linker.aanda.org/10.1051/0004-6361/201834473/9
http://linker.aanda.org/10.1051/0004-6361/201834473/10
http://linker.aanda.org/10.1051/0004-6361/201834473/10
http://linker.aanda.org/10.1051/0004-6361/201834473/11
http://linker.aanda.org/10.1051/0004-6361/201834473/12
http://linker.aanda.org/10.1051/0004-6361/201834473/12
http://linker.aanda.org/10.1051/0004-6361/201834473/13
http://linker.aanda.org/10.1051/0004-6361/201834473/13
http://linker.aanda.org/10.1051/0004-6361/201834473/14
http://linker.aanda.org/10.1051/0004-6361/201834473/15
http://linker.aanda.org/10.1051/0004-6361/201834473/15
http://linker.aanda.org/10.1051/0004-6361/201834473/16
http://linker.aanda.org/10.1051/0004-6361/201834473/17
http://linker.aanda.org/10.1051/0004-6361/201834473/18
http://linker.aanda.org/10.1051/0004-6361/201834473/19
https://arxiv.org/abs/1001.5210
http://linker.aanda.org/10.1051/0004-6361/201834473/21
http://linker.aanda.org/10.1051/0004-6361/201834473/22
https://arxiv.org/abs/1804.07723
http://linker.aanda.org/10.1051/0004-6361/201834473/24
https://arxiv.org/abs/0912.0201
http://linker.aanda.org/10.1051/0004-6361/201834473/26
http://linker.aanda.org/10.1051/0004-6361/201834473/26
http://linker.aanda.org/10.1051/0004-6361/201834473/27
http://linker.aanda.org/10.1051/0004-6361/201834473/27
http://linker.aanda.org/10.1051/0004-6361/201834473/28
http://linker.aanda.org/10.1051/0004-6361/201834473/28
http://linker.aanda.org/10.1051/0004-6361/201834473/29
http://linker.aanda.org/10.1051/0004-6361/201834473/30
http://linker.aanda.org/10.1051/0004-6361/201834473/30
http://linker.aanda.org/10.1051/0004-6361/201834473/31
http://linker.aanda.org/10.1051/0004-6361/201834473/32
http://linker.aanda.org/10.1051/0004-6361/201834473/33
http://linker.aanda.org/10.1051/0004-6361/201834473/34
http://linker.aanda.org/10.1051/0004-6361/201834473/35
http://linker.aanda.org/10.1051/0004-6361/201834473/36
http://linker.aanda.org/10.1051/0004-6361/201834473/37
http://linker.aanda.org/10.1051/0004-6361/201834473/38
http://linker.aanda.org/10.1051/0004-6361/201834473/38
http://linker.aanda.org/10.1051/0004-6361/201834473/39
http://linker.aanda.org/10.1051/0004-6361/201834473/40
http://linker.aanda.org/10.1051/0004-6361/201834473/41
http://linker.aanda.org/10.1051/0004-6361/201834473/41
http://linker.aanda.org/10.1051/0004-6361/201834473/42
http://linker.aanda.org/10.1051/0004-6361/201834473/43
http://linker.aanda.org/10.1051/0004-6361/201834473/44
http://linker.aanda.org/10.1051/0004-6361/201834473/45
http://linker.aanda.org/10.1051/0004-6361/201834473/46
http://linker.aanda.org/10.1051/0004-6361/201834473/46

	Introduction
	Light curve classification issues
	Deep learning model
	Convolutional neural network
	Convolution layers
	Pooling layers
	Fully connected layers

	Autoencoder
	Contrastive loss function

	Proposed architecture
	Autoencoder branch
	Contrastive branch
	Classification branch

	Light curve data
	The SuperNova ANAlysis software (SNANA)
	Supernova Photometric Classification Challenge data
	Simulated Large Survey Synoptic Telescope data
	Sloan Digital Sky Survey data

	Experimental protocol
	Data augmentation
	Setting learning parameters
	Ensemble of classifiers

	Results
	Metrics
	Supernova Photometric Classification Challenge
	Large Survey Synoptic Telescope simulated light curves
	Classification of Deep Drilling Fields light curves
	Classification of light curves in Wide-Fast-Deep survey

	Classification of real Sloan Digital Sky Survey light curves

	Further analysis of the behavior of PELICAN
	Influence of the number of observations
	Effect of noise
	Peak magnitudes

	Summary and discussion
	References

