
HAL Id: lirmm-02089037
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02089037v1

Submitted on 3 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Selective Spanning with Fast Enumeration: A Near
Maximum-Likelihood MIMO Detector Designed for

Parallel Programmable Baseband Architectures
Min Li, Bruno Bougard, Eduardo Lopez, Andre Bourdoux, David Novo,

Liesbet van Der Perre, Francky Catthoor

To cite this version:
Min Li, Bruno Bougard, Eduardo Lopez, Andre Bourdoux, David Novo, et al.. Selective Spanning with
Fast Enumeration: A Near Maximum-Likelihood MIMO Detector Designed for Parallel Programmable
Baseband Architectures. IEEE International Conference on Communications, May 2008, Beijing,
China. pp.737-741, �10.1109/ICC.2008.144�. �lirmm-02089037�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02089037v1
https://hal.archives-ouvertes.fr

Selective Spanning with Fast Enumeration: A Near
Maximum-Likelihood MIMO Detector Designed for
Parallel Programmable Baseband Architectures

Min Li†‡, Bruno Bougard†, Eduardo Estraviz Lopez†, Andre Bourdoux †,
David Novo†‡, Liesbet Van Der Perre†, Francky Catthoor†‡
† Nomadic Embedded System Division, IMEC, Leuven, Belgium

‡ ESAT, K.U.Leuven, Leuven, Belgium
Email: {limin, bougardb, lopezest, bourdoux, novo, vdperre, catthoor}@imec.be

Abstract—ML and near-ML MIMO detectors have attracted
a lot of interest in recent years. However, almost all of the
reported implementations are delivered in ASIC or FPGA. Our
contribution is to co-optimize the near-ML MIMO detector
algorithm and implementation for parallel programmable base-
band architectures, such as DSPs with VLIW, SIMD or vector
processing features. Although for hardware the architecture can
be tuned to fit algorithms, for programmable platforms the
algorithm must be elaborately designed to fit the given archi-
tecture, so that efficient resource-utilizations can be achieved.
By thoroughly analyzing and exploiting the interaction between
algorithms and architectures, we propose the SSFE (Selective
Spanning with Fast Enumeration) as an architecture-friendly
near-MLMIMO detector. The SSFE has a distributed and greedy
algorithmic structure that brings a completely deterministic and
regular dataflow. The SSFE has been evaluated for coded OFDM
transmissions over 802.11n channels and 3GPP channels. Under
the same performance constraints, the complexity of the SSFE
is significantly lower than the K-Best, the most popular detector
implemented in hardware. More importantly, SSFE can be easily
parallelized and efficiently mapped on programmable baseband
architectures. With TI TMS320C6416, the SSFE delivers 37.4
- 125.3 Mbps throughput for 4x4 64QAM transmissions. To
the best of our knowledge, this is the first reported near-ML
MIMO detector explicitly designed for parallel programmable
architectures and demonstrated on a real-life platform.

I. INTRODUCTION

Although the Moore’s Law predicted a fast evolution of the
semiconductor integration, the increment of silicon-capability
has been rapidly exhausted by the explosion of signal process-
ing complexity in wireless communications [1]. When apply-
ing MIMO (Multiple Input Multiple Output) transmissions,
the remarkable throughput improvement comes at the cost of
significantly increased receiver complexity.
With SDM (Spatial Division Multiplexing) transmissions,

the major complexity-increment is in the MIMO detec-
tor. Among existing MIMO detectors, the ML (Maximum-
Likelihood) and near-ML detectors are superior to traditional
linear detectors. In recent years, the algorithmic optimizations
and implementations of ML/nearl-ML detector have attracted
lots of interest. However, almost all of the implementations are
delivered in ASIC (Application Specific Integrated Circuit) or
FPGA (Field Programmable Gate Array) [2-10].

Being different from the existing work, our contribution is
to co-optimize the algorithm and implementation for scalable
near-ML MIMO detector on parallel programmable baseband
architectures, such as the DSPs (Digital Signal Processors)
with VLIW (Very Long Instruction Word), SIMD (Single
Instruction Multiple Data) or vector processing features.
The work is in the context of future baseband for SDR

(Software Defined Radio). With the exploding design and pro-
cessing cost in the deep sub-micron era, the current trend is to
implement as much possible baseband functionalities on pro-
grammable or reconfigurable platforms. The SDR paradigm,
which was mainly successful in the base-station and military
segment, is currently emerging also in the handset market. Re-
cently, tremendous research efforts have been investigated in
both the industry and the academia for parallel programmable
baseband architectures targeting mobile terminals [11] [12].
Unfortunately, none of the existing near-ML detectors fit

programmable architectures well. Sphere decoders [3] [4]
and most of its variants [5] [6] are essentially sequential
and non-deterministic, so that the parallelization is difficult.
On the other hand, although the K-Best, QRD-M and their
variants [2] [7] [9] have been realized in hardware imple-
mentations, they have a fundamental problems when mapping
on parallel programmable architectures: The spanning-sorting-
deleting process incurs irregular dataflow, non-deterministic
control flow, extensive shuffling and extensive memory-
rearrangement. These characteristics will result in very low
resource-utilizations on parallel programmable architectures.
In order to bridge the algorithm-architecture gap for near-

ML MIMO detectors, we propose the SSFE (Selective Span-
ning with Fast Enumeration) as novel detector with explicit
architecture-friendliness. The SSFE has a distributed and
greedy algorithmic structure that enables efficient heuristics
to solve decomposed problems locally. Comparing to the K-
Best, the SSFE not only significantly reduces the algorithmic
complexity, but also results in a completely deterministic and
regular dataflow in the algorithm. Hence, the SSFE can be
easily parallelized and efficiently mapped on programmable
architectures. This has been demonstrated with reproducible
results on TI TMS320C6416, a real-life commercial fixed

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

978-1-4244-2075-9/08/$25.00 ©2008 IEEE 737

point VLIW DSP.
The remaining part of the paper consists of the following

sections: Section II introduces the context and related work;
Section III presents the details of the proposed architecture-
friendly SSFE; Section IV presents the performance evaluation
and implementation results on TI TMS320C6416 fixed point
VLIW DSP; Section VI concludes the paper and briefs the
future work.

II. BACKGROUND
Consider a MIMO system where Nt different signals are

transmitted and arrive at an array of Nr (Nt ≤ Nr) receivers
via a flat-fading channel. The system can be viewed as
transmitting an Nt × 1 vector signal s through an Nr ×Nt
matrix channelH, with Nr×1 Gaussian noise vector n added
at the received vector signal y: y = Hs + n. With OFDM
(Orthogonal Frequency Division Multiplexing) transmissions
such as that in IEEE 802.11n and 3GPP LTE (Long Term
Evolution), frequency-selective channels are converted to a set
of parallel flat-fading channels.
The MIMO detector is designed to recover s from the

received signal y. Popular schemes include linear detection,
SIC (Successive Interference Cancelation) and ML/Near-ML
detectors. Extensive surveys can be found in [13] [14].
The ML detection is defined as

ŝ = arg min
s∈ΩNt

, ky−Hsk2 (1)

where ΩNt is the set containing all the possibilities of Nt×1
vector signal s.
SD (Sphere Decoding) [3-6] solves the ML detec-

tion problem by applying the QRD (Orthogonal-Triangular-
Decomposition) to the channel matrix: H = QR, where Q
is a orthogonal matrix and R is an upper triangular matrix. It
can be shown [5] that

||y−Hs||2 = c+ ||ŷ−Rs||2, ŷ = QHy (2)

where c is a constant.
We can construct a spanning-tree to solve Eq.(1). Level of

the tree is Nt+ 1; mark the root-level as i = Nt+ 1 and the
leaf-level as i = 1. Each node at level i ∈ {2, .., Nt + 1} is
expanded to C nodes at level i+1, where C is the constellation
size. In this tree each node at level i ∈ {1, 2, .., Nt})
is uniquely described by the partial vector symbols si =
[si, si+1, .., sNt], the leaves at level i = 1 correspond to all
possible vector-symbols ΩNt.
Annotate the root node with TNt+1 = 0 and starting from

Level i = Nt, the PED (Partial Euclidean Distance) of partial
symbol vector si = [si, si+1, .., sNt] is Ti(si) = Ti+1(si+1)+
||ei(si)||2, where the PED-increment ||ei(si)||2 is

||ei(si)||2 = ||ŷi −
NtX
j=i

Rijsj ||2 (3)

||ei(si)||2 is obviously non-negative, so that the PED increases
monotonically from root to leaves. Hence, formulation in
Eq.(2) has now been transformed as a tree-search which finds

the leaf at level i = 1 with the minimal PED T1(s1). The leaf
with the minimal PED corresponds to the ŝ in Eq.(1).
Various depth-first searching algorithms have been proposed

for SD [3-6]. However, most of these algorithms are essentially
depth-first serial tree-search. In addition, most of them have
the non-deterministic dynamism depending on the channel
matrix and the SNR. Hence, they are not suited for parallel
programmable architectures.
Instead of performing depth-first searching. The sub-optimal

K-Best (similar to QRD-M) and its variants perform breadth-
first searching [2] [7] . The K-Best and variants are mostly
ASIC-minded algorithms. They keep K best nodes on each
level of the tree. When going from level i + 1 to i, K-Best
first spans the K nodes at level i+ 1 to KC nodes, where C
is the constellation size. After spanning, K-Best sorts the KC
nodes, the K best nodes are selected and the rest nodes are
deleted. Both strict sorting [7] and approximating sorting [2]
have been proposed. The spanning-sorting-deleting process are
repeated for Nt times until reaching the leaf nodes. Clearly,
K-Best involves modular and repetitive operations that are
easily parallelized in hardware. Hence, it has became the most
popular near-ML detector in ASICs and FPGAs.
Although the K-Best suits parallel VLSI architecture well,

it has many problems on parallel programmable architecture:
(1) extensive shuffling operations have to be decomposed
into supported shuffling instructions, which incurs significant
cycle and energy overhead on programmable architectures; (2)
the execution is not deterministic and regular, data-dependent
memory-operations and computations will significantly de-
grade the resource-utilizations on programmable architectures;
(3) the memory arrangement incur cycle-count and energy
overhead in both datapath and memory; (4) the complexity
of the spanning-sorting-deleting process is still too high.
Although [10] uses the SD to benchmark VLIW processor,
the aforementioned problems are not solved yet.
Clearly, further innovations are necessary when imple-

menting near-ML detectors on programmable architectures.
We will substitute the spanning-sorting-deleting process with
architecture-friendly dataflow structures and procedures.

III. SSFE FOR PARALLEL PROGRAMMABLE
ARCHITECTURE

A. Overview
We propose the SSFE as a novel near-ML detector with

explicit architecture-friendliness. The key feature of the SSFE
is the completely deterministic and regular dataflow structure.
Abundant vector-parallelism is enabled in the SSFE; memory
rearrangement, shuffling operations and non-deterministic dy-
namism are all eliminated. Experiment results show that these
characteristics will bring highly-efficient resource-utilizations
on real-life parallel programmable architectures.
The SSFE can be uniquely characterized by a vector m =

[m1, . . . , mNt]. Starting from level i = Nt, SSFE spans each
node at level i+1 to mi nodes at level i. The spanned nodes
are never deleted. Hence, the total number of nodes at level i
is
QNt

k=imk. If the node at level i = Nt+1 has the associated

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

738

(a) (b)
Fig. 1. Topology of Trees in K-Best and SSFE.(a) K-Best; (b)SSFE

partial symbol vector being si+1 = [si+1, .., sNt], the spanning
is to select a set of si = [si, si+1, .., sNt] in the way that
||ei(si)||2 is minimized.
The topology of search-trees in the K-Best and the SSFE

are compared in Fig.1, where (a) is for K-Best with K = 4.
(b) is the for SSFE with m = [1, 2, 2, 4]. The transmission is
4x4 QPSK. The bold lines mark the path and leaf with the
minimal PED. Note that (a) is just one possibility of the K-
Best execution, which is essentially dynamic. On the contrary,
the SSFE brings completely deterministic and regular dataflow
structures.
Essentially, the SSFE is a distributed and greedy algorithm

similar to the dynamic programming. It is greedy because it
minimizes ||ei(si)||2 at each level of the tree. In addition, it
is distributed because the minimization of ||ei(si)||2 is local
for each node at level i + 1 when spanning this node to mi

nodes at level i. On the contrary, in the K-Best, the spanning-
sorting-deleting process is based on the PED (Ti(si)) of KC
spanned nodes at level i. Hence, in the K-Best the sorting of
Ti(si) is performed globally on KC nodes, which are spanned
from K different nodes at level i + 1. Clearly, when KC is
large huge amount of operations are required. In contrast to
the K-Best, the distributed and greedy algorithmic structure of
SSFE enables very efficient heuristics (Fast Enumeration) to
minimize ||ei(si)||2. Note that the SSFE never deletes any
nodes or paths. On the contrary, at level i = Nt the K-
Best needs to delete KC − K nodes and associated paths.
Comparing to the K-Best, the SSFE involves no memory
rearrangement.
Our scheme is also different from the fixed-complexity

detector in [15], despite the similarities in the topology of
the spanning-trees. First of all, in our scheme we select a set
of si = [si, si+1, .., sNt] to minimize ||ei(si)||2 but not Ti(si).
Second, sorting or deleting are not involved in the SSFE.

B. Fast Enumeration

To minimize ||ei(si)||2 during spanning, we may use the
same technique as the K-Best. However, as we discussed
before, the spanning-sorting-deleting process are not friendly
to parallel programmable architectures.
Fortunately, the distributed and greedy algorithmic structure

of the SSFE enable us to apply very simple heuristics to
approximate the sorting operations. The heuristics is called FE
(Fast Enumeration). To derive the FE, we first rewrite Eq.(3)

−7 −6 −5 −4 −3 −2 −1 0 1

−1

0

1

2

3

4

5

6

7

1

8

Original

Sliced

Fig. 2. Example of Fast Enumeration with 8 Constellation Points

as

||ei(si)||2 = ||ŷi −
NtX
j=i

Rijsj ||2 (4)

= || ŷi −
NtX

j=i+1

Rijsj| {z }
bi+1(si+1)

−Riisi||2

Clearly, the minimization of ||ei(si)||2 is equivalent to the
minimization of ||ei(si)/Rii||2. Hence, from Eq.4 we derive
||ei(si)/Rii||2 = || bi+1(si+1)/Rii| {z }

ξi

−si||2 = ||ξi − si||2 (5)

Eq.5 gives the geometrical interpretation for minimizing
||ei(si)/Rii||2. Specifically, minimizing Eq.5 is essentially to
select the closest complex constellation point to ξi. For SSFE,
the FE is to select a set of closest constellations around the
point ξi.
When mi = 1, the closest constellation to ξi is p1 = Q(ξi),

where Q is the slicing operator. When mi > 1, more con-
stellations can be efficiently enumerated based on the vector
d = ξi −Q(ξi). For mi ≤ 4, the points can be enumerated in
the following way (with C-like syntaxes):

φ = |<(d)| > |=(d)|
p2 = Q(ξi) + 2(sgn(<(d))φ+ j(sgn(=(d))(!φ)))
p3 = Q(ξi) + 2(sgn(<(d))(!φ) + j(sgn(=(d))φ))
p4 = Q(ξi) + 2(sgn(<(d)) + j(sgn(=(d))) (6)

where ’sgn()’ is the operator for sign (positive/negtive), ’!’ is
the logic-not operator like that in C.
Fundamentally, the technique applied here is to incremen-

tally grow the set around ξi with efficient-heuristics based
approximations. For example, if |<(d)| > |=(d)|, the sec-
ond closest constellation (p2) to ξi is on the horizontal-line
where Q(ξi) stays, and the distance between Q(ξi) and p2
is 2(sgn(<(d)). If |<(d)| < |=(d)|, p2 is on the vertical-
line where Q(ξi) stays, and the distance is 2j(sgn(=(d)). In
order to avoid if -then statements and to make a deterministic
dataflow in the enumeration, we write the expressions of p2
as that in Eq.(6). Similarly, p3 and p4 are enumerated with
simple operations.
Following this way, {p5, .., p8} can be enumerated as:

p5 = Q(ξi)− 2j(sgn(=(d))), p6 = p4 − 4j(sgn(=(d)))
p7 = Q(ξi)− 2sgn(<(d)), p8 = p4 − 4sgn(<(d)) (7)

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

739

Note that the 2× and 4× are 1-bit and 2-bit left-shift
operations, respectively. For the sake of clarity, boundary
conditions are ignored in the above formulations. In practical
implementations the boundary conditions need to be examined.
An example of an 8-points enumeration is shown in Fig.2.

The first point and the last point are annotated with numbers.
We can enumerate more points in the same way. In practical
implementations, we consider mi ∈ 1, 2, 4, 8, 16 to simplify
the address generation scheme on programmable architectures.
The FE has clear advantages over the PSK-like enumeration

implemented in [5] [6]. The PSK-like enumeration depends on
constellations size; it needs to examine the constellations on
1, 3, 9 co-centric circles for QPSK, 16QAM and 64QAM,
respectively. When using 64QAM scheme the complexity is
still very high. In addition, the PSK-like enumeration require
trigonometric functions and a lot of divisions, which makes
it difficult on most programmable platforms. On the contrary,
the FE scheme in the SSFE is independent on constellation
size, so that handling 64QAM will be as efficient as handling
QPSK. More importantly, the FE is based on very simple and
architecture-friendly operators such as addition, subtraction,
bit-not and shift.

C. Parallelization of The SSFE
As shown in Fig.1, the dataflow in the SSFE is completely

deterministic and regular. Hence, it is simple to parallelize
the SSFE for parallel programmable architectures. There are
at least two options. First, we can observe that the spanning
operations of different nodes can be parallelized. Second, we
can search multiple trees simultaneously. The second scheme
is preferred because of the following advantages: (1) It brings
abundant vector-parallelism, which can be easily mapped on
VLIW, SIMD or vector architectures; (2) the parallelization is
scalable, the number of parallel trees can be determined ac-
cording to the supported parallelism on the given architecture;
(3) this scheme perfectly fits OFDM and OFDMA systems,
where the detection is essentially parallel for blocks of MIMO
symbols.

IV. EXPERIMENT RESULTS
A. Performance Evaluation
1) Setup: First we study the BER (Bit Error Rate) of the

SSFE for OFDM and OFDMA systems. Coded transmissions
over indoor/outdoor channels are evaluated. For indoor chan-
nels, we use the channel models specified in IEEE 802.11n.
For outdoor channels, we use the channel models specified
in 3GPP LTE. For the sake of limited space, herein we show
only 1/2 coded hard-output 64QAM 4×4 transmissions. Fig.3,
the BER of the ZF (Zero-Forcing) detector, the SD based ML
detector, the K-Best and the SSFE are evaluated. The SSFE
is plotted with solid lines, with m ranging from [1, 1, 1, 1] to
[1, 2, 4, 16] (124F).
2) BER: As expected, the ML detector, the K-Best and

the SSFE are all superior to the ZF detector. When m =
[1, 2, 4, 16], the gap between the SSFE and the ML is very
small. Specifically, at BER=10−4 the SSFE is only 0.1dB away

25 26 27 28 29 30 31 32

10
−4

10
−3

10
−2

3GPP Suburban Macro

SNR

ZF
SSFE 1111
SSFE 1112
SSFE 1114
SSFE 1124
SSFE 1224
SSFE 1148
SSFE 1248
SSFE 124F
KBest K=4
KBest K=8
ML Detec.

(a)

25 26 27 28 29 30 31 32

10
−4

10
−3

10
−2

3GPP Urban Micro

SNR

ZF
SSFE 1111
SSFE 1112
SSFE 1114
SSFE 1124
SSFE 1224
SSFE 1148
SSFE 1248
SSFE 124F
KBest K=4
KBest K=8
ML Detec.

(b)

27 27.5 28 28.5 29 29.5 30 30.5 31 31.5

10
−4

10
−3

10
−2

802.11n Typical Residential Environment

SNR

ZF
SSFE 1111
SSFE 1112
SSFE 1114
SSFE 1124
SSFE 1224
SSFE 1148
SSFE 1248
SSFE 124F
KBest K=4
KBest K=8
ML Detec.

(c)
Fig. 3. BER Comparisons. (a) 3GPP Suburban Macro; (b) 3GPP Urban
Micro; (c) 802.11n Typical Residential Environment;

from the ML detector. When comparing the K-Best to the
SSFE, we can observe that the K-Best with K = 4 is close to
the SSFE with m = [1, 1, 2, 4], and the K-Best with K = 8
is close to the SSFE with m = [1, 2, 4, 8].

3) Scalability: Fig.3 clearly shows that changingm brings
the quality/cost scalability in the SSFE. This is very important
for SDR. In practical communication systems the channels
and data-rate are varying. In order to minimize the power
consumptions in SDR, we can dynamically adjusting the m
according to the aforementioned dynamism to perform just-
enough processing.

Although the SSFE can approach the ML very closely with
large m, it is necessary for only very poor channels with low
SNR or bad numerical properties. These poor-channel cases
are important but rare. In most practical cases, a just-enoughm
is preferred to minimize power-consumptions. At BER=10−4,
the SSFE with m = [1, 1, 2, 4] is already 7dB better than the
ZF. Hence, we will mainly study the the SSFE implementation
with small m.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

740

TABLE I
COMPLEXITY COMPARISON BETWEEN SSFE AND K-BEST

SSFE K-Best
1111 1112 1114 1124 1248 K=2 K=4 K=8

CMUL 18 34 66 114 638 460 856 1648
CADD 26 51 101 177 1025 1120 3744 13600

B. Complexity

The associated complexities of the SSFE and the K-Best
are compared in Table.I. The CMUL (Complexity Multiplica-
tions) and CADD (Complex Additions) are the (equivalent)
operations required to detect one MIMO symbol in 4x4
64QAM transmissions. We exclude the complexity of the
QRD preprocessing because it is very low in practical OFDM
systems if appropriate optimizations are applied [16].
From Table.I we can observe that the SSFE has remarkable

advantages of complexities. For instance, the SSFE with m =
[1, 2, 4, 8] has a BER close to the K-Best with K = 8, while
the SSFE has a significantly lower complexity.

C. Implementation Results on TI TMS320C6416

1) Setup: Besides the comparisons of abstract complexity,
we have verified on a real-life platform that the SSFE is
indeed very friendly to parallel programmable architectures.
In this paper we include reproducible experiment results on
the TI TMS320C6416 fixed point VLIW DSP. TMS320C6416
supports 8 32-bit instructions per-cycle, controlling 8 parallel
FUs (Function Units). Level-1 memory consists of 16 K-Byte
direct-mapped instruction cache (L1P) and 16 K-Byte 2-way
set-associative data cache (L1D). Memory accesses of the
SSFE is highly deterministic, Level-2 memory is configured
as SRAM and controlled by software.
The SSFE is implemented in C and is iteratively optimized

with the feedback from compilation and profiling, ensuring
highly efficient software-pipelining on the VLIW architecture.
The final C code consists of around 400 lines, organized as
(up to) 4-level loop-nests and 16 innermost loops.
2) Results: We summarize the results in Fig.II. With

TMS320C6416 working at full frequency, the SSFE achieves
37.4 - 125.3 Mbps throughput for 4x4 64QAM transmission
with m = [1, 1, 1, 1], [1, 1, 1, 2], [1, 1, 1, 4] and [1, 1, 2, 4]. The
SIMD feature is not exploited yet at this moment. With SIMD
the throughput can be improved by a factor of 2. Note that
the implementation on TMS320C6416 is just to investigate
the architecture-friendliness of the SSFE with reproducible
results. We are implementing the SSFE on a massive-parallel
custom-platform with 16 FUs and 4-way SIMD datapath. In
the ongoing implementation the throughput is expected to be
between 100 to 250 Mbps for 4x4 64QAM transmissions. This
is compatible with emerging wireless standards (100Mbps+).

V. CONCLUSION AND FUTURE WORK

In this paper, we presented the SSFE as a novel near-
ML detector specifically designed for parallel programmable
baseband architectures. Comparing to the ASIC-minded K-
Best, the SSFE not only significantly reduces the algorithmic
complexity, but also results in a completely deterministic and
regular dataflow in the algorithm. Hence, the SSFE can be

TABLE II
SSFE ON TMS320C6416

SSFE with m [1,1, 1, 1] [1, 1, 1, 2] [1, 1,1, 4] [1, 1, 2, 4]
Throughput (Mbps) 125.3 79.3 48.5 37.4

easily parallelized and efficiently mapped on parallel pro-
grammable architectures. On a real life VLIW DSP platform,
the SSFE brings nearly full efficiency of resource-utilizations.
At this moment, the SSFE works on only hard-output. In

order to leverage advanced FEC (Forward Error Correction)
techniques such as the Turbo codec and soft-input LDPC (Low
Density Parity Check), we are now extending the SSFE with
soft-output.

VI. ACKNOWLEDGEMENT
The authors thank Weiyu Xu (EE, Caltech, CA, USA) for

his valuable comments on this work.

REFERENCES
[1] J, Rabaey, Keynote PresentationWireless Beyond the Third Generation -

Facing the Energy Challenge International Symposium on Low Power
Electronic Design 2001.

[2] S. Chen, T. Zhang, and Y. Xin, Relaxed K-best MIMO Signal Detector
Design and VLSI Implementation, IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 15, issue 3, pp. 328-337, March
2007

[3] D. G. et al., A 28.8 Mb/s 4 x 4 MIMO 3G CDMA receiver for frequency
selective channels, IEEE J. Solid-State Circuits, vol. 40, no. 1, pp.
320C330, Jan. 2005. [4]

[4] D. G. et al.,, Silicon complexity for maximum likelihood MIMO detection
using spherical decoding, IEEE J. Solid-State Circuits, vol. 39, no. 9, pp.
1544C1552, Sep. 2004.

[5] A. B. et al., VLSI implementation of MIMO detection using the sphere
decoding algorithm, IEEE J. Solid-State Circuits, vol. 40, no. 7, pp.
1566C1577, Jul. 2005.

[6] Z. Guo and P. Nilsson, VLSI architecture of the Schnorr-Euchner decoder
for MIMO systems, in Proc. IEEE CAS Symp. Emerging Technol., 2004,
pp. 65C68.

[7] Z. Guo and P. Nilsson, Algorithm and implementation of the k-best sphere
decoding for MIMO detection, IEEE J. Sel. Areas Commun., vol. 24, no.
3, pp. 491C503, Mar. 2006.

[8] K.-W. Wong, C.-Y. Tsui, R. S.-K. Cheng, and W.-H. Mow, A VLSI
architecture of a K-best lattice decoding algorithm for MIMO channels,
in Proc. IEEE Int. Symp. Circuits Syst. 2002, May 2002, pp. III-273CIII-
276.

[9] A. Wiesel, X. Mestre, A. Pages, and J. R. Fonollosa, Efficient imple-
mentation on sphere demodulation, in Proc. IEEE Workshop on Signal
Processing Advances in Wireless Commun., Rome, Italy, Jun. 2003, pp.
36C40.

[10] R. Hoare, A. K. Jones, D. Kusic, J. Fazekas, J. Foster, S. Tung, and M.
McCloud, Rapid VLIW processor customization for signal processing
applications using combinational hardware functions, EURASIP Journal
on Applied Signal Processing, vol. 2006.

[11] Y. Lin et al., ”SODA: A Low-Power Architecture for Software Radio,”
Proc. 33rd Ann. Intl Symp. Computer Architecture (ISCA 06), IEEE CS
Press, 2006, pp. 89-101.

[12] C. van Berkel et al., ”Vector Processing as an Enabler for Software-
Defined Radio in Handsets from 3G+WLAN Onwards,” Proc. 2004
Software Defined Radio Tech. Conf, SDR Forum, 2004, p. B125.

[13] T. Kailath, H. Vikalo, and B. Hassibi, ”MIMO Receive Algorithms,”
in Space-Time Wireless Systems: From Array Processing to MIMO
Communications, Cambridge University Press, 2005.

[14] Nabar, R.U., Paulraj, A., Gore, D.A. and Bolcskei, H., An overview
of MIMO communications-a key to gigabyte wireless. Proc. IEEE. v92.
198-218.

[15] L. G. Barbero and J. S. Thompson, ”Rapid Prototyping of a Fixed-
Throughput Sphere Decoder for MIMO Systems”, in IEEE International
Conference on Communications (ICC ’06)

[16] D. Cescato, M. Borgmann, H. Bölcskei, J. Hansen, and A. Burg,
“Interpolation-based QR decomposition in MIMO-OFDM systems,” Proc.
of IEEE SPAWC, 2005

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

741

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /BCCYR
 /BCCYRBold
 /BCSYMA
 /BCSYMABold
 /BCSYMB
 /BCSYMBBold
 /BCSYMX
 /BCSYMXBold
 /Bellevue
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /blex
 /blsy
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /CMB10
 /Cmb10
 /CMBSY10
 /Cmbsy10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /Cmbx10
 /CMBX12
 /Cmbx12
 /CMBX5
 /Cmbx5
 /CMBX6
 /Cmbx6
 /CMBX7
 /Cmbx7
 /CMBX8
 /Cmbx8
 /CMBX9
 /Cmbx9
 /CMBXSL10
 /Cmbxsl10
 /CMBXTI10
 /Cmbxti10
 /CMCSC10
 /Cmcsc10
 /CMCSC8
 /Cmcsc8
 /CMCSC9
 /Cmcsc9
 /CMDUNH10
 /Cmdunh10
 /CMEX10
 /Cmex10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /Cmff10
 /CMFI10
 /Cmfi10
 /CMFIB8
 /Cmfib8
 /CMINCH
 /Cminch
 /CMITT10
 /Cmitt10
 /CMMI10
 /Cmmi10
 /CMMI12
 /Cmmi12
 /CMMI5
 /Cmmi5
 /CMMI6
 /Cmmi6
 /CMMI7
 /Cmmi7
 /CMMI8
 /Cmmi8
 /CMMI9
 /Cmmi9
 /CMMIB10
 /Cmmib10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /Cmr10
 /CMR12
 /Cmr12
 /CMR17
 /Cmr17
 /CMR5
 /Cmr5
 /CMR6
 /Cmr6
 /CMR7
 /Cmr7
 /CMR8
 /Cmr8
 /CMR9
 /Cmr9
 /CMSL10
 /Cmsl10
 /CMSL12
 /Cmsl12
 /CMSL8
 /Cmsl8
 /CMSL9
 /Cmsl9
 /CMSLTT10
 /Cmsltt10
 /CMSS10
 /Cmss10
 /CMSS12
 /Cmss12
 /CMSS17
 /Cmss17
 /CMSS8
 /Cmss8
 /CMSS9
 /Cmss9
 /CMSSBX10
 /Cmssbx10
 /CMSSDC10
 /Cmssdc10
 /CMSSI10
 /Cmssi10
 /CMSSI12
 /Cmssi12
 /CMSSI17
 /Cmssi17
 /CMSSI8
 /Cmssi8
 /CMSSI9
 /Cmssi9
 /CMSSQ8
 /Cmssq8
 /CMSSQI8
 /Cmssqi8
 /CMSY10
 /Cmsy10
 /CMSY5
 /Cmsy5
 /CMSY6
 /Cmsy6
 /CMSY7
 /Cmsy7
 /CMSY8
 /Cmsy8
 /CMSY9
 /Cmsy9
 /CMTCSC10
 /Cmtcsc10
 /CMTEX10
 /Cmtex10
 /CMTEX8
 /Cmtex8
 /CMTEX9
 /Cmtex9
 /CMTI10
 /Cmti10
 /CMTI12
 /Cmti12
 /CMTI7
 /Cmti7
 /CMTI8
 /Cmti8
 /CMTI9
 /Cmti9
 /CMTT10
 /Cmtt10
 /CMTT12
 /Cmtt12
 /CMTT8
 /Cmtt8
 /CMTT9
 /Cmtt9
 /CMU10
 /Cmu10
 /CMVTT10
 /Cmvtt10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Dcb10
 /Dcbx10
 /Dcbxsl10
 /Dcbxti10
 /Dccsc10
 /Dcitt10
 /Dcr10
 /Dcsl10
 /Dcsltt10
 /Dcss10
 /Dcssbx10
 /Dcssi10
 /Dctcsc10
 /Dcti10
 /Dctt10
 /Dcu10
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /Euex10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /Eufb10
 /EUFB5
 /Eufb5
 /EUFB7
 /Eufb7
 /EUFM10
 /Eufm10
 /EUFM5
 /Eufm5
 /EUFM7
 /Eufm7
 /EURB10
 /Eurb10
 /EURB5
 /Eurb5
 /EURB7
 /Eurb7
 /EURM10
 /Eurm10
 /EURM5
 /Eurm5
 /EURM7
 /Eurm7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EuroSig
 /EUSB10
 /Eusb10
 /EUSB5
 /Eusb5
 /EUSB7
 /Eusb7
 /EUSM10
 /Eusm10
 /EUSM5
 /Eusm5
 /EUSM7
 /Eusm7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /HYSMyeongJoStd-Medium-Acro
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KozGoProVI-Medium
 /KozMinPro-Regular-Acro
 /KozMinProVI-Regular
 /KristenITC-Regular
 /KunstlerScript
 /Lasy10
 /Lasy5
 /Lasy6
 /Lasy7
 /Lasy8
 /Lasy9
 /Lasyb10
 /Latha
 /LatinWide
 /Lcircle10
 /Lcirclew10
 /Lcmss8
 /Lcmssb8
 /Lcmssi8
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Line10
 /Linew10
 /Lithos-Black
 /Lithos-Regular
 /Logo10
 /Logo8
 /Logo9
 /Logobf10
 /Logosl10
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /Msam10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /Msbm10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MSungStd-Light-Acro
 /MT-Extra
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /rblmi
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /STSongStd-Light-Acro
 /Swiss721BT-BlackExtended
 /Sylfaen
 /SylfaenARM
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Umb10
 /Umbx10
 /Umbxsl10
 /Umbxti10
 /Umitt10
 /Umr10
 /Umsltt10
 /Umti10
 /Umtt10
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU (Based on PDF Specification 4.01b, May 2007)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

