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ABSTRACT
Fixed-point refinement of signal processing systems is an es-
sential step performed before implementation of any signal
processing system. Existing analytical techniques to evalu-
ate performance of fixed-point systems are not applicable to
the errors due to quantization in the presence of un-smooth
operators. Thus, it is inevitable to use simulation to evalu-
ate performance of fixed-point systems in the presence un-
smooth operators. This paper proposes a hybrid technique
which can be used in place of pure simulation to accelerate
the performance evaluation. The principle idea in the pro-
posed hybrid approach is to selectively simulate parts of the
system only when un-smooth errors occur but use analytical
results otherwise. The acceleration thus obtained reduces
the performance evaluation time which can be used to ex-
plore a wider word-length design space or speedup the opti-
mization process. This method has been tried on a complex
MIMO sphere decoding algorithm and the results obtained
show several orders of magnitude improvement in terms of
evaluation time.

Keywords
Fixed-point system design, Word-length Optimization, Quan-
tization noise, Performance evaluation

1. INTRODUCTION
Signal processing algorithms are rapidly finding use in mo-
bile and hand-held electronic gadgets. While these gadgets
cater to applications in niche areas, they are severely con-
strained by cost, power and the response time. The choice of
software platform with sub-word parallelism ASIP(application
specific instruction set processor) or custom hardware plat-
forms over general purpose platforms is inevitable especially
when considering stringent power and execution time spec-
ifications. An important step in mapping a signal process-
ing algorithm on DSP or hardware platform is to refine the
signal representation in fixed-point. This step is popularly

referred to as the floating-point to fixed-point conversion.
The choice of appropriate wordlength essentially trades off
processing accuracy of the system to the implementation
cost. In fact, use of fixed-point operations has been one of
the driving forces in cutting edge processor technology (e.g.
the MMX extension on Intel processors). Many practical
systems have known to be benefited from the use of fixed-
point operations in place of floating-point operations. It has
become common knowledge that the use of fixed-point arith-
metic is truly beneficial and it is prevalent even in hardware
design paradigms. Recent attempts such as [1] have been
made to even automate the process of data-path optimiza-
tion with fixed-point systems to aid hardware designers.

Word-length optimization process is known to be NP-hard [2]
and thus time consuming. Some experiments [3] have shown
that the manual fixed-point conversion process can consume
25% to 50% of the total product development time. In a
survey [4], the fixed-point conversion was identified as one
of the most difficult aspects of hardware implementation on
FPGA platforms. Algorithms used to solve this problem in-
volve repeated cost and performance evaluation of the sys-
tem under consideration in an iterative fashion. Defining the
system level performance metric and evaluating the same
requires a thorough understanding of the functioning of the
system. Indeed, the performance evaluation step happens to
be the bottleneck resulting in long optimization times which
increases with system complexity.

One way of evaluating performance of DSP algorithms with
different fixed-point formats is by fixed-point simulation.
Though simulation can theoretically be performed on any
kind of system, the long simulation time is a limitation and
simulation is not always practical especially when it is re-
quired to explore the entire fixed-point design space. An-
alytical models have been successful in providing a closed
form analytical expression for the quantization noise power
or bounds on the quantization noise amplitude for any given
fixed-point specification in case of certain kinds of signal
processing systems. Performance metric is derived from the
quantization noise power or bounds on quantization noise
from relevant signals. The analytical models assume the
popular Widrow quantization noise model [9] to characterise
and linear models to propagate the noise generated from ev-
ery operator source across the system. The linear approxi-
mation for noise propagation has proven to be accurate when
the noise power is small in comparison to signal power and
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it need not be true always. Hence, those operators whose
noise generation confirm to the Widrow quantization model
are referred to as smooth operators and the ones that do
not are referred to as un-smooth operators. Decision-making
operators or saturation operators are typical un-smooth op-
erators. A good example is the decision-making operator
which is vastly used to identify the symbol transmitted at
the receiving end in digital communication systems. The er-
rors from decision-making operators are un-smooth and ex-
hibit non-linearity in the sense of discontinuity in its output.
Other examples that occur commonly are the saturation and
over-flow arithmetic errors.

In this paper, a hybrid technique which makes use of the an-
alytical models to accelerate performance evaluation by sim-
ulation is proposed. This method reduces the time taken for
performance evaluation in comparison with technique which
employs only simulation by several orders of magnitude. The
principle used here is to simulate the algorithm in entirety
or in parts only when un-smooth errors occur and use the
analytical results otherwise. Moreover, floating-point sim-
ulation is used even in case of un-smooth errors thereby
avoiding fixed precision simulation completely. The acceler-
ation achieved by this technique can be used to reduce the
total optimization time or explore a larger fixed point search
space so as to improve the quality of the solution.

In the rest of the paper, the next section provides a brief
background on the works related to accelerating simulation-
based performance and other performance evaluation ap-
proaches. Section 3 describes the hybrid method which
makes use of analytical models to accelerate simulation-
based performance. In section 4 a case study of a highly
parallel MIMO ML-decoder is used to study the efficacy of
the proposed hybrid method. Section 5 shows the results
obtained by using this method on the MIMO decoder. The
paper concludes with discussion on the results obtained and
prospects the use of this technique in various other scenarios.

2. RELATED WORKS
Measuring the impact on performance of systems with fixed-
point arithmetic is a two fold problem. The dynamic range
and the quantization noise due to limited precision are two
different parts of the fixed-point specification. Improper dy-
namic range estimates lead to un-smooth errors due to sat-
uration or wrap-around. Such fixed-point word-length in-
duced un-smoothness can be controlled, localised or even
eliminated by allowing for large dynamic range or by choos-
ing appropriate fixed-point formats. On the other hand,
there are errors due to lack of precision in the fixed-point
format which get magnified due to non-linearity of the un-
smooth operators such as decision-making operators.

Many approaches for performance evaluation based on sim-
ulation and analytical models have been proposed for design
and analysis of fixed-point effects. The quantization noise
error characteristics are explained in the Widrow [9] noise
model. Attempts such as [7] use the standard linear systems
theory to propagate the quantization noise power across the
system such that quantization noise on any signal in the sys-
tem can be estimated analytically. These analytical models
for quantization noise propagation are restricted to smooth
operators and are not usable when un-smooth errors occur.

A decision operator which essentially defines a boundary
between any two regions (for e.g. less than zero or greater
than equal to zero) can be thought of as the basic form of un-
smoothness due to discontinuity in the range of the output.
A good example for this type of decision maker is the QAM
(Quadrature Amplitude Modulation) constellation mapper.
Two approaches [8] and [6] attempt to study the genera-
tion of such errors. While the former approach defines a
bound on error probability in the simple BPSK case, the
latter is capable of generating a probability mass function
corresponding to error for any kind of decision boundaries
associated with the operator. However, both approaches do
not handle propagation of decision errors and do not add
value when error needs to be propagated.

When none of the analytical techniques are usable, it is
inevitable that the performance of fixed-point systems are
analysed by way of simulation. Many techniques such as [10]
have been proposed in the past to accelerate simulation by
efficient code generation. This approach attempts to gen-
erate efficient binary for the given system that needs to be
simulated such that simulation takes the least possible time.
It is easy to see that such simulation acceleration efforts de-
liver when large parts of the system are implemented in low
level software languages and are hence costly. One way of
solving this problem is by rapid prototyping which essen-
tially means automatic native code generation. Even this
idea is essentially that of simulation acceleration by gener-
ating code in a language which can later be compiled to
native binary code. Popular tools such as Matlab [11] have
this process fully automated and is hence quite .

To the best of the authors knowledge, there has been no
effort to use the analytical models to accelerate the process
of simulation. This paper proposes a hybrid methodology
which selectively simulates the system. The single noise
source model which is derived using analytical techniques
are used to accelerate simulation of fixed-point behavior for
smooth operations. The un-smooth operators are simulated
only when deemed necessary.

3. HYBRID TECHNIQUE DESCRIPTION
The proposed hybrid can be thought of as a technique for
fixed-point simulation acceleration by using analytical meth-
ods. As with any simulation-based techniques, the system is
simulated with infinite precision just once and the results are
stored in a suitable database to serve as reference for com-
parison. The single noise source model abstracts away the
quantization noise behavior at the sub-system level. They
are used in place of simulation of the actual system for every
simulation point for all smooth operations thus simplifying
simulation of smooth operators which can be handled ana-
lytically.

3.1 Single noise source model
The single noise source model abstracts away the noise gen-
erated from within a block of smooth operations as a single
additive noise source at the output. Consider a sub-system
B in a hierarchically defined system B with input x and
output s as shown in Figure 1. The noises bx and bs are
associated with signals x and s respectively.

The total quantization noise bs at the output of the sub-
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Figure 1: Modelling with single noise source

system consists of two components bsg and bst for the noise
generated within the system and noise transmitted through
the system respectively. The formulation of the single noise
source model is based on the analytical techniques devel-
oped for the purpose of smooth operations. Naturally, all
kinds of smooth operations including non-linear (but still
smooth) operations can be captured in the realm of the sin-
gle noise source model. Indeed, the proposed hybrid tech-
nique exploits this feature to make good use of the analytical
techniques by way of clustering all smooth operators in the
system.

The noise bx(n) associated with the input signal x(n) is as-
sumed to be uncorrelated with the signal. Further, it is also
assumed that the noise power is very small in comparison
to the signal. The effect of this noise at the output bst is
obtained by passing it through the noise propagation filter
T̃ which modifies the power spectrum of bx like the sub-
system B. The noise bsg, generated in the sub-system B is
modeled by passing the single noise source bg through the
noise generation filter G̃. The noise generation filter shapes
the spectral characteristics of the noise to represent the ef-
fect of quantization noise generated within the sub-system
B. It can been shown that the output PDF is not uniform
and is in fact closer to being a Gaussian due to central limit
theorem. Hence, noise source bg is conveniently modeled as
white Gaussian whenever the single noise source model is
used.

The setting up of single noise source model for each cluster
of smooth operators in a given system is a one-time effort.
This model can be re-used by plugging in different word-
length values during the course of system evaluation.

3.2 Clustering smooth operators
Consider a system B with predefined subsystemsBi as shown
in Figure 2. The system is made up of Nb subsystems Bi

each of them consisting of only smooth operations and No

un-smooth operators Oj . The smooth sub-systems can be
grouped together at the boundaries of un-smooth operators
to form smooth clusters such that large parts of the system
may be handled analytically.

The sub-systems are grouped to form clusters as shown in
Figure 2. The sub-systems B0 through B3 are combined
together to make the cluster C0. A single noise source bg0

which can mimic the fixed-point behavior of blocksB0,through
B3 is used to simulate the fixed-point behavior of the smooth
cluster thus formed and presented at the input of the un-
smooth operator O0. Similarly, cluster C1 is formed which
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Figure 2: A representative signal processing system

includes sub-blocks B5 and B6 with the single noise source
bg1. One of the inputs to B4 is sourced from the un-smooth
operator O0. As mentioned earlier, the existing analytical
error models do not allow propagation of the errors due to
un-smooth operators. Therefore the block B4 is a separate
cluster C2 and is not made a part of the cluster C1. The
single noise source model can capture any kind operators
including non-linear as long as they are smooth.

It has to be noted that in the absence of un-smooth errors,
the presence of un-smooth error does not impact quantiza-
tion noise propagation across the system essentially render-
ing the system smooth as far as noise propagation is con-
cerned.

3.3 Evaluation strategy
A pure simulation based approach for evaluating perfor-
mance of the system essentially consists of simulating all
the operators in the system for every sample of input data.
Floating point simulation is typically used as reference to
compare the fixed-point performance degradation and it is
a one time effort which can be considered a pre-processing
step. Floating-point simulation is used to capture the sig-
nals of interest which are stored in the signal data base.The
proposed hybrid technique which can be used for accelerated
simulation is described in Algorithm 1.

To begin with, the given system is divided into smooth clus-
ters and un-smooth operators and represented in a conve-
nient cluster graph structure G(V,E). In this graph rep-
resentation, the smooth clusters and un-smooth operators
form the set of nodes V and the signals connecting them
are the set of edges E. The graph is a directed edge graph
whose direction is determined by the direction of the flow
of signal. It is proposed to use an evaluate and propagate
strategy by following the precedence imposed by the graph
structure to evaluate the system. The idea is to follow the
precedence of the graph structure to evaluate the given node
either by simulation or analytical means and propagate the
accumulated noise to subsequent nodes connected to the out-
edges of the evaluated node. A limitation imposed on the
cluster graph G due to the evaluate and propagate strategy
is that it can be applied on directed acyclic graph (DAG)
only.On every smooth node in the cluster graph G, the sin-
gle noise source model is derived analytically so as to mimic
the fixed-point word-length effects at the output of the node.
The single noise source model augments the cluster graph
and participates only during fixed-point performance evalu-
ation of the system. Given the bit widths of the operators
inside the smooth clusters, the noise powers at the input of

11



every un-smooth operator node is calculated and the respec-
tive single noise source models initialized with the calculated
noise powers.

Algorithm 1 Accelerated Evaluation

Identify Smooth Clusters;
Obtain G(V,E) cluster graph (DAG);
Derive analytical Single Noise Source Models;
Set precision bit widths for all operator sources;
Initialise all single noise source models so as to mimic the
set precision bit width effects;
while Traversing G(V,E) in Precedence order do

for all un-smooth Vi do
if Input Signal SVi along Ei in error boundary then

Traceback and generate noise to evaluate SVi with
SNS model;
Simulate un-smooth operator;
if Un-smooth Error then

Calculate erroneous value;
Simulate the rest of nodes with precedence de-
pendence on Vi;

else
No un-smooth error, propagate noise;

end if
else

No un-smooth error, propagate noise;
end if

end for
end while

The DAG G(V,E) is traversed in the direction of the signal
flow from the input to the output to cover all the clusters and
un-smooth operators satisfying the precedence constraints
in the process. At the input of an un-smooth operator, all
the smooth blocks contributing to that input would have
been evaluated and the resulting quantization noise power
is calculated. When the smooth clusters contain delays and
a decision error occurs at the input, enough care has to be
taken such that the actual sample where the decision error
occurred is simulated. For example, if the smooth cluster
contains memory and cycles with memory, the points after
decision error is presented at the output after M samples. In
case of cycles inside the cluster, enough samples (N) must
be simulated such that the effect of a decision error does not
prevail after these many samples. In other words, all the
samples that are affected by the decision errors need to be
simulated.

Consider a signal Si at the input of an un-smooth operator
in an infinite precision system. The corresponding signal S̃i

in the case of a finite precision system is obtained as the sum
of the signal Si with the noise bsi generated until that signal
with the help of single noise source models (S̃i = Si + bsi).
An un-smooth error is said to have occurred in case the out-
put of the operator for signals in infinite precision and fixed
precision are different (i.e. O(S̃i) 6= O(Si)). The function
O() corresponds to the un-smooth operator. Evaluation of
the un-smooth operator corresponds to the simulation of un-
smooth operator. In case of an un-smooth error, the nodes
on the path connected to the output of the un-smooth op-
erators (immaterial whether they are smooth or otherwise)
all the way to the output have to be simulated. If there
is no error, the accumulated quantization noise is suitably

propagated (with a gain of 1 or 0) to the subsequent nodes
along the path. For example, a decision-making operator
has a gain of 0 whereas a saturation or over-flow operation
has a gain of 1 in case of no un-smooth errors.

To determine whether an un-smooth error has occurred, the
noise characteristics of bsi is used to determine a boundary
around the un-smooth region for every un-smooth operator
Oi in the system. This boundary is with respect to the value
of signal Si. If the signal Si happens to be confined in that
boundary, there is no need to even simulate the un-smooth
operator. When bsi is defined as the maximum tolerable
quantization noise power, if O(Si± bsi) = O(Si) then it can
be guaranteed that no decision error occurs and there is no
need to simulate the un-smooth operator Oi(). For example,
when the noise PDF is known to be a Gaussian (N(0, σ)), the
noise boundary can be defined as µ±5×σ where bsi = 5×σ.
If the signal Si is placed outside the boundary, such that
the addition of quantization noise might cause un-smooth
errors, the signal S̃i is calculated by generating the random
value bsi from the single noise source model and the un-
smooth operator Oi is simulated to check for error. In both
cases, the value O(Si) is obtained from the database of signal
values obtained during infinite precision simulation.

3.4 Complexity Analysis
The time taken for optimization using such an approach is
of interest when comparing the proposed hybrid technique
with pure simulation.
In a pure simulation-based scenario where Np number of
input samples are present, if the optimization demands Ni

number of iterations and if tsim is the time taken for one
fixed-point sample simulation, the total time for optimiza-
tion can be estimated as

Tfopt = Ni.Np.tsim. (1)

In the proposed mixed approach, a finite time is spent per-
forming analytical estimation of the noise powers followed
by choosing the points that need to be simulated as shown
in Algorithm 1 is followed. Therefore, the total time for
optimization can be written as

Tmopt = tsns +Ni(Na.tana +Ns.t̃sim) (2)

where tsns is the time for performing the single noise source
analysis, t̃sim is the average time taken for partial or full
simulation of the system averaged over Ns samples. The
value of t̃sim takes on the value anywhere between 0 and
tsim and is influenced by the number of decision errors when
evaluating the input set. tana is the time for analytical eval-
uation. tana is very small as it involves generation of random
numbers which is quite simple in comparison to the actual
computation which is performed only if the signal happens
to be in the error boundary according to the single noise
source model and the generated signal. Moreover, it is typ-
ical to think of Ns << Na since decision errors are not very
common. Some of the samples Ns are simulated while the
others Na are handled analytically. In other words, the total
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number of samples is split between simulation and analytical
modelling based evaluation (Np = Ns +Na). Also, the time
taken for simulation t̃sim is lesser than or equal to tsim. Even
when there is a decision error very early in the system which
requires the entire system to be simulated, t̃sim < tsim on
some evaluation platforms as the floating-point simulation is
used without wasting time for emulation of fixed-point data.

The time spent for analytical estimation tsns is a one-time
effort performed once for a given signal flow graph. Thus
in successive optimization efforts, this factor does not have
any contribution to the time taken. The benefit obtained
by following a mixed approach can be quantified by an im-
provement factor (IF ) in the context of Equation 2 as

Tmopt = tsns +Ni.Np.
tsim

IF
. (3)

where, the improvement factor IF is defined as the ratio

IF =
Np.tsim

Na.tana +Ns.t̃sim

. (4)

It can be seen that the improvement factor is a positive
quantity with potentially large values. It deteriorates when
there are too many decision errors under noisy conditions.
It is expected that such pathological situations seldom arise.

4. CASE STUDY
The proposed method is generic and it can be applied to any
system with un-smooth operators. To study the efficiency
of the proposed hybrid technique,a Multiple Input, Multiple
Output (MIMO) decoding algorithm is chosen to showcase
the effectiveness of the proposed method.

The MIMO sphere decoding algorithm uses a decision opera-
tor (QAM mapper) to explore different combination of sym-
bols transmitted. Therefore, it is possible to have different
configurations of the decoder algorithm with desired num-
ber of un-smooth decision-making operators and to analyse
the effects of a number of decision operators. Apart from a
number of decision operators, there is a fair amount of com-
putations to be performed at every antenna with a smooth
cluster always separating any two decision operators. In-
terestingly, it can also be seen from the signal flow graph
in Figure 3, the decision errors are correlated with one an-
other. Moreover, it also contains a min() operator which is
again un-smooth and always requires simulation. Thus with
the MIMO decoder, it is possible to have a good mixture
of smooth and un-smooth operations together with a lot of
control in choosing this ratio. The correlation between de-
cision errors from different operators makes it even more
complicated and impossible to be handled with existing an-
alytical techniques. We believe it is more relevant to explore
the chosen case study to demonstrate the proposed method
than benchmark algorithms on which there is few control.

4.1 SSFE Description
In most recent standards, such as IEEE802.11n, Mobile WiMAX
or 3GPP-LTE, the drastic increase in throughput comes at
the expense of complex MIMO detectors. Although lin-
ear detection methods are mostly implemented so far, its

BER(Bit Error Rate) performance is rather poor. At the
other extreme, the Maxim Likelihood (ML) detection solves

ŝ = arg min
s∈ΩNT

‖y −H.s‖2 (5)

where H denotes the NR x NT channel matrix, NR and NT

correspond to the number of receive and transmit antennas
and s = [s1, s2, ..., sNT ]T is the NT -dimensional transmit sig-
nal vector. The entries of s are chosen independently from
a complex constellation Ω. The set of all possible transmis-
sion vector symbols is denoted by ΩNT . ML detection pro-
vides the optimum detection method and minimizes BER.
A straightforward way to solve Equation 5 is an exhaustive
search. However, the corresponding computational complex-
ity grows exponentially with the number of transmit anten-
nas and with the number of bits per constellation symbol,
making its implementation unfeasible for the mentioned high
throughput standards.

With the intention of finding a good compromise between
implementation complexity and performance, heuristics that
approximate ML detection, namely near-ML, have recently
gathered relevant attention from the algorithmic community.
In this context, the Selective Spanning with Fast Enumera-
tion [5] (SSFE) shows to achieve considerable BER perfor-
mance with a decent implementation complexity. The SSFE
relays in the triangulation of the channel matrix H using a
QR decomposition according to H = QR, where the NR

x NT matrix Q has orthogonal columns and the NT x NT

matrix R is upper triangular. Thus,

‖y −Hs‖2 = κ+ ‖ŷ −Rs‖2 with ŷ = QHy (6)

where κ is a constant independent of the vector symbol s
and can hence it will be consider to be zero in the following.

A tree can be build such that the leaves at the bottom cor-
respond to all possible vector symbols s and the possible
values of the entry sNT define its top level. Then, each node
at level i (i = 1, 2, ..., NT ) can uniquely be described by the
partial vector symbols si = [si, si+1, ..., sNT ]T . Accordingly,
Equation 6 can be rewritten as

‖ŷ −Hs‖2 =

NT∑
i=1

‖ ŷi −
NT∑
j=1

rijsj ‖2 =

NT∑
i=1

‖ei(s
i)‖2 (7)

where ‖ei(s
i)‖2 corresponds to the partial squared euclidean

distance increment at the node i. In order to reduce the com-
putations, the SSFE algorithm reduces the enumeration of
S to a subset of ΩNT . This selective enumeration happens
when traversing the tree to the leaves. To enable the selec-
tive enumeration the partial squared euclidean distance is
rewritten as:

‖ei(s
i)‖2 =‖ ŷi−

NT∑
j=i+1

rijsj − riisi ‖2 =‖ ci− riisi ‖2 (8)

Clearly, the minimization of ‖ei(s
i)‖2 is equivalent to the

minimization of ‖ei(s
i)/rii‖2, hence

‖ei(s
i)/rii‖2 =‖ ci/rii − si ‖2 =‖ di − si ‖2 (9)
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Figure 3: SSFE data flow model and associated smooth clusters

The key element of the SSFE algorithm is the special slicer
operator, Q(di,mi), which generates a vector p with the mi

constellation symbols with the shortest euclidean distance
(as defined in Equation 9) to the demodulated symbol di.
SSFE is a distributed and greedy algorithm which splits the
minimization problem of Equation 5 into multiple NT sub-
sequent minimizations of Equation 9. Each subsequent min-
imization produces a vector z of NT constellation symbols.
Since more than one candidate can be generated at each
subsequent minimization, a total of t (t =

∏NT
i=1 mi) differ-

ent z vectors are produced. Thus, the SSFE algorithm in-
cludes a final sorting of the accumulative euclidean distance
(defined in Equation 7) of all the z vectors. The z vector
leading to the minimal accumulative distance corresponds
to the SSFE solution. Depending on the vector parameter
m (m = [m1,m2, ...,mNT ]), the SSFE algorithm can reach
any BER performance ranging from the V-BLAST to the
ML algorithm.

The SSFE algorithm includes many architecturally favorable
features such as deterministic and regular data-flow. This
has shown to lead to software and hardware based solutions
which consume considerably less area, energy and execution
time than other near-ML solutions for a similar BER perfor-
mance. However, the SSFE detector is still responsible for a
dominant share of the overall baseband complexity, specially
when high BER performance are targeted.

Figure 3.a shows the tree topology of a four antennas SSFE
with m = [1, 1, 2, 4] which results in 8 different z vectors.
Each circle represents computations performed in an arith-
metic cluster followed by a decision-making operator. The
un-smooth operator in these paths are QAM de-mappers or
decision operators. Figure 3 illustrates the data-flow of the
SSFE algorithm with four receiver antennas corresponding
to the processing in one path of the tree.

4.2 SSFE Clustering

Before evaluating the performance with our hybrid tech-
nique, the smooth operators are grouped together to form
clusters. The SSFE tree diagram shows many paths corre-
sponding to the various permutations of the signals. Each
path consists of NT +1 clusters (C1..CNT +1). The clustered
SSFE data flow graph is as shown in Figure 3.b for the case
of four antennas.

The computations performed at any given node is shared
across the paths diverging from the same and all the way to
the corresponding leaves in the tree. In the case depicted
in the Figure 3.a, only few of the clusters are simulated in
the proposed hybrid approach. While in a pure simulation
approach all the clusters would have to be simulated.

Let d = [d1, d2, ..., dNT ]T be the vector corresponding to
the output of the NT first clusters. The element di cor-
responding to the output of cluster i is equal to the ratio
between ci and rii where ci is the ith element of the vector
c = [c1, c2, ..., cNT ]T computed with the following expression

c = ŷ −Rts = QHy − (R− diag(R))s. (10)

The last cluster CNT +1 computes the accumulative euclidean
distance zj associated to the path j from the two vectors d
and s corresponding respectively to the output of the NT

first clusters and the demodulated symbols

zj =

NT∑
i=1

|rii.(di − si)|2 (11)

4.3 Analytical quantization noise model
The analytical model for the smooth clusters associated to
the SSFE algorithm is detailed in this section. The prop-
agation model presented in [7] for the case of quantization
noise matrix is used.

Let bŶ theNT -dimensional vector corresponding to the noise
associated with the input vector ŷ. Let BRt be the noise ma-
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trix associated with the matrices Rt defined in equation 11.
The expression of the NT -dimensional vector bc represent-
ing the quantization noise obtained after the computation
of the vector c is as follows

bc = bŶ −BRts + bgc (12)

where bgc is an NT -dimensional vector corresponding to
the noise generated during the computation of the vector
c. Given that this model is used only in the case without
decision error, no noise is associated to vector s correspond-
ing of the output of the QAM de-mappers.

The expression of the NT -dimensional vector bd represent-
ing the quantization noise located at the output of the NT -
first clusters is as follows

bd = Rd
−1 (bŶ −BRts + bgc

)
+ Rd

−2BRdRtS + bgd

(13)
where bgd is a NT -dimensional vector corresponding to the
noise generated during the division operation.

The expression of the quantization noise bzj located at the
output of the last cluster is as follows

bzj =

NT∑
i=1

2Re (bei)Re(di) + 2Im (bei) Im(di) + bgei (14)

where bge is a NT -dimensional vector corresponding to the
noise generated during the computation of last cluster CNT +1

and where be is a NT -dimensional vector corresponding to
the noise before the square modulus computation

bei = brii .(di − si) + rii.bdi (15)

To compute the power expression of the different noises, the
technique presented in [7] is used.

5. RESULTS
In any alternative approach to simulation, it has to be taken
care that the accuracy of the performance evaluation is not
seriously sacrificed. To show that the result of the hybrid
technique is close to the result obtained from pure simula-
tion, the experiments were conducted with both Pure sim-
ulation (denoted as FP in the Figure) and the proposed
Hybrid technique. During the fixed-point simulation, the
system was subjected to uniform precision quantization (i.e.
all signals have same precision). The results shown in the
BER curve in Figure 4 indicate that the quality of BER sim-
ulation obtained by the hybrid technique is very high and is
only about 10% off even at high channel SNRs. The quality
of evaluation is sufficient for the design of fixed-point sys-
tem. It also follows from the experiments that the number
of decision errors due to fixed-point effects measured with
simulation and estimated in the hybrid case are very close.
It is time consuming to perform pure simulation at low BER
conditions. As a proof of concept for the efficiency of the
proposed method, high BER (of the order of 10−2) which re-
quire relatively less number of samples are used. The trends
observed indicate the performance would only increase in
low BER conditions.

The time taken by pure simulation and the proposed hybrid
method is compared. The actual time for performing clus-
tering and arriving at the closed form expression for single

Figure 4: Quality of result obtained with simulation
Vs. hybrid technique

noise source models is a one time effort. Therefore, it is not
included in the time taken. The time taken to compute the
noise power in the single noise source model is seen to be very
small. With increasing number of input simulation points,
the time taken for performance evaluation grows linearly in
both cases according to Equations 1 and 2.

The improvement factor is dependent on the number of de-
cision errors and hence the amount of noise in the system.
Thus, the improvement factor in terms of performance eval-
uation time which is a function of the channel SNR and the
quantization noise is plotted on the Figure 5 for three differ-
ent configurations of the data word-length. It is seen that
the improvement increases with reduction in channel and
quantization noise. The increasing trend on the log scale as
seen in Figure 5 is an indicator of the improvement that can
be obtained for low BER simulations.

SNR m = [1, 2, 2, 4] m = [1, 1, 2, 4] m = [1, 1, 1, 4]

FP Hy IF FP Hy IF FP Hy IF

19 dB 128 110e-3 1.1e+3 113 72e-3 1.5e+3 98 54e-3 1.8e+3

21 dB 128 96e-3 1.3e+3 113 72e-3 1.5e+3 98 39.e-3 2.5e+3

23 dB 129 98e-3 1.3e+3 113 67e-3 1.6e+3 102 31e-3 3.2e+3

25 dB 128 97e-3 1.3e+3 113 67e-3 1.6e+3 98 32e-3 3.0e+3

Table 1: Comparative study of execution times for dif-

ferent SSFE configurations

With increasing channel SNR, the received symbol moves
closer to the transmitted symbol and the chances that the
quantization noise perturbation would cause a decision er-
ror decreases. Thus the Improvement Factor improves with
increasing channel SNR from one to several orders of mag-
nitude. When the quantization noise power decreases (with
increasing data word-lengths), the number of decision errors
in comparison to the floating-point simulation naturally de-
creases, leading to reduction in simulation effort and hence
improving the Improvement Factor. This can be seen across
all SSFE configurations in Table 1. The decision operators
used in the SSFE algorithm are used to generate proba-
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Figure 5: Improvement with hybrid technique in
comparison to pure simulation

ble symbol candidates depending upon the proximity of the
calculated signal with the constellation and are are further
tested upon down the path in the tree. In cases where there
are more than one probable symbols (for e.g. the 4th an-
tenna in m = [1, 1, 2, 4] case generates 4 symbols) a small
quantization noise perturbs the signal and totally different
constellations could be chosen. This is interesting in the
case of the proposed hybrid simulation because the choice of
probable symbols at the output of decision operator in the
hybrid technique can occur in a permuted fashion. Such per-
mutations when considered as decision errors lead to more
simulation leading to longer time for the hybrid approach.
Instead, a quick optimization can be performed to align such
permutations during hybrid simulation to match with the
order of the decision operator output obtained from infinite
precision simulation. This improves the result obtained fur-
ther as it now reduces the number of unwanted simulations.

These phenomena can play an important role while choos-
ing the algorithm for word-length optimization. An opti-
mization algorithm which attempts to reduce the number of
bits while starting with the maximum number of bits stands
to gain by this approach. In contrast, an algorithm which
starts with minimum number of bits and tries to improve
the performance by adding more bits to word-lengths suffer
from more decision errors due to high quantization noise.

6. CONCLUSION AND PROSPECTS
In this paper, the problem of performance estimation of
fixed-point systems in the presence of un-smooth operators is
considered. We propose to accelerate the process of simula-
tion by using analytical techniques that have been developed
for systems with smooth operators. This technique can be
considered a hybrid technique as it puts together the best
of both simulation and analytical techniques.

The principle idea behind this technique is to be able to
perform simulation selectively only when un-smooth errors
occur but use analytical simulation otherwise. The proposed
algorithm is shown to maintain sufficient accuracy while im-

proving the performance evaluation time. Three different
configurations of the chosen MIMO decoding algorithm were
explored to study the performance of the hybrid technique.
The experimental results show an improvement of orders of
magnitude in the time taken for completing the performance
evaluation process over pure simulation. The trends in im-
provement indicate exponential increase in the improvement
factor(IF) for low BER simulation.

The improved performance evaluation time by adopting the
proposed hybrid technique can either improve the optimiza-
tion time or allow the designer to expand the available design
space that can be explored during optimization.
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