
HAL Id: lirmm-02089733
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02089733

Submitted on 4 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deploying Smart Program Understanding on a Large
Code Base

Carlo Ieva, Arnaud Gotlieb, Souhila Kaci, Nadjib Lazaar

To cite this version:
Carlo Ieva, Arnaud Gotlieb, Souhila Kaci, Nadjib Lazaar. Deploying Smart Program Understanding
on a Large Code Base. AiTest: Artificial Intelligence Testing, Apr 2019, San Francisco, United States.
pp.73-80, �10.1109/AITest.2019.000-4�. �lirmm-02089733�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02089733
https://hal.archives-ouvertes.fr

Deploying Smart Program Understanding on a
Large Code Base

Carlo Ieva∗, Arnaud Gotlieb∗, Souhila Kaci† and Nadjib Lazaar†
∗Simula Research Laboratory, Oslo, Norway

Email: {carlo, arnaud}@simula.no
†LIRMM, University of Montpellier, Montpellier, France

Email: {kaci,lazaar}@lirmm.fr

Abstract—Program understanding aims at discovering human-
readable properties of a software project from the analysis
of its source code. Recently, we proposed a smart approach
based on hierarchical agglomerative clustering that extracts so-
called program topoi from source code. These topoi are high-
level observable properties of the project. Based on textual and
structural representations of the source code, our multi-steps
approach clusters program topoi in an effective and efficient
way. In this paper, we depict novel exploitation tasks of this
program understanding approach and report on its application
to Software Heritage. Software Heritage is an ambitious project
which aims at collecting and archiving the biggest corpus of
publicly available software source code. One of the project goals
is to provide a new scientific instrument for computer scientists
to evaluate advanced machine learning and software engineering
methods on a very large source code repository. Our in-depth
experiments reveal that unsupervised learning is the appropriate
tool to mine and understand the biggest corpus of software source
code ever produced.

I. INTRODUCTION

Program understanding aims at discovering human-readable
properties of a software project when only its source code is
available. Addressing this problem is crucial whenever projects
are developed by large communities of developers without any
centralized specification process. The open source software
community develops major software systems by regularly
integrating experimental development branches into the main
trunk and so, there is no central repository gathering all
the specifications. For instance, the Linux kernel amounts to
almost 20 MLOC (v4.12, July 2017) after more than 20 years
of development, but there is no central repository gathering all
its properties or specifications. Any new potential contributor
faces the problem of understanding part of the kernel and has
to imagine which property is best suited for validating it.

Recently, in [1], [2], we proposed a new program un-
derstanding approach called FEAT, which extracts so-called
program topoi from the source code of a software project.
These program topoi are high-level observable properties of
the project, and they results from applying a tuned hierarchical
agglomerative clustering process using social network analysis
metrics [3]. Based on textual and structural representations of
the source code, this multi-steps approach clusters program
topoi in an effective and efficient way. Finding a specific

This work is supported by the Certus SFI grant of the Research Council of
Norway

program topoi in a large source code repository is hard because
capturing the semantics of programs in the presence of tons
and tons of implementation details is like finding a needle in
a haystack. By leveraging an unsupervised machine learning
technique, namely clustering, FEAT automatically extracts
program topoi from source code by combining call graph ele-
ments and code and comments processing. More specifically,
the approach is based on hierarchical agglomerative clustering
because this technique allows its users to define well-tuned
distance metric between code units. This was crucial to extract
program topoi which capture by essence both structural and
semantic aspects.

In the present paper, we depict novel exploitation tasks
of the FEAT program understanding approach and report
on its application to Software Heritage. Started in 2016,
Software Heritage1 (SH) is an ambitious non-profit project
which aims at collecting and preserving for the very long term
the biggest corpus of source code ever produced on earth [4].
By December 2018, the archive has collected 5,4 billion source
code files extracted from 87,03 million software projects. Even
if the primary goal of the project is to collect and preserve the
source code, offering means to search and share the archive is
crucial to foster its larger adoption. However, as said above,
mining very large repositories of source code for program
understanding is challenging. It requires not only to parse
an enormous number of files, but also to construct artifacts
which would allow final users to understand the structure and
semantics of the source code. Searching a few keywords in
an indexed list of keywords is easy but understanding how
code units (e.g., C functions or Java methods) relate to each
other and cluster them to see how high-level code feature are
implemented is much more difficult. The paper reports on a
large-scale in-depth experiment performed on 431 software
projects extracted from SH, accounting for more than 25
MLOC. One goal was to study the impact of the various
internal steps of the FEAT approach on the CPU time. Another
goal was to find out correlations between the size of projects
and the CPU time and memory usage taken by the approach.
The overall results show that FEAT is an appropriate tool to
mine large code base repositories such as SH.

1www.softwareheritage.org

www.softwareheritage.org

There is more than a decade of intensive research to under-
stand how to mine source code for program comprehension
[5]–[11]. Our work inherits from results in feature location
[12] and feature extraction [13]. FEAT differs from most
of existing feature location/extraction works by its usage
of unsupervised machine learning together with a dedicated
hybrid distance which borrows ideas from social network
analysis and natural language processing. By applying FEAT
in Software Heritage, we provide a unique search capabil-
ity which can retrieve program topoi from archived source
code, but other more advanced use cases are forseen. Apart
from feature location and extraction, semantic classification
of software projects with summary generation, semantic clone
detection or else version differentiating can be envisioned
with FEAT. Through an in-depth experimental evaluation, this
paper explores the usage of FEAT on the Software Heritage
archive.

The rest of the paper includes Sec.II which gives crucial
background on clustering and our hybrid distance combining
structural and semantic analysis; Sec.III which presents novel
exploitation tasks of FEAT opening the door to new appli-
cations of the tool in the Software Heritage archive; Sec.IV
gives detailed experimental results obtained on 431 software
projects. Finally, Sec.V concludes the paper.

II. THE FEAT PROGRAM UNDERSTANDING APPROACH

This section recalls the necessary background to understand
the FEAT approach, which is an automatic approach devoted
to understanding source code of large open-source software
projects. An overview of FEAT is depicted in figure 1. The
approach includes three distinct steps, namely Preprocessing
(step 1 in the figure), Hybrid Clustering (step 2) and, Entry
point selection (setp 3) which are detailed in the rest of the
section.

A. Preprocessing - Step 1

FEAT takes as input the source code of a given soft-
ware project, possibly augmented with source-level comments.
From the source code and the comments, the correspond-
ing call graph CG is extracted as well as a set of unit-
documents D. For a software project, the call graph captures
the caller/callee relationship by considering one node per code
unit (i.e., function or method) and each arc associated to
the possible calls between these units. Note that a (single)
arc f −→ g is created in the graph as soon as there is
a call orginating from f to function g. The call graph CG
captures some abstraction of the structure of the project. A
unit-document for a selected code unit is a bag of words
extracted from the analysis of that code unit, augmented with
its code-level comments. After a stemming and cleaning phase,
only the relevant root-words are kept for a specific unit. This
allows us to capture some semantical part of the code. More
details on this preprocessing phase can be found in [2]. An
alternative could have been to use CODE2VEC [14] for this
task but we wanted to keep full control over the extracted

Source
Code

Preprocessing

Call graph

Text

Hybrid Clustering

Entry Point Selection

Clusters

FEAT

Topoi

1

2

3

Fig. 1. FEAT process’s overview

elements and also to evaluate the impact of source elements
and comments on the quality of extracted program topoi.

The result of this step is a pair (CG,D) which is used as
input for the next step.

B. Hybrid Clustering - step 2

From the call graph and the document-units, FEAT runs a
clustering step to compute a partition of the code units. The
underlying technique is based on Hierarchical Agglomerative
Clustering (HAC) [15], with dedicated notions of distances
between units and clusters.

Distance Definition. Let Ci and Cj be two code unit
clusters, the FEAT hybrid distance is a parametrized linear
combination of two distances, namely dCG, a metric defined
over the call graph and dD, a distance computed over the
extracted bag of words. Formally speaking,

dFEAT(Ci, Cj) = αdCG(Ci, Cj) + (1− α)dD(Ci, Cj) (1)

where α is a user-defined parameter which allows us to steer
the process towards one or the other direction. Both dCG and
dD are normalized to take their real value in [0, 1]. On the call
graph, the distance between two clusters Ci and Cj is reduced
to the distance between their respective medoids mi and mj ,
which are the units lying at the most central position w.r.t. all
units in a cluster [15]. dCG is thus defined on the length of

the shortest path that exists between the two medoids (noted
|mi → mj |):

dCG(Ci, Cj) =

0 |mi → mj | = 0

1−λ
1−λg

k−1∑
i=0

λi |mi → mj | = k

1 |mi → mj | =∞

(2)

where g represents the call graph diameter and λ > 1 a
constant which provides exponential growth of the distance.

Regarding the distance between document-units, we con-
sidered the angular distance between centroids of the clusters.
Documents-units lie in an Euclidean space, then we considered
the following formula for computing the centroid of a cluster
Ci is µi = d1+d2+···+dn

|Ci| and the dD distance:

dD(Ci, Cj) =
2

π
arccos

(
dµi
· dµj

‖dµi
‖‖dµj

‖

)
(3)

Note that dCG and dD are proper distances ensuring
symmetry, positiveness and triangular inequality properties.

Cutting Criterion. By considering a bottom-up HAC pro-
cess, we started with a partition where each cluster contains a
single unit and then, step after step, the process agglomerates
the various units in cluster. At each iteration, we merge
clusters by computing the dFEAT distance. The process can be
interrupted at any time and that is why, we had to propose a so-
called cutting-criterion, combining the structural and semantic
parts of the problem:

(i) Modularity [3]: One of the most effective approaches
for detecting clusters in graphs is based on the optimization
of a measure known as modularity, which comes from social
network analysis. Given a partition of vertices of a graph into
disjoint clusters, modularity reflects the concentration of edges
within clusters compared with random distribution of links
between all nodes regardless of clusters.

Formally speaking, the modularity of a given partition P is:

Q(P) =
1

2m

∑
i,j

(
Ai,j −

kikj
2m

)
δ(Ci, Cj) (4)

where A is the adjacency matrix of CG. That is, Aij = 1 if
there exists an edge between units ui and uj and Aij = 0
otherwise. ki (resp. kj) is the degree of unit ui (resp. uj),
Ci (resp. Cj) is the cluster containing ui (resp. uj), and m
is the total number of edges. Function δ is the Kronecker
delta: δ(Ci, Cj) = 1 iff Ci = Cj (units ui,uj are in the same
cluster), 0 otherwise. High values of modularity correspond to
interesting partitions of a call graph.

(ii) Coherence [16]: Coherence is a measure adopted in
natural language processing (NLP), used for assessing how
similar are the segments of a text. Coherence is based on
the measure of words overlapping. We consider all unit-
documents belonging to a cluster as sections of a whole text.
Developers, within the context of the functions participating
in the implementation of a system capability, use a consistent
language revealed through the choice of names for variables,

the text in comments, etc. So, while looking at clusters as
textual documents, we want to find the partition P showing
the highest coherence:

H(P) =
∑
∀C∈P

1− 2

|C|(|C| − 1)

|C|∑
k=1

|C|∑
j=k+1

dD(uk, uj)

(5)

In order to return a high-quality partition, we considered
a hybrid criterion to stop the clustering process based on a
combination of coherence and modularity. Knowing that Q ∈
[− 1

2 , 1] and H ∈ [0, |P|], we considered a linear combination
of modularity and coherence using α as follows:

TFEAT(P) = α
H(P)

|P|
+ (1− α)

2Q(P) + 1

3
(6)

FEAT uses the priority queue version of HAC having a
time complexity of Θ(n2 log(n)). The algorithm starts by
considering each unit as a cluster. It computes the pairwise
distances between clusters until either the entire partition is
reduced to a single cluster or the cutting criterion is reached
(i.e., TFEAT value cannot be improved). At the end, the
algorithm returns a partition P of m clusters. The overall
hybrid clustering process is detailed in [2]. The output of this
step is a set of clusters, each composed of several code units
and dictionary extracted from the source code analysis.

C. Entry Point Selection - Step 3

In this third step, the FEAT approach selects the entry-
points of each cluster Ci. An entry point is a code unit that
gives access to the implementation of an observable system
functionality. This notion is at the heart of program under-
standing in our approach. Examples of entry-point extracted
from famous software projects include menu-click handlers in
graphical user interfaces, public methods of APIs, etc.

By using Principal Component Analysis technique, a clas-
sical dimensionality reduction technique used in Machine
Learning, it is possible to rank each unit present in clusters.
The notion of entry-point is based on the two following
assumptions: (i) Unlike other units, entry points are more
likely to be the starting point of longer calling chains ; (ii)
Entry-point are unlikely present at the end of calling chains ;
Thus, given a code unit u, it is possible to characterize entry-
points by using the following vector:
vu = [deg−(u),deg+(u),RI(u),RO(u),SI(u),SO(u)]:
• deg−(u): number of incoming arcs of u;
• deg+(u): number of outgoing arcs of u;
• RI(u): number of paths ending in u;
• RO(u): number of paths starting from u;
• SI(u): Sum of the lengths of all paths to u;
• SO(u): Sum of the lengths of all paths having u as source.
Using this vector, computed for every unit in a clustered set
of units, it is then possible to rank all code units according
to their respective vu vectors. Ranking is performed using the
two following criteria for optimality: (1) Input-attributes are
subject of minimization; (2) Output-attributes are subject of
maximization. Thus, for each cluster, the entry-point selection

step allows us to extract program topoi which are ordered
subset of units (i.e., entry-point candidates) provided together
with a dictonary of words.

D. Implementation of the FEAT Approach

The FEAT approach was implemented and made accessible
through an interface shown in figure 2. The main application
that has been proposed so far is feature location. Feature
location aims at locating specific functions and their code
implementations in software projects [12]. This application is
usually considered as a difficult problem to handle as there is
usually no semantics associated with syntactic search engines.
Unlike these approaches, FEAT allows for searching using
semantics information as shown in figure 2. This example
illustrates the benefits of searching a large code repository
to find meaningful infomations related to a specific topic.
Let us propose to search implementations of how to print
postscript documents. In the main window (noted 1 in the
figure), FEAT is used as a search engine with keywords
+print, +postscript, -pdf. From there, all software
projects having program topoi related to print documents in
postscript and not as pdf in their implementation dictionary
(2 in the figure) are returned. Selecting one topoi allows us
to visualize the subgraph of the call graph associated to that
topoi (3).

III. FEAT IN SOFTWARE HERITAGE

The deployment of FEAT in Software Heritage (SH) has
started with the initial application in mind, namely feature
location. However, other exploitation tasks for FEAT were
envisionned. This section presents these exploitation tasks and
advocates for the larger adoption of FEAT in the context of
SH.

A. Feature Location in SH

By querying the SH archive with feature-related keywords
using a domain-specific language (e.g., SQL), FEAT can
find program topoi which implement these features. Since the
current granularity of access to SH is limited to files, the tool
returns file names which contains units participating to the
extracted program topoi. Once these files are found, visualiz-
ing the program topoi (both its index and the subgraph of the
call graph) allows the final users to retrieve the implemented
features corresponding to the submitted keywords. Figure 2
illustrates this use case of FEAT in the context of SH.

This use case of FEAT in SH is a first step in providing
an advanced semantic search capability over this very large
repository of source code.

B. Automatic Feature Extraction

In Software Engineering, software repository mining is
considered mainstream in feature extraction [12], [17], [18].
Knowing that the source code of a given project has been
archived in SH, FEAT could be used to extract automatically
all the program topoi related to the project. Doing so, it could
extract high-level user-observable capabilities of a software

project. Unlike techniques which mine software documenta-
tions such as [8] or more recently [13], mining the source
code possibly augmented with low-level comments present the
advantage to extract actual features. The closest approaches to
FEAT include [7] which exploits latent Dirichlet allocation
to discover the most important code-units under the form of
topics, [9] which is a source-code recommendation system
based on variability models, [6] which uses clustering and
Latent Semantic Indexing to assess the similarity between
source-code artefacts and create clusters according to their
similarity, [5] which exploits a sequential combination of
information retrieval technologies and call graph analysis of
the program. By defining its own distance notion which
hybridizes structural and semantic elements, FEAT clusters
source code units in a meaningful way. Unlike the above
mentioned approaches, FEAT extracts program topoi which
contain structural elements related to the call graph of the
application and semantic elements coming from the extracted
indexes from each source code units. Additionally, by using
a parametrized linear combination of distances, FEAT can
tune its usage of structure or semantics for each project.
Note however that exploiting program topoi requires a deep
understanding of the mechanisms which have been used to
produce them. So, we believe that further experiments are
needed to evaluate the ergonomy of the tool for feature
extraction.

C. Project Versions Difference Analysis

By extracting program topoi from two successive versions
of the same application, FEAT could be useful to automat-
ically understand and document code changes. A newly dis-
covered topoi would correspond to a new implemented feature
(a.k.a., evolutive maintenance) while no difference between
topoi would reveal that only corrections have been deployed in
the new version (a.k.a., corrective maintenance). Providing a
tool in SH which can help engineers to maintain the code from
one version to another would be helpful especially when code
changes span over all the source code. Traditional approaches
for this problem tend to focus on syntactic changes only
(i.e., paths) while FEAT can perform semantic differentiation
between versions.

D. Semantic Clone Detection

Maintaining a repository of all source code produced on
earth opens the door to the automatic control of plagiarism in
source code production or source code patenting. In principle,
any Company having performed an official deposit to SH
would be in position to control that no other third-party has
copied illegally the source code to include it elsewhere. Even
this perspective of SH is appealing, it entails the ability to
parse SH for semantic clone detection in addition to syntactic
checking. By extracting program topoi, a tool like FEAT could
check whether the same topoi are present twice or more in the
archive and thus detect automatically illegal clones.

1

2

3

Fig. 2. Feature Location with FEAT in Software Heritage

E. Summary Generation and classification of Program Topoi

By generating natural language summaries of source-code
artifacts (classes and code change sets), FEAT could be used
in SH to generate automatically faithful summaries of archived
projects. By classifying software projects through their imple-
mented program topoi, summaries could be generated for each
given class of project. Hence, the final users of SH would
have access to a comprehensive text which describe each of
the archived project. This summary generation feature of SH
could help computer scientists to dig into SH in a meaningful
and comprehensive way when they search for specific projects.

F. Mining Software Test Scripts

Software test scripts are formed of source code which
calls the system-under-test in order to check it. These scripts
contain hidden informations which cannot easily be revealed
without a deep analysis of the testing process. For instance,
dependencies between test scripts and individual test cases
is usually not documented, as well as the inter-dependencies
between test cases. We envision that FEAT could play a
crucial role in automatically discovering these links by parsing
the test script source code. In fact, extracted program topoi
could gather test cases in a meaningful way and classify
them by degree of importance. Playing with the parametrized
approach of FEAT (with α), the role of semantics vs structure
of test script could be explored in depth and could reveal the
hidden structure of the test process. Additionaly, by clustering
test cases, FEAT could optimize the test execution process
by running only one test case per cluster. This would allow a
better handling of redundancy among test cases, especially

when similar user requirements are tested by distinct test
cases.

IV. EXPERIMENTAL EVALUATION ON SH

This section presents our experimental evaluation on the
performance of FEAT over a large selection of SH software
projects.

The FEAT approach has been implemented on top of the
software testing platform called CRYSTAL, which is based
on OSGi (Open Services Gateway initiative) and BPMN
(Business Process Modeling Notation). The experiments are
carried out on an 8 CPU (Intel Xeon E5-2686 2.3 GHz), 61
GB RAM and 32 GB SSD hard disk.

We processed 431 projects downloaded from SH with
FEAT. Projects were selected based on their diversity and
difference. The goal of the experiments was to explore the scal-
ability of the FEAT implementation. The selected projects are
extracted from various application domains, written in the C
programming language. The project size (compressed) ranges
in between 150 Bytes and 50 MBytes. The SH repository is
organized as a Merkle tree and the projects, which are nodes in
this tree, are identified through their SHA1 code [4]. The 431
extracted projects amounts for 48, 187 files, 428, 480 units, a
dictionary of 543, 564 words and more than 25 million lines
of code (MLOC).

Table I reports statistics on the selected SH projects in
terms of LOC, units, dictionary size and call graph density.
For each characteristic, we report the min/max values, the
average (AVG) value and the standard deviation (SD).

MIN MAX AVR SD
LOC 37 1, 611, 756 49, 680 99, 166
Units 3 3, 964 844 886

Dictionary 4 5, 980 1, 261 1, 053
CG Density 10−4 0.7 0.02 0.06

TABLE I
MAIN CHARACTERISTICS OF A SELECTION OF PROJECTS EXTRACTED

FROM SOFTWARE HERITAGE

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 0.0001 0.001 0.01 0.1 1

L
O

C

CG density

- λ log(x)/x

Fig. 3. Exploring the correlation between the density of call graphs w.r.t. the
number of lines of code (LOC).

The first question we wanted to address is related to the
potential correlation between project size and the complexity
of project structure. For that, figure 3 depicts the density of the
call graph of the selected SH projects according to their size
in terms of LOC. Interestingly, over the 431 selected software
projects, there is a negative correlation between LOC and call
graph density as shown in the figure. The density follows a
negative (log(x)x) scale when LOC grows. For our experiments,
we denote 17 projects with a call graph density exceeding 0.1
and reaching 0.7. 127 projects have a density ranged between
0.1 and 0.01. The remaining 287 projects are very sparse
with LOC exceeding 10K. So, as a first finding, adding new
code units increases mechanically the project size, but we can
expect that it will also decrease the density of the call graph.

The purpose of our second experimental analysis was to
examine the impact of LOC / #Units over the CPU time
required to run FEAT.

Let us start with the relation between LOC and #Units.
Figure 4.(a) reports a perfect positive correlation between the
number of units and LOC. The number of units follows a
linear scale when LOC increases. Therefore, the number of
units and LOC of a project will always have the same impact
on the performance of FEAT.

Now, let us take a close look at the impact of #Units on
CPU time. From figure 4.(b), we observe that FEAT is able
to deal with 4K units in less than 20 minutes. For projects
of up to 1K units, FEAT extracts program topoi in less than
10 seconds and needs less than 2 minutes on projects of up
to 2.5K units. Here, the correlation between #Units and CPU
time is near-perfect positive. When the number of units grows,
the CPU time follows a n2log(n) scale. This is especially true

 0.1

 1

 10

 100

 1000

 10000

 100000

 10 100 1000 10000 100000 1x10
6

 1x10
7

#
U

n
it
s

LOC

λ x

(a)

 0.1

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
(s

)

#Units

λ n
2
log(n)

(b)
Fig. 4. Exploring the CPU time taken by FEAT w.r.t. the number of lines
of code (a) and the number of units (b).

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

E
n
tr

y
 p

o
in

ts
 s

te
p
 (

s
)

Clustering (s)

Fig. 5. Exploring the correlation between the clustering step of FEAT and
the entry-point selection step in terms of CPU time.

when the hybrid clustering step of FEAT dominates the whole
process of topoi extraction. That is, the hybrid clustering of
FEAT has a complexity of Θ(n2log(n)) where n refers to
the number of units. To strengthen our previous conclusion,
we report in figure 5 the CPU time taken by steps 2 and 3
of the FEAT approach, namely hybrid clustering and entry-
point selection. Here, the clustering step clearly dominates the
entry point selection step. For instance, if we take Pi a project

 1

 10

 100

 1000

 10000

 0 1000 2000 3000 4000 5000 6000

C
lu

s
te

ri
n
g
 s

te
p
(s

)

Dictionary size

(a)

 1

 10

 100

 1000

 0 1000 2000 3000 4000 5000 6000

E
n
tr

y
 p

o
in

t
s
te

p
(s

)

Dictionary size

(b)

 0.0001

 0.001

 0.01

 0.1

 1

 0 1000 2000 3000 4000 5000 6000

C
a
ll

G
ra

p
h
 D

e
n
s
it
y

Dictionary size

(c)
Fig. 6. Exploring the impact of the dictionary size on the CPU time taken
by the hybrid clustering step of FEAT (a), the entry-point selection step (b)
and the call graph density (c).

of more than 1 MLOC and 3, 909 units, FEAT extracts 120
topoi with 18 minutes of clustering and only 47 seconds of
entry-point selection.

As the size of the dictionary plays a role in both steps, we
also report in figure 6 on its impact over the FEAT approach.
The main observation is that the impact of the dictionary is
exactly the same on both steps. The CPU time can increase by
increasing the size of the dictionary. The observed variability

 100

 1000

 0 50 100 150 200 250 300 350 400 450

2000

M
e
m

o
ry

(M
b
)

#Projects

Fig. 7. Exploring the memory size taken by the FEAT approach w.r.t. the
size of software projects extracted from Software Heritage.

can be explained by the variability found in the density of the
call graphs (see figure 6.(3))

Our last experiment is on the memory usage of FEAT.
Figure 7 reports the memory in Mb used to extract topoi from
the 431 SH projects. The memory usage of FEAT seems to
be quite acceptable, as long as no FEAT call consumes more
than 2Gb.

In conclusion, FEAT shows acceptable performance with
projects counting up to 4K units and dictionaries with size
up to 6K words producing results in about 20 minutes and
using less than 2Gb of memory. Interestingly, the results
are consistent over multiple application domains and does
not really suffer from other parameters than the number of
units (or LOC as both are perfectly correlated) and size of
dictionaries.

V. CONCLUSIONS

Searching very large repositories of source code for program
understanding is challenging not only because of the volume
of projects and files to examine, but also because it requires to
perform both structural and semantic analysis in association.
By leveraging an unsupervised machine learning technique
such as hierarchical agglomerative clustering, the FEAT ap-
proach is able to process software projects in a meaningful
way to extract automatically what we have called program
topoi. These topoi can be seen as high-level user-observable
program features which are materialized by an ordered list
of functions together with an index of keywords. Even if a
longer period of usage is required to confirm the importance
of our approach in Software Heritage, we can already draw
some interesting perspectives. As discussed earlier, it opens
the door to ambitious applications and use cases such as
the semantic classification of all project source code or the
automatic detection of semantic clones at a very large scale,
but also the mining of test scripts to find hidden links between
test cases. Even if several improvements are necessary, the
availability of semantic search in Software Heritage offers
Software Engineering researchers a new scientific instrument

to explore the vast variety of source codes produced in many
different software projects.

REFERENCES

[1] C. Ieva, A. Gotlieb, S. Kaci, and N. Lazaar, “Discovering program topoi
through clustering,” in Proceedings of the Thirty-Second IAAI Confer-
ence on Innovative Applications of Artificial Intelligence, February 2-7,
2018, New Orleans, Louisiana, USA. AAAI Press, 2018.

[2] ——, “Discovering program topoi via hierarchical agglomerative clus-
tering,” IEEE Transactions on Reliability, vol. 67, no. 3, pp. 758–770,
2018.

[3] C. Aaron, M. Newman, and C. Moore, “Finding community structure
in very large networks,” Physical Reviews E., vol. 70, 2004.

[4] R. Di Cosmo and S. Zacchiroli, “Software heritage: Why and how
to preserve software source code,” in Proc. of the 14th International
Conference on Digital Preservation (iPRES’17), 2017.

[5] W. Zhao, L. Zhang, Y. Liu, J. Sun, and F. Yang, “SNIAFL: towards
a static non-interactive approach to feature location,” in Proc. of the
26th International Conference on Software Engineering (ICSE’04), 23-
28 May 2004, Edinburgh, United Kingdom, 2004, pp. 293–303.

[6] A. Kuhn, S. Ducasse, and T. Gı̂rba, “Semantic clustering: Identifying
topics in source code,” Information and Software Technology, vol. 49,
no. 3, pp. 230–243, 2007.

[7] E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi, “Mining
concepts from code with probabilistic topic models,” in Proc. of the
IEEE Automated Software Engineering Conference (ASE’07), Apr. 2007,
p. 461.

[8] H. Dumitru, M. Gibiec, N. Hariri, J. Cleland-Huang, B. Mobasher,
C. Castro-Herrera, and M. Mirakhorli, “On-demand feature recommen-
dations derived from mining public product descriptions,” in Proc. of
the IEEE International Conference in Software Engineering (ICSE’11),
2011, pp. 181–190.

[9] C. McMillan, N. Hariri, D. Poshyvanyk, and J. Cleland-Huang, “Recom-
mending Source Code for Use in Rapid Software Prototypes,” in Proc. of
the IEEE International Conference in Software Engineering (ICSE’12),
2012, pp. 848–858.

[10] S. Grant, J. R. Cordy, and D. B. Skillicorn, “Using heuristics to estimate
an appropriate number of latent topics in source code analysis,” Science
of Computer Programming, vol. 78, no. 9, pp. 1663–1678, 2013.

[11] S. L. Abebe and P. Tonella, “Extraction of domain concepts from the
source code,” Science of Computer Programming, vol. 98, pp. 680–706,
2015. [Online]. Available: https://doi.org/10.1016/j.scico.2014.09.012

[12] J. Rubin and M. Chechik, “A survey of feature location techniques,”
Domain Engineering, pp. 29–58, 2013.

[13] P. W. McBurney, C. Liu, and C. McMillan, “Automated feature discovery
via sentence selection and source code summarization,” Journal of
Software Evolution and Process, vol. 28, no. 2, pp. 120–145, Feb. 2016.

[14] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning
distributed representations of code,” CoRR, vol. abs/1803.09473, 2018.
[Online]. Available: http://arxiv.org/abs/1803.09473

[15] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Intro-
duction to Cluster Analysis. John Wiley, 1990.

[16] P. W. Foltz, W. Kintsch, and T. K. Landauer, “The Measurement of Tex-
tual Coherence with Latent Semantic Analysis,” Discourse Processes,
vol. 25, no. 2-3, pp. 285–307, 1998.

[17] K. Chen and V. Rajlich, “Case study of feature location using depen-
dence graph,” in Proc. of the 8th International Workshop in Program
Comprehension (IWPC’00), 2000, pp. 241–247.

[18] A. Marcus and S. Haiduc, Text Retrieval Approaches for Concept Loca-
tion in Source Code. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 126–158.

https://doi.org/10.1016/j.scico.2014.09.012
http://arxiv.org/abs/1803.09473

	Introduction
	The FEAT Program Understanding Approach
	Preprocessing - Step 1
	Hybrid Clustering - step 2
	Entry Point Selection - Step 3
	Implementation of the FEAT Approach

	FEAT in Software Heritage
	Feature Location in SH
	Automatic Feature Extraction
	Project Versions Difference Analysis
	Semantic Clone Detection
	Summary Generation and classification of Program Topoi
	Mining Software Test Scripts

	Experimental Evaluation on SH
	Conclusions
	References

