
HAL Id: lirmm-02089742
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02089742

Submitted on 4 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stress Testing of Single-Arm Robots Through
Constraint-Based Generation of Continuous Trajectories

Mathieu Collet, Arnaud Gotlieb, Nadjib Lazaar, Morten Mossige

To cite this version:
Mathieu Collet, Arnaud Gotlieb, Nadjib Lazaar, Morten Mossige. Stress Testing of Single-Arm Robots
Through Constraint-Based Generation of Continuous Trajectories. AITest 2019 - 1st IEEE Interna-
tional Conference on Artificial Intelligence Testing, Apr 2019, San francisco, United States. pp.121-
128, �10.1109/AITest.2019.00014�. �lirmm-02089742�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02089742
https://hal.archives-ouvertes.fr

Stress Testing of Single-Arm Robots Through
Constraint-Based Generation of Continuous

Trajectories
Mathieu Collet∗, Arnaud Gotlieb∗, Nadjib Lazaar† and Morten Mossige ‡

∗Simula Research Laboratory, Oslo, Norway
Email: {mathieu, arnaud}@simula.no

†LIRMM, University of Montpellier, CNRS, Montpellier, France
Email: lazaar@lirmm.fr

‡ABB Robotics, Bryne, Norway
Email: morten.mossige@no.abb.com

Abstract—System Testing of Single-Arm Robots (SAR) is
challenging as typical SAR involve multiple coordinated software-
controlled subsystems, such as motion and action control, per-
ception and anti-collision systems. Developing convincing test
scenarios which place the SAR into highly CPU-demanding
cases is complicated due to the huge number of possible robots’
workspace configurations. In this paper, we introduces RobTest, a
tool-supported method for stress testing of SAR, which generates
automatically optimal collision-free trajectories. Initially specified
by a cloud of points and a set of obstacles, these trajectories
are piecewise linear paths in a cost-labelled oriented graph. By
using advanced Constraint Programming (CP) techniques, such
as constraint refutation over continuous domains and constraint
optimization over graphs, RobTest can generate continuous
trajectories which 1) avoid physical obstacles and 2) maximize the
load of the various CPUs of the SAR. These trajectories result
into automatically robot computer programs which place the
SAR into high-demanding test scenarios. Our initial experimental
evaluation of RobTest shows promising results.

I. INTRODUCTION

Single-Arm industrial Robots (SAR) are complex cyber-
physical systems which need to be thoroughly tested before be-
ing deployed. System testing of SAR involve various processes
and among them, checking if specified trajectories are actually
followed up by the robot is a crucial challenge. Discrepancies
between the specified path and the actual path may occur for
several reasons due to either mechatronic engineering prob-
lems, or robot fatigue or control software issues. Revealing
such discrepancies earlier in the test process is crucial to 1)
reduce the maintenance costs, as discovering a bug on already
deployed robots entail expensive robot repair costs at customer
site, 2) to reveal any changes in the implementation that can
lead to critical issues for the customer.

Formally speaking, given an initial cloud of points in a 3D-
space, that can be hitted by the robot operating nose, the test
objective (T Obj) consists in finding collision-free and loop-
free trajectories between these points which 1) avoid all the
possible obstacles of the robot workspace and 2) maximize the
CPU load of the robot. When found, these trajectories can be
converted into computer programs for the robot and used as

test scenarios. Maximizing the CPU load is crucial to select
error-prone test scenarios positionning the SAR into stressing
conditions.

Solving this challenging problem (T Obj) is part of the
general area of robot motion planning [1], but it must be
distinguished from the optimal planning of robot trajectories
problem [2], where the goal is to generate collision-free
trajectories which minimize the time for the SAR to perform
its task. Unlike T Obj , this problem entails solving complex
equations over the reals related to the kinematics of the
robot. In industrial settings, T Obj is currently tackled by test
engineers without any automated support. Thus, only clouds
with a small number of points are considered (typically 4-5
points) and only a few trajectories are considered (typically
a single trajectory). Nevertheless, some research results have
been reached to deal with related problems. One of the first
proposed method in the context of trajectory generation has
considered robot’s workspace discretization [3]. The idea is
to divide the workspace into equivalent subboxes and discard
boxes which contain obstacles. Then, by using an exploration
mechanism which looks for neighbour boxes and advanced
results of Interval Analysis, the method generates a continuous
trajectory. The method produces trajectories with guaranteed
computations over the reals [4], [5] which is an important and
difficult problem. In our work, we also considered equations
and inequations over the reals but we do not claim any guaran-
tee on the absence of rounding errors. With the discretization
of the robot workspace, it is possible to generate collision-
free trajectories but generating cost-optimal trajectories still
require deeper exploration. In our work we focussed on the
optimization problem. Another method considers the so-called
joint space to model robot trajectories [6], [7]. The joint space
includes all the robot’skinematics and can determine precisely
the position reached by the robots. This is interesting for
determining the so-called singularity problems and provide
alternatives to avoid them [8]. However, the computational
time required by these methods is usually prohibitive for in-
clusion into a continuous integration process. Another method

considers planning and re-evaluation of trajectories. The goal
is to plan different trajectories in advance and re-plan the
current trajectory when a specific unwanted configuration is
reached [9]. This method is original as it considers dynamic
trajectory generation but it cannot be considered for testing
purposes as it dynamically re-assign tasks to the robot.

In this paper, we introduce RobTest, a tool-supported
method for stress testing of SAR, which generates automati-
cally collision-free and loop-free cost-maximized trajectories.
These trajectories are generated with advanced Constraint Pro-
gramming (CP) techniques such as constraint refutation over
continuous domains and constraint optimization over graphs.
Constraint refutation allows RobTest to determine which pair
of points is reachable or not, while constraint optimization over
graphs allows effective search-space prunings of search tree.
This latter process enables the maximization of a cost function
which captures the notion of CPU load. RobTest can generate
loop-free trajectories which 1) avoid physical obstacles and
2) maximize the load of the various CPUs of the SAR. This
paper reports on an experimental evaluation of RobTest over
initial cloud of points containing up to 19 points. Our initial
experimental evaluation of RobTest shows promising results.

The rest of the paper is organized as follows. Sec. 2 presents
the general background of the approach with its notations and
the formalization of the problem. Sec. 3 details RobTest with
its main components and the usage of advanced Constraint
Programming methods. Sec. 4 presents our experimental
evaluation and examines in depth 3 research questions. Finally,
Sec. 5 concludes the paper and draws a couple of perspectives.

II. BACKGROUND

Stress testing the motion control of a given SAR requires
to define test scenario where the robot performs a succession
of motions at various speeds and measuring the value of some
metrics. The starting point of the process is given by the tester
under the form of a cloud of points in a 3D-space. In the rest of
the section, we describe first the robot working space, using
2D-projections for the sake of simplicity. Then, we explain
the possible robot motions and how they are usually encoded.
The concept of trajectories is then presented and the section
is ended by a brief description of the current stress testing
process.

A. Notations
Given a SAR and its configuration space Q, which is the set

of its possible configurations, the workspace W is a subset of
R3 where the robot can move and which can contain obstacles
Oi. A(q) denotes the subset of W , which is occupied by the
SAR when it is in configuration q. The subset of collision-
free configurations is defined as Qfree := Q \ {q ∈ Q :
A(q)∩Oi 6= ∅,∀i}, while the subset of the workspace which
is accessible by the SAR is Wfree := {A(q) : q ∈ Qfree}.

B. Robot Workspace
A typical SAR includes a complex motion control system

with several Degrees Of Freedom (DOF). Fig.1 shows a SAR

with six different axis, called a 6-DOF robot. Modelling ex-

Fig. 1. Degrees of Freedom of A Single-Arm Industrial Robot

actly the 3D-space reacheable by the SAR is almost impossible
as it requires to analyze all the kinematics of the 6-DOF robot
[10]. A well-known method to address this issue consists in
simplifying the configuration space by over-approximating the
shape of the robot and the various obstacles [1].

There are two distinct models for representing robot con-
figurations, namely the joint space configuration which uses
all the kinematics of 6-DOF robot and the Cartesian space
configuration which represents the possible configurations of
the robot in a 3D Cartesian space [1]. Typical SAR includes
three distinct moves: linear motion (moveL), in which the
robot moves from one point to another using a straightline
move; circular motion (moveC) where a circular arc is used to
move from one point to another, and non-linear joint motion
(moveJ) where all axis of the robot move in the joint space
to reach a point. In this paper, we restrict ourselves to linear
motions in the Cartesian space only, as handling circular and
non-linear joint motions requires to develop a complete model
in the robot joint space. Developing such a model would be
interesting but we consider it as outside of the scope of this
paper.

SARx

x

x

x

x

x

Obstacle

qs: Initial
configuration

1

2

3

4

5

6

Unreachable zone

10

20
10

5
5

5
50

15

Traj1: 1-2-3-4-5-6
Cost: 10+20+10+5+5 = 50

Traj2: 1-2-6
Cost: 10+50 = 60

Traj3: 1-2-5-4-6
Cost: 10+15+5+5 = 35

Traj4: 1-2-5-6
Cost: 10+15+5 = 30

…
…

…

Working zone (W)

qf: Initial
configuration

Fig. 2. 2D-Projection of the Robot Workspace

MODULE t r a j e c t o r i e s t e s t
! r o b t a r g e t s t a r t h e r e
VAR r o b t a r g e t p10 : = [[−300 ,−100 , 3 0 0] , . . .
VAR r o b t a r g e t p20 : = [[−200 , 4 3 8 , 3 0 0] , . . .
VAR r o b t a r g e t p30 : = [[5 0 ,−386 , 2 0 0] , . . .
VAR r o b t a r g e t p40 : = [[−75 ,−410 , 2 7 6] , . . .
VAR r o b t a r g e t p50 : = [[1 8 6 , 1 5 1 , 1 5 0] , . . .
VAR r o b t a r g e t p60 : = [[2 4 4 ,−69 , 9 8] , . . .

PROC main ()
ConfL\Off ;
! E n t e r move−i n s t r u c t i o n s h e r e
MoveL p 1 0 , v1000 , f i n e , t o o l 0 ;
MoveL p 2 0 , v500 , f i n e , t o o l 0 ;
MoveL p 6 0 , v500 , f i n e , t o o l 0 ;

ENDPROC
ENDMODULE

Fig. 3. RAPID code corresponding to Traj2.

C. Problem Formalization

The problem addressed in this paper can be formalized as
such: Given a configuration space Q, an initial (resp. final)
configuration qs ∈ Q (resp. qf), a cost-function c : Q×Q −→
R which associates a cost value to each possible transition, the
problem aims at finding a path p that connects qs to qf that
1) avoids to collide any obstacle and 2) maximizes the cost of
the overall path.

From the above formulation, it is important to stress the
following: Moving from qs to qf is a continuous function
which involves continuous moves of the SAR w.r.t. time. As
we are interested in generating test scenarios we decide to
discretize the configuration space by considering only a finite
subset of configurations. For that, we considered an initial
cloud of points in the robot workspace and considered only
the SAR configurations related to these points of the Cartesian
space.

The cost function c encompasses several elements that need
to be presented. As the overall goal is to generate test scenarios
which place the SAR into stressing conditions, c is associated
to the complexity of SAR moves. It abstracts robot’s speed and
acceleration, distance between points, types of move, CPU-
load of the moves, etc. In this paper, c is a given parameter
which, for each pair of configurations, gives an abstract value
depending of all these ingredients. The cost of the path is
simply the sum of the cost of each individual transition. Note
that obtaining these values requires many measurements and
trials in simulation, but presenting these measurements in
depth was considered to be outside the scope of this paper.

Fig.2 shows an example of the configuration space with a
cloud of 6 points and the cost of four distinct paths (Traj1 to
Traj4).

The programming language used to pilot the SAR is called
RAPID and contains instructions to move the SAR from point
to point. The language itself is very simple; Fig.3 shows an
example of RAPID code, corresponding to Traj2 given in Fig.2.

From the initial cloud of points, to obtain a trajectory
that avoids all the obstacles and runs through the available
workspace, the method works into two steps. The first step
examines all pairwise combination of points and consider

intrinsic cost associated to each arc. From this step, a cost-
labeled oriented graph is produced where only reachable points
are indicated. The second step aims at exploring all the
possible trajectories and selects one which has the maximal
cost. The next section explains in depth the principle of this
two-step method. B

III. OPTIMAL CONSTRAINT-BASED GENERATION OF
CONTINUOUS TRAJECTORIES

Our approach called RobTest aims at testing of SAR by
using Constraint Programming (CP) methods and tools [11].
Two advanced CP methods, namely constraint refutation over
continuous domain and constraint optimization over graphs,
are used in RobTest to deal with the modelling of the robot’s
workspace and the cost maximization problem. As a result,
RobTest includes two components named Continuous Con-
straint Based Generation (CCBG) and Trajectories Constraint
Optimization (TCO) which implements these methods. The
CCBG component creates an oriented graph by determining
which pair of points is reachable and which one is not
while the TCO component looks for cost-optimal loop-free
trajectories in this oriented graph. RobTest is a fully auto-
mated approach for supporting software engineers in their
test scenarios writing tasks. A general overview of RobTest
is given in Fig.4. While the current existing process consists
in writing RAPID test code, the newly introduced approach
RobTest supports automated generation of test scenarios where
trajectories with optimal cost are generated. The parameters
that need to be set up for the test engineer are limited to
a minimal cost value Cmax to avoid searching for useless
trajectories, a maximal number of iterations over each node
Np and a time contract for the trajectory generation Nl. The
generated scenarios can be deployed and executed using a
complete test execution chain, on simulators, also called virtual
controllers, or on real SAR as shown in Fig.4.

In the rest of the section, we present CCBG which exploits a
continuous-domains constraint solver and TCO which extracts
a trajectory with maximum cost. The section is ended by a
brief presentation of some generated loop-free trajectories and
how they are exploited to generate SAR test cases.

A. Continuous Constraint Based Generation (CCBG)

CCBG addresses a reachability problem for each pair of
points given in the initial cloud. It also calculates the cost
c associated to each pair of points. The output of CCBG is
a cost-labelled oriented graph where there is an arc between
two points if their corresponding cost is finite (as opposed to
infinite cost for non-reachable pair of points).

The implementation of CCBG is based on a continuous-
domain constraint solver, which is a well-studied subtopic of
CP [11]. In such a solver, any variable takes its values in
a continuous domain with floating-point boundaries. As the
geometry of the distinct zones and moves of the robot is
composed of non-linear equations and inequations, we selected
continuous domains constraint solving to address the problem.
For the implementation, we selected RealPaver [12] among

Fig. 4. A general overview of the RobTest approach

other available solvers such as Ibex [13] or Numerica [14]
[15]. We chose this solver because it can provide both under-
and over- approximation of the solution set and also because
of its availability and usage simplicity.

Based on the model of the workspace W , a pair of points
can be shown reachable by the robot if a corresponding
constraint system is shown unsatisfiable. Constraint solving
over continuous domains works by successively pruning the
domains of each variable by using each constraint as a filter.
By decomposing constraints into individual projectors and
iterating the application of these projectors over the domains
by using a specific filtering consistency, the constraint solver
is able to reach a fix point where no more pruning can be
performed. The termination of the algorithm is guaranteed by
the usage of abstract numerical values which are computed
over floating-point values. As the number of floating-point
values is finite (if standard fixed-size representation is used
over 32, 64 or 128 bits), and as only domain shrinking is
possible, the algorithm necessarily terminates on fixpoint.

We modeled the reachability problem into a 3D-cartesian
space. Equations and inequations are used to over-approximate
W . With this model, it becomes possible to check the non-
existence of intersection between the straight line passing by
the pair of points and any unreachable zone corresponding
to the various obstacles and robot. If the solver proves the
absence of solutions (i.e., by showing unsatifiability), then
it means that the pair of point is reachable, as there is no
intersection between the robot’s movement and any of the
obstacles. Once the absence of solution is proved, the cost
between the pair of nodes is calculated and added as a label
on the corresponding arc of the graph. If the solver returns an
under-approximation of the solution set (with a guarantee of
the existence of at least one solution [12]), it means that there
exists an intersection between the line and a forbidden zone,

and thus the points are unreachable.
Extending this computation to other possible robot’s move-

ments is possible but requires more in-depth examination. In
fact, extending the model to moveC (circle-arc between three
points) requires to solve a variation problem when only two
points are initially given. We need to generalize the previous
principle for all possible triples where only two points are
known. This is an interesting problem but we considered it as
being outside of the scope of this paper.

In order to obtain the cost-labelled oriented graph, CCBG
executes several requests over the RealPaver model of the
workspace W . The first request ensures that a straightline
passing by each pair of points is included into the sphere which
delimits W (in blue on Fig.5). The second request ensures
that the unreachable zone (in red in Fig.5) is not crossed by
this straightline. If some obstacles are present into W , each
obstacle will be checked with a specific query. It is worth
noticing that the time-complexity of CCBG depends only on
the number of points N of the initial cloud and the number
of obstacles. The quadratic time-complexity is given by the
following formula:

CCBGtime =
N ∗ (N − 1)

2
(RPsphere + RPunreach + RPobst) (1)

We illustrate CCBG on a simple example given in Fig.5,
where N = 5 and there is only one obstacle. The generated
graph contains labeled arcs only for points that can be joint
using straightlines.

B. Trajectories Constraint Optimization (TCO)

TCO is the component responsible of trajectories gener-
ation. This component exploits CP over finite domain and
optimization over graphs [11]. As inputs, it takes the oriented
labeled graph genereated by CCBG and a user-defined value
which corresponds to a minimal cost associated to the desired

Fig. 5. Example of labeled graph generated by CCBG

trajectory. This value allows the component to prune the search
space with all trajectories having a cost inferior to this value.

TCO defines a CP model with one finite domain variable
Xi per node i in the graph. The domain of Xi is composed
of the possible followers of i in the graph, augmented with a
special value to indicate termination. For instance, the example
of Fig.5 can be encoded with the following finite domain
variables (where the value 0 indicates no follower):
X1 ∈ {0, 2}, X2 ∈ {0, 3, 5}, X3 ∈ {0, 2, 4}, X4 ∈
{0, 3, 5}, X5 ∈ {0}. With this encoding, a loop-free trajectory
in the graph is for example: X1 = 2, X2 = 3, X3 = 4, X4 =
5, X5 = 0 and all the possible trajectories can be explored by
using a constraint-based search procedure. A first approach
to search for an optimal trajectory can be implemented by
using a classical backtracking search exploring in a depth-
first mode the search tree of all trajectories. By pruning the
trajectories which have a lower cost than the current explored
trajectory, we can optimize the backtracking process and save
some effort. We have called this approach revised DFS and
it is consdered in our experimental evaluation. However, the
revised DFS approach can be further refined by using the
constraints in a more active way. Observing that a trajectory
must be connex in the graph, not all values of a given variable
have to be explored. By modifying the encoding to take into
account not only the followers but also the predecssors of
nodes in the graph, it is possible to encode with constraints
the trajectory connexity issue.

Our implementation of TCO is based on SICStus Prolog
clpfd [16]. The CP model that was designed embedds domain
constraints over finite domains variable as shown above, but
also global constraints such as ELEMENT and TABLE [17].
These global constraints have powerful filtering algorithms
which allows us to prune the search tree in much more efficient
way than the revised DFS approach. Note also that the search
procedure is tuned to generate proved optimal trajectories but,
as it is important to keep full control over the timing aspects,
a time-contract procedure is considered. More precisely, the
search is allocated a contract of time, e.g., 5,10,20 seconds,
and the search is interrupted after the deadline has passed.
As a result, TCO can generate near-optimal trajectories in
the given contract of time. This approach is interesting for
test scenarios generation as it allows us to control the time
needed for the generation by compromising the quality of the
result. Of course, this approach is acceptable if and only if
the near-optimal trajectories which are generated are close

to the optimal value. Evaluating this aspect is part of our
experimental evaluation.

Once the trajectories are generated by TCO, we automati-
cally generate RAPID code corresponding to these trajectories
as shown in Fig.3 and Fig.4. The RAPID code can then be used
to run a complete test scenario on either a virtual controller
or a real SAR.

C. From Trajectories to Test Case Execution

Deploying the RAPID program on a virtual controller or a
real SAR as a test scenario requires some adaptation that are
considered in RobTest.

Firstly, it is important to describe the test objective of
these generated scenarios. Each time a new version of the
control motion software of the SAR is produced, it must be
thoroughly tested in comparison with a previous version. This
non-regression test aims at revealing discrepency between an
idealized trajectory used as input for the SAR and materialized
by a RAPID program, and the real trajectory performed by the
robot. Discrepency can originate from software bugs but also
hardware issue such as mechanical vibrations or mechatronic
issues. Note also that physical devices can impact the trajec-
tory of the SAR and observing these discrepencies is crucial
to improve the overall quality of the software controller.

The acceptance level is defined by a user-controlled three-
shold in between the idealized trajectory and the observed
trajectory of the SAR. This threeshold makes the difference
between a failed test scenario and a successed test. The
threeshold is not only defined in terms of robot positions
but also in terms of time to reach specific points. During
the execution of a test scenario, the SAR samples different
parameters such as timing, position, status, etc. every 10ms.
The sampling is performed on real positions of the robot’s
arm. As a result, the idealized trajectory as well as the real
trajectory can be visualized and alerts can be issued when
there are too high discrepencies or deviations between them.
Fig.6 shows an example of such deviations, where the blue
curve is generated by RobTest while the orange curve is the
real trajectory of the SAR.

Fig. 6. Result of the execution of a test trajectory

IV. EXPERIMENTAL EVALUATION

A. Research Questions

We performed an in-depth experimental evaluation to
measure the effectiveness of RobTest to generate loop-free,

collision-free and cost-optimal trajectories for SAR. As the
ultimate goal is to embed RobTest in a continuous integration
process and to leave it generate automatically test scenarios,
we explored the tow following research questions:
RQ1 How efficient is RobTest in generating trajectories in a

reasonable amount of time? This RQ is also very much
realted to the scalability of the approach in a continuous
integration process;

RQ2 Does RobTest benefit from the exploitation of advanced
CP methods? The question is related to the usage
of a constraint-based search instead of a simple DFS
approach;

RQ3 How much time is needed to get acceptable near-optimal
trajectories with RobTest;

All the experiments were performed on a regular PC, namely
an Intel-core i7 Lenovo ThinkPad running at 2, 60GHz T460s
with 8GB RAM.

B. Experimental Evaluation Protocol

For our experiments, we built a generator of random points
into the robot’s workspace. This allowed us to repeat 10 times
each experiment and take the average result, in order to avoid
the bad-luck effect with random samples. We considered a
number of initial points in the workspace which corresponds
to the usual practice of test engineers: in between 10 to 20
points. The timing aspects were considered by keeping in
mind that limited contract of time can be allocated to the
trajectory generation aspects and thus we put an overall time-
out of 1-hour for each individual experiment. For the sake of
simplicity, we considered a cost function which is evaluated by
using the pairwise distance between all the generated points.
Considering a more complex cost function is of course easily
feasible but it would have not bring us more interest, as the
cost function is given by the test engineers under the form of
a value table.

C. [RQ1]: Efficiency of RobTest

The purpose of our first experiments was to evaluate the
performance of RobTest. Tab.I reports on the averaged CPU
time (in sec) required to run the two components of RobTest,
namely CCBG and TCO while the tool is aksed to search
the global cost-optimal trajectory. Results are given under the
form val ± dev which means value and standard deviation.
In column Rho, the averaged density (in percentage) of the
produced graph is reported. This density is an indicator of
the number of unreachable pairs that were found by RobTest.
Note that a density of 100% would mean that all pairs in the
graph are reachable. From the analysis of Rho column, we
observe that the produced graphs are dense (i.e., they range
in between 74% and 82%). Knowing that there is a perfect
positive correlation between the graph density and the number
of possible paths between two points, we also observe that
the search space is huge and finding an optimal trajectory is
a difficult problem for the TCO component.

The results show that the time required by CCBG scales
well when the number of points increases. This confirms our

initial time-complexity analysis where we showed that the
number of RealPaver requests depends quadratically on the
number of points. According to the reported standard devia-
tion, we also observe that the distribution of points in space
does not impact the effectiveness of RobTest. Our approach
scales up to 15 points in less than an hour computation time
which is in line with the expectations of test engineers. Note
however that most of time is spent in TCO, as opposed to
CCBG. This does not come as a big surprise as the search
process for optimal trajectory in TCO is exponential while
the time-complexity of CCBG is quadratic.

D. [RQ2]: Benefice of CP methods in RobTest

The second experiment, which is also reported in Tab.I,
aimed at evaluating the benefice of CP as compared to a
simpler approach such as DFS. As said above, the revised
DFS approach can return the optimal trajectory after having
explored the search tree by backtracking. There is an optimiza-
tion in this version of DFS which is based on the pruning of
branches for which the cost is lower than the current cost.
Tab.I.(PART II) compares the CPU time (average ± standard
deviation) of both approaches, namely DFS vs TCO.

We observe that TCO is 4 to 54 times faster than DFS on
the 10, 11, 12 and 13 points instances. For instances with more
than 13 points, DFS exceeds the allocated time of one hour
without enumerating all solutions and thus without reporting
any optimal solution. Meanwhile, TCO is able to return the
optimal trajectory for dense graphs of nodes up to 15. TCO
needs more than one hour to return the optimal solution for
dense graphs (i.e., more than 80%).

Even though both approaches (DFS and TCO) suffers from
a combinatorial explosion, the constraint-based approach of
TCO scales up better than DFS. Actually it scales up to 15
points which correspond the expectations of test engineers.
Note that in these experiments the global optimal trajectory
has been found, including their proof of optimality.

E. [RQ3]: Considering Near-Optimal Solutions

The third experiment aimed at evaluating RobTest when
a limited contract of time is given. As the overall goal is
to deploy RobTest in a continuous integration process, it is
mandatory to fully control the time that is allocated to the
generation of trajectories, even if it degrades the quality of
solutions.

Fig.7 shows the averaged ratio between the near-optimal
solutions and optimal solution within a cutoff of 5, 10, 15
and 20 seconds. We report the averaged ratio on the various
instances (10 to 18 points).

For 10, 11 and 12 points, RobTest returns the optimal
solution within a cutoff of 5 seconds. For the instances 13 and
14, the near-optimal solutions are returned with a ratio ranging
in between 96% and 98% within a cutoff of 5 seconds. With
a cutoff of 20 seconds, RobTest is very close to the optimal
solution. (between 98% and 99, 8%).

Let us take a closer look to the instance 15. The quasi-
optimal solutions are of a ratio of, resp., 94%, 96%, 96, 5%

INSTANCES PART I PART II
#Points CCBG (s) Rho DFS (s) TCO (s)

10 2.38± 0.05 0.76± 0.04 0.48± 0.22 0.13± 0.06
11 2.91± 0.05 0.74± 0.05 3.16± 1.51 0.47± 0.49
12 3.49± 0.08 0.76± 0.06 41.83± 27.86 1.59± 1.84
13 4.13± 0.04 0.75± 0.08 597.91± 646.14 11.07± 16.61
14 4.82± 0.03 0.80± 0.03 TO 256.00± 403.34
15 5.56± 0.05 0.79± 0.04 TO 876.55± 1, 247.29
16 6.36± 0.01 0.82± 0.05 TO TO

TO: a timeout of 3, 600s
TABLE I

RobTest RESULTS.

Fig. 7. Near-optimal solutions within cutoffs.

and 97% within a cutoff of, resp., 5, 10, 15, 20 seconds. That
is, with only 5 seconds for such large instance the solution is
of a high-quality while reaching the global optimal solution
needs more than 50 minutes.

F. Discussion

Even though our experimental evaluation suffers from some
internal threats-to-validity that are discussed afterwards, we
observe that the efficiency of RobTest is demonstrated for
initial cloud of points containing in between 10 to 18 points.
RobTest would not be deployable without advanced constraint-
based methods. The difference between TCO and DFS in
terms of runtime is significant. At last, deploying RobTest
in a continuous process is feasible as, according to the test
engineers, the near-optimal solutions obtained in very short
period of time are sufficient to guarantee an efficient testing
process.

However, as said above, there is a number of internal
threats-to-validity in our experiments. Firstly, we generated
input points at random while the real testing process involves
points which are manually generated. In order to tame the
risk, we generated 10 times those points and showed the
average result, plus standard deviation. However, our random
generator assumes an unfiform probablity distribution over the
workspace which may not correspond to reality. Secondly, in
our experiment, we considered only the unreacheable zone of
the SAR without introducing any obstacle in the workspace.
As a consequence, we observed high percentage value for the
density of the generated graphs. The introduction of many

obstacles may lower the graph density and introduce a bias
in the results. Further experiments are needed to evaluate
the importance of graph density on the timing aspects. This
is part of our perspectives for this work. Thirdly, in our
experiments, we have considered a cost function computed
with the pairwise distance between the randomly generated
points. Even though this is acceptable as the distance is
certainly a crucial element of the cost function, it is a random
function in our case as the points are generated using an unfirm
distribution. Using a random function for the cost of trajectory
can thus be biased when compared to real trajectory which
consider much more complex cost functions. Here again, we
feel that more experiments are needed to fully evaluate the
potential deployment of RobTest.

V. CONCLUSION AND PERSPECTIVES

In this paper, we introduced RobTest a new method for
generating collision-free and loop-free cost-optimal trajecto-
ries for stress testing of industrial single-arm robots. RobTest
exploits advanced Constraint Programming methods based
on continuous domains constraint solving and constraints
optimization over graphs. Our experimental evaluation of
RobTest shows that it is efficient for dealing with intial clouds
of points containing up to 18 points, a number which is
considered as appropriate by test engineers. We also showed
that without constraint optimization over graphs, RobTest is
not sufficiently performant to be deployed. Its deploymemt in
a continuous integration process is conditionned to fine-control
of the timing aspects of the trajectory generation. By slightly
compromising the quality of solution, we showed that reaching
near-optimal solutions with RobTest is feasible in an handful
of seconds. According to our knowledge, the work presented
in this paper is the first complete attempt to deploy constraint-
based methods in a test trajectory generation process for stress
testing of industrial single-arm robot. The perspectives of
this work include an increased experimental evaluation taking
into account the addition of multiple obstacles in the robot’s
workspace. Furthermore, we plan to improve RobTest by
considering 1) other types of robot movements such as circular
motions and 2) the generation of more complex trajectories
with loops.

ACKNOWLEDGMENT

This work is supported by the Research Council of Norway
(RCN) through the research-based innovation center Certus,

under the SFI programme.

REFERENCES

[1] J.-C. Latombe, Robot Motion Planning, ch. 1. Norwell, MA, USA:
Kluwer Academic Publishers, 1991.

[2] A. Gasparetto, P. Boscariol, A. Lanzutti, and R. Vidoni, “Trajectory
planning in robotics,” Mathematics in Computer Science, vol. 6, no. 3,
pp. 269–279, 2012.

[3] L. Jaulin, “Path planning using intervals and graphs,” Reliable Comput-
ing, vol. 7, no. 1, pp. 1–15, 2001.

[4] B. Desrochers and L. Jaulin, “Computing a guaranteed approximation of
the zone explored by a robot,” IEEE Transactions on Automatic Control,
vol. 62, no. 1, pp. 425–430, 2017.

[5] S. Rohou, L. Jaulin, L. Mihaylova, F. Le Bars, and S. M. Veres, “Guar-
anteed computation of robots trajectories,” Robotics and Autonomous
Systems, vol. 93, pp. 76–84, 2017.

[6] J. Minguez, J.-P. Laumond, and F. Lamiraux, “Motion planning and
obstacle avoidance,” in Springer Handbook of Robotics, pp. 827–852,
Springer, 2008.

[7] M. Stilman, Global Manipulation Planing in Robot Joint Space with
Task Constraints, vol. 26, pp. 576–584. IEEE Transactions on Robotics,
2010.

[8] C. Faria, F. Ferreira, W. Erlhagen, S. Monteiro, and E. a. Bicho,
Position-based kinematics for 7-DoF serial manipulators with global
configuration control, joint limit and singularity avoidance, vol. 121,
pp. 317–334. Mechanism and Machine Theory, 2018.

[9] S. Pellegrinelli, A. Orlandini, N. Pedrocchi, A. Umbrico, and T. Tullio,
“Motion planning and scheduling for human and robot collaboration,”
CIRP Annals - Manufacturing Technology, vol. 66, no. 1, pp. 1–4, 2017.

[10] J. Garcı́a de Jalón, J. Cuadrado, A. Avello, and J.-M. Jimenez, Kinematic
and Dynamic Simulation of Rigid and Flexible Systems with Fully Carte-
sian Coordinates, vol. 268, pp. 285–323. Computer-Aided Analysis of
Rigid and Flexible Mechanical Systems, NATO Science Series, Springer,
1994.

[11] F. Rossi, P. Van Beek, and T. Walsh, eds., Handbook of Constraint
Programming, vol. 2 of Foundations of Artificial Intelligence. Elsevier,
2006.

[12] L. Granvilliers and F. Benhamou, “Algorithm 852: Realpaver: an interval
solver using constraint satisfaction techniques,” ACM TOMS, vol. 32,
no. 1, pp. 138–156, 2006.

[13] G. Chabert, IBEX (Interval-Based EXplorer): A C++ library for solving
nonlinear constraints over real numbers. http://www.ibex-lib.org/, 2007.

[14] P. Van Hentenryck, M. Laurent, and D. Yves, Numerica: A Modeling
Language for Global Optimization, vol. 228, ch. 4, pp. 57–74. USA:
MIT Press, 1997.

[15] P. Van Hentenryck, “A gentle introduction to NUMERICA,” Artificial
Intelligence, vol. 103, no. 1-2, pp. 209–235, 1998.

[16] M. Carlsson, G. Ottosson, and B. Carlson, “An open-ended finite domain
constraint solver,” in Programming Languages: Implementations, Logics,
and Programs, 9th International Symposium, PLILP’97, Including a
Special Trach on Declarative Programming Languages in Education,
Southampton, UK, September 3-5, 1997, Proceedings, pp. 191–206,
1997.

[17] M. T. Khong, Y. Deville, P. Schaus, and C. Lecoutre, “Efficient reifi-
cation of table constraints,” in 29th IEEE International Conference
on Tools with Artificial Intelligence, ICTAI 2017, Boston, MA, USA,

November 6-8, 2017, pp. 118–122, 2017.

