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Abstract. Software product line engineering is a reuse-driven paradigm
for developing families of similar products from a generic product back-
bone with identified options. A customised product is then derived by
combining the artefacts implementing the backbone with the ones im-
plementing the chosen options. Variability analysis and representation
is a central task of this paradigm: it consists in suitably defining and
structuring the scope, the commonalities, and the differences between
the derivable products. Several formalisms have been proposed: some
are textual, such as propositional logic or constraint programming, while
others are based on annotated graph representations. In this paper, we
aim to survey and compare existing graph-based variability representa-
tions. Among them, conceptual structures have been used rather early
and occasionally employed: this survey highlights their original position,
which is due to some of their properties, including canonicity and dual
view, that they provide on product configurations versus their features.

Keywords: Variability · Product Lines · Formal Concept Analysis.

1 Introduction

Product Line Engineering (PLE) is a paradigm for developing families of similar
products while lowering costs and time to market, and improving product qual-
ity and diversity of supply. PLE receives a lot of attention in many domains, like
mobile phone or car manufacturing, and it encounters a growing success in the
domain of software engineering where software product construction can be quite
fully automated [13]. Software Product Line (SPL) Engineering is a widespread
methodology, with two well identified processes. Domain Engineering consists
in defining: (1) a model of the scope and of the variability of the product line, in
particular a model of product options, (2) a generic product backbone, and (3)
a set of assets (or artefacts) that implement the possible options. During Appli-
cation Engineering, a customised product is derived by combining the artefacts
of the backbone with the ones implementing the chosen options. When the pro-
cess is completely automated, the resulting product is an executable software,
otherwise a significant part is generated.

Variability modelling is a primary task that consists in representing the com-
mon and variable aspects of products belonging to a same family. It is usually
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expressed in terms of features, where a feature is a distinguishable and visible
characteristic or behaviour of a product. For instance, an e-commerce applica-
tion (a product) owns a catalog, may implement different payment_methods
and manage a basket. In this context, each product can be associated with the
set of features that it possesses. A combination of features therefore represents
an abstract description of the product, also called a configuration. A configura-
tion set is usually presented in a tabular view depicting products against their
features. Tab. 1 represents a set of ten configurations describing a potential
family of e-commerce applications, depending on nine features, which we will
use throughout the paper. A cross states that the configuration (column) pos-
sesses the feature (row). For example, conf1 describes an e-commerce application
proposing only a catalog depicted in a grid, and which does not implement any
payment method.

Table 1. Configuration Set of a Product Line About E-Commerce Applications

features conf1 conf2 conf3 conf4 conf5 conf6 conf7 conf8 conf9 conf10
e_commerce x x x x x x x x x x
catalog x x x x x x x x x x
grid x x x x x
list x x x x x
payment_method x x x x x x x x
credit_card x x x x x x
check x x x x
basket x x x x x x x x
quick_purchase x x

Complying with domain and/or development constraints, all feature combi-
nations may not be possible: for instance, two features may be incompatible.
Feature-oriented variability models aim to document the existing features found
in an SPL, as well as constraints, that they can be combined to form a valid con-
figuration, i.e., corresponding to a functional derivable product. In other words,
variability models represent constraints between features to describe a configura-
tion set delimiting the scope of an SPL. Several formalisms have been proposed
for modelling and managing variability of an existing configuration set as the one
of Tab. 1. Some are textual, such as propositional logic or constraint program-
ming, while others are based on annotated graph representations, which give
complementary and sometimes overlapping views of variability [3,10]. Among
these variability representations, conceptual structures associated to formal con-
cept analysis [9] have been used rather early and occasionally employed, e.g., in
[14,5]. A common issue faced by these graph-based models is their limited ex-
pressiveness, which may prevent them to exactly represent a given configuration
set and encourage industries to use textual formalisms [12]. In this paper, we sur-
vey and compare in-use graph-based variability representations found in papers
studying variability model synthesis from configuration sets [17,16,14,8,7,6,1].
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Our objective is to identify their expressiveness limits to help practitioners choose
a graphical variability representation. We highlight the particular place of con-
ceptual structures, which are the only ones to give a canonical feature- and
configuration-oriented perspective of an SPL.

The paper is organised as follows. In Sec. 2, we present the basics of the semi-
nal in-use graph-based feature diagram representation, and we introduce feature
models, which have emerged as a standard. In Sec. 3, we then establish relations
between feature diagrams and propositional logic, allowing us to characterise
the logical semantics of graph-based representations. In Sec. 4, we outline the
different graph-based representations for variability, which are then classified,
compared, and analysed in Sec. 5.

2 Feature Models and Feature Diagrams

Feature Models (FMs) and Feature Diagrams (FDs) are a family of descriptive
languages that aim to document variability of an SPL in terms of features and in-
teraction between these features. For instance, they define which features require
other features, or which ones are incompatible. The constraints are represented
graphically by structuring the set of features in a refinement hierarchy with dec-
orated edges to specify their dependencies, and by cross-tree constraints. The
literature on PLE makes a focus on specific relations between features having
in mind that FDs and FMs are used to support several tasks (e.g., defining the
product line scope, and guiding its evolution and maintenance).

Fig. 1 presents an FD about e-commerce applications. Feature e_commerce
is the root feature. Feature catalog is mandatory, and it owns a xor-group
composed of features grid and list (exactly one feature has to be present in a
valid configuration). Features payment_method and basket are optional child-
features of the root, and they require each other. Features credit_card and
check form an or-group under payment_method (at least one of them has to be
selected). Feature quick_purchase is an optional child feature of basket, and
is mutually exclusive with check.

e_commerce

catalog payment_method basket

grid list credit_card check quick_purchase

Xor Or

Requires Exclude

Optional Mandatory

Fig. 1. Example of an FD About E-Commerce Applications
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A feature combination that verifies all the constraints expressed by the FD
is called a valid configuration. The set of all valid configurations is the FD
configuration semantics. Tab. 1 is the configuration semantics of the FD of Fig. 1.
Features that are present in all valid configurations are called core-features (e.g.,
e_commerce and catalog), and features that are present in none are called
dead-features. Moreover, the feature hierarchy gives ontological information: for
instance, a child feature may represent a refinement, a part-of or even a use
relationship. Here, features are seen as domain concepts: this information is
called the FD ontological semantics. A known problem in FD construction is
the fact that a given configuration semantics may be represented by different
ontological relationships. FDs are therefore non-canonical representations, as
different FDs (i.e., presenting different ontological semantics) may be equivalent
(i.e., having the same configuration semantics). Moreover, FDs are not logically
complete, as some configuration sets may not be represented by this formalism
(see [15]), and some authors therefore add a propositional formula to an FD.

As a consequence, She et al. [17] propose to differentiate the terms “feature
diagram” and “feature model” (which is a feature diagram completed with a
propositional formula), and we will use this terminology in the rest of this paper.
More formally, the syntax of FDs and FMs is defined as follows:

Definition 1 (Feature Diagram [17]). A feature diagram is defined as a tuple
(F,E, (Em, Ei, Ex), (Go, Gx)), where F is a finite set of features, E ⊆ F × F is
a set of directed child-parent edges, and (F,E) is a rooted tree connecting all
features from F . Em ⊆ E is a set of mandatory edges, Ei ⊆ F × F is a set of
cross-tree require edges such that Ei ∩E = ∅, and Ex ⊆ F ×F is a set of cross-
tree exclude edges such that Ex∩E = ∅. The two sets Go and Gx contain subsets
of E, representing edges involved in or-groups and xor-groups, respectively. Two
distinct subsets of Go ∪Gx are disjoint, and all edges in a subset have the same
parent-feature.

Definition 2 (Feature Model [17]). A feature model is defined as a pair
(FD , ϕ), where FD is a feature diagram, and ϕ is a propositional formula where
the propositional variables are the features of the feature set F of FD .

Now, consider that we have the same set of configurations as given in Tab. 1
without the conf 5 showing, among other things, that both child features of
payment_method can be selected with a catalog displayed in a grid. To respect
this new configuration semantics, the FD should state that selecting both check
and credit_card implies to select list. As it is not possible to express such
complex implication only by means of an FD, we must add the following formula
ϕ′ = (check ∧ credit_card) ⇒ list to the previous FD. The FM composed
of the FD of Fig. 1 and ϕ′ therefore represents the new configuration semantics.

3 Semantics of FDs and FMs Using Propositional Logic

Mannion [11] was the first to build relationships between FDs and propositional
logic. Ever since, FD ontological relationships were translated in the form of a
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propositional formula, where features are represented by propositional variables
and relationships are defined using logical connectives. Therefore, a logical se-
mantics is also associated with an FD through a propositional formula that has
for models the FD valid configurations. Its use is very popular in work aiming to
carry out automated analysis or reasoning over product line variability [2]. As
for FMs, the logical semantics of an FM defined as FM = (FD , ϕ) is ϕFD ∧ ϕ,
where ϕFD is the propositional formula corresponding to the logical semantics
of FD .

Tab. 2 presents how the ontological semantics of an FD is defined in propo-
sitional logic, giving its logical semantics. Two logical forms are given. The first
one (column 2) is commonly used in the SPL domain and uses the following
logical connectives: ⇒ (implication), ⇔ (equivalence), ∨ (or), and ⊕ (exclusive
or). The second one (column 4) shows the equivalent formula in Conjunctive
Normal Form (CNF), i.e., expressed as sets of clauses (a clause is a disjunction
of literals, and a literal corresponds to a feature or the negation of a feature).
Following the tracks of [7], and because the nonempty clauses represent implica-
tions, the logical semantics written in CNF (column 4) is appropriate to highlight
the expression power of the graph-based representations.

Table 2. Logical Semantics of FD Constraints

Constraints Logical Semantics Formula Name CNF Form
optional c⇒ p Binary ¬c ∨ p

mandatory p⇔ c Implication ¬c ∨ p, ¬p ∨ c
requires f1 ⇒ f2 (BI) ¬f1 ∨ f2
exclude f1 ⇒ ¬f2 Mutex (MX) ¬f1 ∨ ¬f2
or-group p⇔ (c1 ∨ . . . ∨ cn) OR ¬p ∨ c1 ∨ .... ∨ cn

¬ci ∨ p, 1 ≤ i ≤ n

xor-group p⇔ (c1 ⊕ . . .⊕ cn) XOR ¬p ∨ c1 ∨ .... ∨ cn
¬ci ∨ p, 1 ≤ i ≤ n

(¬ci ∨ ¬cj), 1 ≤ i, j ≤ n, i 6= j

core-feature > ⇒ f1 CF f1
dead-feature f1 ⇒ ⊥ DF ¬f1

p represents a feature in a parent position, c, ci, 1 ≤ i ≤ n, features in a child position,
and f1, f2 any feature. Columns 2 and 4 show patterns of clause sets corresponding
to the FD constraints. For a clause G corresponding to the OR or XOR pattern, its
associated child set is CG = {c1, . . . , cn}.

To build the formula corresponding to the logical semantics of an FD, the
algorithm consists in following the FD from the root to its leaves, and applying
the constructs of Tab. 2 to produce the clauses. The obtained formula is therefore
a conjunction of expressions conforming to the patterns of clause sets of Tab. 2,
i.e., BI, MX, OR, XOR, CF, and DF. In addition, this formula verifies two
properties that follow directly from the definition of an FD: (1) presence of a
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root and (2) the fact that the child sets of distinct feature groups are disjoint.
These properties can be formally expressed as follows:

Property 1 (FD-to-CNF). Given a feature diagram FD , if ϕ is the logical seman-
tics of FD then ϕ verifies the following properties: (a) ϕ is equal to a conjunction
of clauses that conform to the BI, MX, OR, XOR, CF, or DF patterns; (b) ϕ
contains at least one clause r that conforms to the CF pattern (existence of a
root, which is a core-feature, i.e., present in all valid configurations); (c) for any
Gi, Gj clauses of ϕ that conform to the OR or XOR patterns, with respective
child sets CGi

, CGj
, CGi

∩CGj
= ∅ (distinct feature group child sets are disjoint).

Conversely, any formula that can be expressed as a CNF verifying some of
the properties mentioned above in Prop. 1 can be represented by an FD:

Property 2 (F-to-FD). Any propositional logic formula ϕ that can be expressed
as a CNF ϕFD such that (a) ϕFD is a conjunction of clauses conform to the BI,
MX, OR, XOR, CF, or DF patterns, and (b) for all clauses Gi, Gj of ϕFD that
conform to the OR or XOR patterns, with respective child sets CGi , CGj , we
have CGi

∩ CGj
= ∅, can be represented by an FD.

It should be noted that the property (b) of Prop. 1 has been relaxed in
Prop. 2. If no root can be identified in the formula (no clause that conforms
to the CF pattern in the CNF representation of the formula) then it is always
possible to complete the corresponding FD with a root feature to get a fully
connected graph.

As said previously in Sec. 2, FMs have been introduced to alleviate the logical
incompleteness of FDs. As a consequence, FMs are logically complete, which can
be expressed by the following property:

Property 3 (F-to-FM). Any propositional logic formula can be represented by
an FM.

As FDs are not logically complete (which may require the addition of comple-
mentary formulas), we may wonder which kind of formulas cannot be represented
as FDs, and in particular, what are the different forms of such formulas. In the
following, to characterise these formulas, we will use some notations inspired by
regular expressions: n represents any negative literal, p any positive literal, lk+
at least k times the literal l (if k is 0, l is omitted).

Any propositional formula in CNF can have three types of nonempty1 clauses:
only positive literals (p+), only negative literals (n+), and mixed, namely con-
taining positive and negative literals (p+n+). To identify the formulas that can-
not be represented by FDs, the principle is to look at the patterns of clause sets
of Tab. 2 and identify the missing patterns. In Tab. 2, the BI pattern corresponds
to np, the MX pattern corresponds to n2, the OR and XOR patterns include np,
np2+, and n2 (the latter for XOR), CF corresponds to p, and DF to n. We can
observe that the following forms are not captured by the patterns of Tab. 2:
1 When representing FDs, empty clauses are of little interest as any set of clauses
containing an empty clause is insatisfiable, and it corresponds to an FD with no
valid configuration.
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– A mixed clause with at least two negative literals (denoted by p+n2+);
– A mixed clause with at least two positive literals (denoted by n+p2+), with

the case of the clause np2+, when it is not included in an OR or XOR pattern;
– A clause with at least two and only positive literals (denoted by p2+);
– A clause with at least three and only negative literals (denoted by n3+);

these generalised exclusion clauses will be called NAT (Not All Together).

We do not provide a proof that the set of these patterns is complete in the
sense that the set of formulas that can be represented by FDs together with
the set of formulas that can be represented using these patterns allows us to
represent any formula. However, our approach is purely syntactical (trying to
match the patterns of representable clauses and the patterns of Tab. 2), and the
reader should be easily convinced of the completeness of this set of patterns.

These missing clause patterns2 may be needed for expressing a configura-
tion set. The formula that completes an FD (if needed), to obtain an FM, will
therefore be mainly composed of clauses that conform to these patterns.

4 Graph-Based Formalisms for Variability Structuring

In this section, we consider a product line variability information through a
propositional formula ϕ defined over a set of variables F = {f1, . . . , fk}. F
represents the product line feature set and the models of ϕ the product line con-
figuration set. In what follows, we survey graph-based variability representations
used in work about FM synthesis, and we compare the variability information
that they express with the one expressed by ϕ.

Binary Decision Graphs [7,1,17]. A Binary Decision Tree (BDT) is a
canonical tree-like graph used to depict the truth table of a Boolean function
of the form {0, 1}k → {0, 1}, which can represent a propositional formula in k
variables. Each internal node represents a variable and has two outgoing edges: a
low edge and a high edge. A path from the root to a leaf corresponds to a variable
assignment (i.e., a configuration): a low edge assigns the variable to 0, and a high
edge assigns the variable to 1. The value of an assignment is given by the leaf
(terminal node), which is equal to either 1 (valid configuration) or 0 (invalid
configuration). It is an extensional representation of the configuration set. The
BDT representation has redundancies, which can be avoided by node sharing,
which results in a graph called Binary Decision Diagram (BDD) [4,7]. The
term BDD usually refers to ROBDD (for Reduced Ordered Binary Decision
Diagram), which is unique for a given propositional formula. A ROBDD therefore
represents the set of valid configurations (models of ϕ), but it does not represent
feature or configuration interactions. However, ROBDDs are logically complete.
Fig. 2 presents the ROBDD associated with the part of Tab. 1 restricted to
features e_commerce, catalog, grid, and list.
2 Let us notice that they can appear in a formula satisfying Prop. 2 provided that,
combined with other clauses, they can disappear to the benefit of emergence of
clauses of the admitted patterns BI, MX, OR, XOR, CF, or DF.
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e_commerce

catalog 1

0

grid

list

list

0/low

1/high

Fig. 2. ROBDD Associated with the First Four Features of Tab. 1

Binary Implication Graphs [7,16,1,8,17]. A Binary Implication Graph
(BIG) is a directed graph denoted by G(V,E) where V = F = {f1, . . . , fk} and
E = {(fi, fj) | ϕ ∧ (fi → fj)} representing binary implications (BI) between
features. A feature fi implies a feature fj when each valid configuration having
fi also has fj . BIGs are intensional representations structuring the product line
feature set. This type of representation is not canonical, but its transitive clo-
sure and transitive reduction are. Fig. 3 (left-hand side) presents the transitive
reduction of the BIG associated with the first four features of Tab. 1.

Directed Hypergraphs [7]. A directed hypergraph is a directed graph
generalisation where an arc can connect more than two vertices: such arcs are
called hyperarcs. Vertices correspond to variables (features of F ) and Boolean
constants (0 and 1). A directed hypergraph can represent all types of nonempty
clauses. A clause having both negative and positive literals is represented by a
hyperarc A→ B with A,B ⊆ F , A being the conjunction of the clause negative
literals and B the disjunction of the clause positive literals. A clause having only
negative literals is represented by a hyperarc A → 0, and a clause with only
positive literals is represented by a hyperarc 1 → A. As BIGs, their transitive
reduction/closure are canonical representations, and they structure the feature
set in an intensional representation. Fig. 3 (right-hand side) presents the directed
hypergraph transitive reduction of the first four features of Tab. 1.

Fig. 3. Transitive Reduction of the Binary Implication Graph (Left-Hand Side) and
the Directed Hypergraph (Right-Hand Side) Associated with the First Four Features
of Tab. 1

Mutex Graphs [16,17]. A mutex graph is an undirected graph denoted by
G(V,E) where V = F = {f1, . . . , fk} and E = {{fi, fj} | ϕ ∧ ¬(fi ∧ fj)} rep-
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resenting mutual exclusions, also called mutex (MX) between features. Features
are mutually exclusive if they cannot appear together in any valid configuration.
There is a unique mutex graph associated with a propositional formula. Note
that a clique in the graph represents incompatibilities inside each pair of involved
features. Fig. 4 (left-hand side) presents the mutex graph extracted from Tab. 1.

Feature Diagram Generalised Notation and Feature Graphs [7,17].
Czarnecki and Wasowski [7] propose an FD generalised notation where the fea-
ture tree may be replaced by a directed acyclic graph (encompassing require
cross-tree constraints as optional relationships), feature groups may overlap,
and co-occurrent features are visualised in a single node. Exclude cross-tree
constraints are not represented in this formalism. This generalised notation is a
canonical and intensional representation that covers the same information found
in usual FDs except mutual exclusions (i.e., BI, OR and, XOR) but without the
structural constraints that require expert decisions during the synthesis. An FD
in generalised notation therefore represents several FDs. She et al. [17] extend
this notation with mutex groups and mutual exclusions, and called this extension
a feature graph. A mutex group is a set of features such that each pair is a mutex
(i.e., corresponding to a clique in the mutex graph). Feature graphs depict MX
in addition to FD generalised notation relationships (see the right-hand side of
Fig. 4 for an example).

catalog e_commerce

grid

list

check

quick_purchase

payment_method

basket

credit_card

catalog
e_commerce,

gridlist

check

payment_method,
basket

quick_purchase

credit_card

Fig. 4. Mutex Graph (Left-Hand Side) and Feature Graph (Right-Hand Side) of Tab. 1

Conceptual Structures [9]. A set of configurations (e.g., Tab. 1) natu-
rally underlies a formal context K = (G,M, J) composed of configurations (G),
features (M), and a binary relation (J) stating which configuration has which
feature. Formal Concept Analysis (FCA) is a natural framework for variability
representation: each concept C = (E, I) gathers a maximal set of configura-
tions E (extent) sharing a maximal set of features I (intent). For example,
Concept_5 gathers the configurations conf9 and conf10, together with their
shared features e_commerce, catalog, payment_method, basket, credit_card,
and quick purchase. The concept lattice (see Fig. 5) provides the concept set
with a specialisation order ≤, where we have C1 = (E1, I1) ≤ C2 = (E2, I2) if
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Concept_18

e_commerce
catalog

Concept_15

grid

conf1

Concept_0

Concept_4

conf5

Concept_3

conf8

Concept_2

conf9

Concept_1

conf10

Concept_14

list

conf2

Concept_13

Concept_17

payment_method
basket

Concept_11

Concept_10

conf3

Concept_16

credit_card

Concept_9

conf6

Concept_8

conf4

Concept_7

Concept_12

check

Concept_6

conf7

Concept_5

quick purchase

Attribute-concepts are coloured in grey and object-concepts have a dashed border.

Fig. 5. Concept Lattice Associated with Tab. 1

E1 ⊆ E2. For instance, we have Concept_5 ≤ Concept_16, the latter adding
to Concept_5’s extent the configurations conf3, conf5, and conf6, which elimi-
nates quick purchase from the shared features. An attribute-concept µ(f) (resp.
an object-concept γ(c)) introduces a feature f (resp. a configuration c), if it
is the highest (resp. lowest) concept where f (resp. c) appears. For example,
Concept_5 is an object-introducer (introducing quick purchase), in grey in
the figure, Concept_6 is an attribute-introducer (introducing conf7), within a
dashed border concept in the figure. In the representation, the features (resp. con-
figurations) are only written in their introducer concept and inherited top-down
(resp. bottom-up). Several sub-structures are of interest for the SPL domain. The
AC-poset (resp. OC-poset) is the sub-order of the concept lattice restricted to
attribute-concepts (resp. object-concepts), while the AOC-poset contains both
types of introducers. FCA conceptual structures are the only graph-based vari-
ability representations being both intensional and extensional, and structuring
both products and features. They are also canonical and logically complete.

Equivalence Class Feature Diagrams [6]. An Equivalence Class Feature
Diagram (ECFD) is derived from an AC-poset. It has been introduced in [6]
as an intermediate canonical structure for analysing variability. It graphically
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represents all the feature co-occurrences (equivalent features, like e_commerce
and catalog), and all the BI (with ECFD arrows), MX, OR, and XOR that can
be extracted from the concept lattice. It may also contain generalised exclusions
(NAT, standing for Not All Together), i.e., of the form n3+. The OR and XOR
groups may overlap and the ECFD structure corresponds to an acyclic graph.
Fig. 6 (right-hand side) shows the ECFD extracted from the AC-poset of Fig. 6
(left-hand side). All the feature diagrams that have the same configuration se-
mantics can be embedded in the ECFD built on the formal context associated
to the configuration set. It is an intensional and canonical representation struc-
turing the feature set, but it is not logically complete, as it aims to represent
FD variability information.

Concept_1

check

conf4, conf5
conf7, conf8

Concept_5

payment_method
basket

Concept_3

grid

conf1, conf3
conf4, conf5

conf9

Concept_6

e_commerce
catalog

Concept_2

list

conf2, conf6
conf7, conf8

conf10

Concept_4

credit_card

conf3, conf5
conf6, conf8

Concept_0

quick purchase

conf9, conf10

catalog
e_commerce,

gridlist

check

payment_method,
basket

quick_purchasecredit_card

v

v OR XOR MX BI

Fig. 6. AC-Poset (Left-Hand Side) and Extracted ECFD (Right-Hand Side) Associated
with Tab. 1

5 Towards a Classification of the Graph-Based
Formalisms for Variability

In this section, we first compare the studied formalisms through two points of
view: the covered propositional logical expressions and the properties related to
the graph-based representation. We then give examples of possible uses of this
comparison by designers.

Tab. 3 gathers information about the formalisms presented in the previous
sections. The first two parts of the table present the logical properties that are
defined in Sec. 3. The first four columns state if a formalism is able to express the
clause set patterns found in traditional FDs. The next four columns present the
four disjunctive clause patterns that cannot be diagrammatically represented (if
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they are not combined with other clause patterns) in an FD. They characterise
the propositional formulas that should complete the FD semantics to represent
all possible configuration sets. The third part of the table gives representation
properties, i.e., the canonicity of the formalisms, if they structure the feature
set or the product set, and if they are intensional or extensional representations.
The last two columns state if the formalisms need to own a root feature, and if
their feature groups are distinct (i.e., do not overlap). They correspond to the
meta-properties expressed in Sec. 3. The rooted column is not applicable (na)
for formalisms that do not represent binary implications, and the distinct
groups column is not applicable for formalisms without feature groups. The
formalisms that can express the ten types of clause set patterns are therefore
logically complete. Aside from FMs, which are logically complete thanks to their
complementary propositional formulas, three types of graph-based representa-
tions can depict all propositional formulas. ROBDDs are complete and canonical,
but they do not provide feature organisation in an intensional representation of
variability, which is one of the main goal of variability modelling. Directed hy-
pergraphs have the same advantages as ROBDDs, but in addition they structure
the feature set to help visualising variability information. Concept lattices and
AOC-posets appear as the most complete variability representations, as they also
depict and structure the set of valid configurations. These structures are the only
ones gathering all logical and representation properties. Their main drawback is
their size: the number of nodes in a concept lattice may grow exponentially with
the size of the data input, as they organise both feature and product sets, making
it difficult to compute and use to handle large product lines. Fortunately, AOC-,
AC- and OC-posets have a node number limited respectively by the number of
products plus features, the feature number, or the product number.

Thanks to this table, we are able to characterise CNFs that can be represented
by each formalism, as we have done for FDs in Sec. 3. We characterise a CNF
by 1) a conjunction of clause set patterns of certain types and 2) some meta-
properties. For a given formalism, the CNFs that can be written as a conjunction
of the clause set patterns associated to this formalism (amongst the types in
columns [2-11]) and that respect the corresponding meta-properties (amongst
those in the last two columns) can be represented diagrammatically by this
formalism. Note that our analysis reveals that the two meta-properties are only
necessary to FDs and FMs. Conversely, the comparison can be used to detect
logic formulas that cannot be expressed by the existing graphical formalisms.

Our comparison may also be used to assist a designer who aims to repre-
sent the variability of a product line structured in a formalism A (for instance,
which can be automatically extracted) with another formalism B (for instance,
which needs an expert intervention during the synthesis). If the target formalism
represents the same set or a subset of clause patterns of the ones represented
by the source formalism, the transformation can be done without logical infor-
mation loss. If the source formalism represents a subset of clauses of the ones
represented by the target formalism, our analysis helps the designer identify the
type of logical relationships that will be lost in the transformation.
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Table 3. Comparison of the Different Graph-Based Variability Representations De-
pending on Logical and Representation Properties
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FD x x x x x x x x x x
FM x x x x x x x x x x x x x x
ROBDD x x x x x x x x x x x x
BIG (Trans. Red) x x x x x na

Mutex Graph x x x x na na

FM Gen. Nota. x x x x x x x x
Feature Graph x x x x x x x x x
Dir. Hypergraph x x x x x x x x x x x x x
Concept Lattice x x x x x x x x x x x x x x x
AOC-Poset x x x x x x x x x x x x x x x
AC-Poset x x x x x x x x x x x x x x
OC-Poset x x x x x x x x x x x x x x
ECFD x x x x x x x x x
ECFD+NAT x x x x x x x x x x

6 Conclusion

Variability modelling is a central aspect in the spreading paradigm of product
lines in product design and construction. Disposing of a variety of formalisms,
a clear understanding of their scope and applicability, and embedding method-
ologies and algorithms is of major importance. In this paper, we give keys to
move in these directions. The point is not to oppose the different formalisms,
but being able to use the right one at the right moment. We survey the most
popular and in-use formalisms in SPL engineering research where most of the
current advances are made, ranging from feature diagrams to conceptual struc-
tures. We compare and discuss them through disjunctive clauses categories that
highlight their expressiveness, and through other properties such as canonicity,
and whether they emphasise the relations between features, configurations, and
both features and configurations. Conceptual structures play a particular role
in this variety of formalisms, providing canonical representations, configuration-
oriented as well as feature-oriented views, while being logically complete.

As future work, the comparison can be extended to non-Boolean formalisms
including FDs with attributes or with references. FCA owns extensions, namely
pattern structures and relational concept analysis, which could be used to cap-
ture new aspects of variability modelling. New graphical operators could also
be imagined as a result of these studies. For identified useful transformations,
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we could investigate how one formalism embeds into another one, with which
possible precision loss and algorithmic complexity.
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