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Abstract. Today pesticides, antimicrobials and other pest control prod-
ucts used in conventional agriculture are questioned and alternative solu-
tions are searched out. Scientific literature and local knowledge describe a
significant number of active plant-based products used as bio-pesticides.
The Knomana (KNOwledge MANAgement on pesticide plants in Africa)
project aims to gather data about these bio-pesticides and implement
methods to support the exploration of knowledge by the potential users
(farmers, advisers, researchers, retailers, etc.). Considering the needs ex-
pressed by the domain experts, Formal Concept Analysis (FCA) appears
as a suitable approach, due do its inherent qualities for structuring and
classifying data through conceptual structures that provide a relevant
support for data exploration. The Knomana data model used during the
data collection is an entity-relationship model including both binary and
ternary relationships between entities of different categories. This leads
us to investigate the use of Relational Concept Analysis (RCA), a vari-
ant of FCA on these data. We consider two different encodings of the
initial data model into sets of object-attribute contexts (one for each en-
tity category) and object-object contexts (relationships between entity
categories) that can be used as an input for RCA. These two encodings
are studied both quantitatively (by examining the produced conceptual
structures size) and qualitatively, through a simple, yet real, scenario
given by a domain expert facing a pest infestation.

Keywords: Biopesticides · Data exploration · Formal Concept Analysis
· Relational Concept Analysis



2 P. Keip et al.

1 Introduction

Today pesticides, antimicrobials and other pest control products used in conven-
tional agriculture are questioned and alternative solutions are searched out, in-
cluding active plant-based products. The Knomana (KNOwledge MANAgement
on pesticides plants in Africa) project aims to identify plants used as biopes-
ticides, currently from the scientific literature, and to implement methods to
support the exploration of knowledge by the potential users (farmers, advisers,
researchers, retailers, etc.). About 30000 descriptions of plant uses have been
collected and recorded according to a data model designed through meetings
with domain experts. Each plant use is described using 36 attributes such as the
plant taxonomy, the protected system (i.e. crop, animal and human being), or
the preparation method.

Considering the data exploitation needs expressed by the domain experts,
Formal Concept Analysis (FCA) appears as a suitable approach, due do its inher-
ent qualities for structuring and classifying data through conceptual structures
that provide a relevant support for data exploration. To exploit the recorded
data, and extract knowledge about alternative protection systems, we rely on
Relational Concept Analysis (RCA) [11], one of the possible extensions of For-
mal Concept Analysis [9] for relational data. RCA input is a so-called relational
context family, composed with object-attribute (formal) contexts, which describe
objects from various categories, and object-object (relational) contexts, which
describe relationships between objects of several categories. It outputs a set of
conceptual structures (such as concept lattices, AOC-posets or Iceberg lattices)
connected through relational attributes which point to concepts. Each concep-
tual structure classifies the objects of one category according to the (initial)
attributes and the relational attributes, thus according to the relations that the
objects of this category have with objects and object groups (concepts) of an-
other (or the same) category.

Considering a real-word context such as the Knomana project dataset, al-
though a data model has been set for data collection purpose, there are still
many ways to encode the data model into a relational context family. In this
paper, we study the impact of the definition of a relational context family on
the practicability of RCA on the Knomana project dataset. The first question
is raised by the fact that relational contexts represent binary relations between
objects, but the data model we deal with contains a ternary relation. The model
has thus to be converted into a model with binary relations, while respecting the
original semantics of the ternary relation. Two encodings are envisaged: the first
one considers a reification of the ternary relation (i.e. a specific object-attribute
context represents the 3-tuples), while the second one projects the ternary rela-
tion into three binary relations, one for each pair of the linked object sets. The
second question is related with the possibility, for each relationship, to consider
one direction only or both directions. It is connected to the potential explo-
rations that the domain experts may have in mind. The proposed encodings are
studied quantitatively (by examining the produced conceptual structures size
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and running time) and qualitatively, through a simple, yet real, scenario given
by a domain expert facing a pest infestation.

Section 2 presents Relational Concept Analysis and the RCAExplore tool
which is used in our evaluations. In Section 3, we propose two encodings of
the initial data model into relational context families. Then, in Section 4, we
first show the size and computation time of several conceptual structures for
the two encodings on an excerpt of the Knomana dataset restricted to a few
key plants designated by the domain experts. Then we study a simple, yet real,
exploration scenario using both encodings, to show their relevancy with respect
to the studied question. Section 5 exposes related work. We conclude and give
perspectives of this work in Section 6.

2 Background

RCA extends the purpose of Formal Concept Analysis (FCA, [9]) to relational
data. RCA applies iteratively FCA on a Relational Context Family (RCF),
that is a pair (K,R), where K is a set of object-attribute contexts and R is
a set of object-object contexts. K contains n object-attribute contexts Ki =
(Gi,Mi, Ii) , i ∈ {1, ..., n}.R contains m object-object contexts Rj = (Gk, Gl, rj),
j ∈ {1, ...,m}, where rj ⊆ Gk × Gl is a binary relation with k, l ∈ {1, ..., n},
Gk = dom(rj) the domain of the relation, and Gl = ran(rj) the range of the
relation. RCA relies on a relational scaling mechanism that is used to transform
a relation rj into a set of relational attributes that extends the object-attribute
context describing the objects of dom(rj). A relational attribute ∃rj(C), where
∃ is the existential quantifier, C = (X,Y ) is a concept, and X ⊆ ran(rj), is
owned by an object g ∈ dom(rj) if rj(g)∩X 6= ∅. Other quantifiers can be found
in [11]. RCA process consists in applying FCA first on each object-attribute con-
text of an RCF, and then iteratively on each object-attribute context extended
by the relational attributes created using the concepts from the previous step.
The RCA process stops when the families of lattices of two consecutive steps are
isomorphic and the extended object-attribute contexts are unchanged.
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Table 1. A relational context family about (a) Pests and (b) Plants able to treat
them, as indicated in treatedBy relation (c)
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In the following, we consider a small example from the Knomana dataset.
Object-attribute contexts Plants and Pests (Table 1, (a) and (b)) respectively
represent a set of plants and a set of pests. Pests are described by their family
(e.g. Callosobruchus maculatus –CallosobruchusM in Table 1– is a member of
the leaf beetle family, Chrysomelidae), while plants are described by the parts
(e.g. fruit or leaf) that are used for treating the pests. The object-object context
treatedBy (Table 1, (c)) represents the link between pests and plants they can
be treated by. At the first step of the RCA process, FCA is applied on Plants

and Pests and results in two lattices LPlants and LPests (Figure 1).
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Fig. 1. Lattices LPests (left) and LPlants (right)

At the second step of the process, Pests context is extended with rela-
tional attributes built from context isTreatedBy and concepts of LPlants (Ta-
ble 2). For instance, the relational attribute ∃treatedBy(C plant 2) is added to
CallosobruchusM since this pest is related to HelianthusA which is an object of
C plant 2. A new lattice is built, that is represented in Figure 2. In this last lat-
tice, we can observe that pests grouped in C pest 8 are both treated by Acorus
Calamus AcorusC (sweet flag), using its root or rhizome (see C plant 3).

The tool RCAexplore6 was developed during project ANR 11 MONU 14
Fresqueau, in order to explore relational hydroecological data. RCAExplore is
an implementation of the RCA process where several choices can be made before
each iteration: the algorithm to be used, the scaling operator, and the considered
contexts.

6 http://dataqual.engees.unistra.fr/logiciels/rcaExplore
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CallosobruchusC × × × ×
SpodopteraL × × × × × ×
LiposcelisB × × ×
AspergillusF × × ×
PenicilliumE × × ×
CallosobruchusM × × ×

Table 2. Extended context from Pests.
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Fig. 2. Lattice built on the extended context Pest* of Table 2

3 From the Knomana Model to a Relational Context
Family and Conceptual Structures

The Knomana database gathers descriptions of plant uses, each one character-
ized using 36 data types, including the protecting plant, the protected organism,
the controlled aggressor (also called pest and disease), the method adopted to
prepare the product to be applied, or the reference to the document describing
the use. Currently, the Knomana database comprises 28700 plant use descrip-
tions manually entered from 250 documents (mainly scientific publications). The
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descriptions include 966 plant species, originated from 60 territories, used to pro-
tect 39 species of organism (animal, vegetal, and human) against 253 species of
aggressors (Bacteria, Chromista, Eukaryota, Fungi, Insecta, and Virus).

In the data model, data types are grouped as data classes to represent the
three main entity categories of the system: biopesticide, protected system and
targeted organism. To represent the biological system, these three main entity
categories (or data classes) are linked through a ternary relationship. As the
relational contexts of RCA are binary relationships, two different data models
have been designed. The first one, called M1 (see left-hand side of Figure 3),
consists in reifying the ternary relationship as a specific data class, the latter
supporting binary relationships with each of the three main data classes of the
biological system. The second one, called M2 (see right-hand side of Figure 3),
consists in establishing binary relationships between the data classes of the bi-
ological system, corresponding to projections of the ternary relationship. The
relation directions have been determined in order to obtain classifications and
propagation of relations according to the first question (Q1) asked by the experts
(introduced below).

Fig. 3. Models M1 (left-hand side) and M2 (right-hand side). Implementations of the
data model : (M1) with the ternary relationship as a data class, (M2) without the
ternary relationship, which is transformed by establishing binary relationships between
the main data classes
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The encoding of M1 and M2 as relational context families (RCF) consists
in converting each data class as a formal context (object-attribute context) and
each arrow as a relational context (object-object context). To measure the effect
of the encodings on the resulting conceptual structures, two encodings of the M1
and M2 arrows are considered: the ”original” encoding implements the arrows
presented in Figure 3, while the ”enhanced” encoding includes the arrows and
their opposite (making a sort of symmetric closure at the model level).

M1 and M2 encodings are evaluated on a dataset reduced to the descrip-
tions associated to six protecting plant species, i.e. Cymbopogon citratus, Hyptis
suaveolens, Lantana camara, Moringa oleifera, Ocimum gratissimum, and Thy-
mus vulgaris. These plants have been selected by domain experts of the Kno-
mana project for their first investigations, according to these plant efficacy in
contrasted situations, diversity of applications, and high presence in most of
the West African territories. The dataset comprises 225 descriptions composed
of 16 pieces of information: the protecting plant (name of the species, genus
and family), the plant origin (territory, part of continent, and continent), the
targeted organism (name of the species, genus, family, and reign), and the pro-
tected system. The latter is described using the protected organism (name of the
species, genus, family, and reign), the production step (e.g. crop, or cattle) and
the treatment place (e.g. field, or stock). Table 3 presents the number of objects
and attributes of the formal contexts of M1 and M2 on the reduced dataset,
and details the number of binary attributes generated for each data type of the
model.

Formal context Number of Number of Included Number of
(Class name) objects attributes data types values

BioPesticide 38 0 (empty class) -

UsedPlant 6 16
family 4
genus 6

species 6

Location 20 32
continent 5

partOfContinent 7
territory 20

ProtectedSystem 14 19
productionStep 7
treatmentPlace 12

ProtectedOrganism 21 48

reign 3
family 11
genus 15

species 19

TargetedOrganism 111 234

reign 5
family 43
genus 78

species 108

ProtectionSystem 225 0 ternary relation -

Table 3. Description of formal contexts of M1 and M2
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RCAExplore software enables to evaluate four kinds of conceptual struc-
tures, and algorithms that allow to build them: concept lattices built with addIn-
tent/addExtent [16] (fca), AOC-posets built with Ares [4] (ares), and Iceberg
lattices [21] for support 30 and 40 (iceberg30, iceberg40). An AOC-poset is
a restriction of the concept lattice to the concepts introducing objects or at-
tributes. Iceberg is a restriction of the concept lattice to the concepts having
a minimal support (i.e. extent size), here to concepts with a minimal support of
30% and 40%. In the next section, we conduct an evaluation of the dataset along
two dimensions: quantitatively, by assessing the possibility of building the con-
ceptual structures and their size, if appropriate, and qualitatively, by analyzing
the ability of M1 and M2 to answer a specific case of the following generic bio-
logical question Q1 raised by our domain experts: ”Given a plant able to protect
an organism against an aggressor, which other plants can alternatively be used
with the same benefits?”. This question corresponds to a so-called ”replacement”
scenario: replace a plant by another one with supposed similar ability to deal
with the observed aggressor on the attacked organism.

4 Results

In this section, we first present the effects of the two proposed encodings on the
conceptual structure construction for our six key plant dataset (Section 4.1), and
then on a real replacement scenario for an Aspergillus7 attack (Section 4.2).

4.1 Six Key Plant Dataset: Conceptual Structure Variants

Tables 4 and 5 respectively show for model M1 and model M2 the numbers of
concepts that were built for each algorithm, and for the enhanced case (where
we take the symmetric closure of the model) and the original cases (as shown
in Figure 3). Tables 6 and 7 respectively show for model M1 and model M2 the
numbers of relational attributes that were built. Step numbers until RCA stops
and execution times are compared in Table 8.

As a first remark, some computations failed (see italics figures between paren-
theses) on a laptop in the enhanced case. For enhanced M1 (resp. enhanced M2),
concept lattices and Iceberg30 (resp. concept lattices) could not be computed
because of lack of memory. Computing AOC-posets and Iceberg40 was always
possible, but Iceberg40 shows very few concepts in the original models, thus we
suspect it will not be very useful for experts in this case.

In Tables 4 and 5, the AOC-posets for both enhanced models M1 and M2
show similar concept numbers, except for ProtectionSystem, which is specific
to M1. The concept number of ProtectionSystem AOC-poset can be roughly
obtained from the sum of the concept numbers of the AOC-posets of the neigh-
bour contexts (Biopesticide, ProtectedSystem and TargetedOrganism). The
concept numbers of Location and ProtectedOrganism do not change between

7 Aspergillus genus groups several species of microscopic fungi.
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M1 enhanced M1 original
fca ares iceberg30 iceberg40 fca ares iceberg30 iceberg40

ProtectionSystem (1660066) 1151 (2750032) 619 415 238 9 3

BioPesticide (16212) 359 (3625) 57 576 113 15 3

UsedPlant (51) 36 (16) 3 51 37 12 3

Location (191) 63 (31) 5 29 27 4 3

ProtectedSystem (1585) 154 (771) 20 42 32 5 4

ProtectedOrganism (300) 95 (38) 17 33 29 4 3

TargetedOrganism (380084) 560 (9386) 61 153 151 5 2

TOTAL (2058489) 2418 (2763899) 782 1299 627 54 21

Table 4. M1 model: number of concepts for each algorithm (italics figures between
parentheses are for failed computations because of lack of memory)

M2 enhanced M2 original
fca ares iceberg30 iceberg40 fca ares iceberg30 iceberg40

BioPesticide (307618) 354 9563 84 23650 178 60 6

UsedPlant (55) 36 16 3 57 38 12 3

Location (191) 63 31 5 29 27 4 3

ProtectedSystem (2270) 153 316 20 747 81 21 5

ProtectedOrganism (495) 93 42 108 33 29 4 3

TargetedOrganism (1363817) 555 48556 108 7186 216 35 4

TOTAL (1674446) 1254 58524 328 31702 569 136 24

Table 5. M2 model: number of concepts for each algorithm (italics figures between
parentheses are for failed computations because of lack of memory)

original models M1 and M2 because they are sinks in the model graph. In the
enhanced case, Location and UsedPlant concept numbers are almost the same
so that we can assume that they do not influence each other too much. For both
enhanced and original models and considering the cases where the computation
finished, M2 Iceberg40 lattices contain more concepts, what suggests that M2
concepts are more populated than M1 concepts; nevertheless there is no sig-
nificant change in scaling factor. Whole concept lattices are built only for the
original M1 and M2 models. For enhanced M2 model, the number of concepts
for Biopesticide and TargetedOrganism explodes, likely due to the circuit
between TargetedOrganism and ProtectedSystem.

Tables 6 and 7 show the numbers of relational attributes and inform us about
the grouping factor provided by the conceptual structures. The formal contexts
that are sinks in the model (no outgoing relation) have no relational attributes.
While observing the enhanced models, we can notice that M2 gives rise to less
relational attributes (but the difference is more significant for Iceberg40 than
for AOC-posets). For the original models, this is the reverse, there are more
relational attributes for M2 than for M1, which could be explained by the fact
that M2 original contains a circuit, which is not the case of M1 original. We also
observe a significant difference between Iceberg30 and Iceberg40 in M2.
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M1 enhanced M1 original
fca ares iceberg30 iceberg40 fca ares iceberg30 iceberg40

ProtectionSystem (3330) 1087 (2025) 138 195 183 10 6

BioPesticide (47959) 1173 (423074) 622 415 238 9 3

UsedPlant (1881) 428 (457) 78 605 140 19 6

Location (51) 36 (16) 35 0 0 0 0

ProtectedSystem (48126) 1230 (23091) 655 33 29 4 3

ProtectedOrganism (289) 156 (219) 68 0 0 0 0

TargetedOrganism (47908) 1137 (423058) 853 0 0 0 0

TOTAL (149544) 5247 (871940) 2449 1248 590 42 18

Table 6. M1 model: number of relational attributes added at each formal context for
each algorithm (italics figures between parentheses are for failed computations because
of lack of memory)

M2 enhanced M2 original
fca ares iceberg30 iceberg40 fca ares iceberg30 iceberg40

BioPesticide (24777) 744 48888 131 7933 297 56 9

UsedPlant (5323) 417 9594 89 23679 205 64 9

Location (51) 36 16 3 0 0 0 0

ProtectedSystem (29560) 1002 58161 209 7219 245 39 7

ProtectedOrganism (585) 153 316 20 0 0 0 0

TargetedOrganism (5789) 507 9879 104 747 81 21 5

TOTAL (66085) 2859 126854 556 39578 828 180 30

Table 7. M2 model: number of relational attributes added at each formal context for
each algorithm (italics figures between parentheses are for failed computations because
of lack of memory)

Table 8 shows the running times and the step numbers. The step numbers
are similar in original M1 and M2. Computing concept lattices for original M2
needs more steps due to the existing circuit and the creation of many non-
introducer concepts. The 16 steps for obtaining the AOC-poset of enhanced M1
are noticeable and correspond to a running time relatively high, compared to
the others. The different running time for original M1 and M2 (from 127ms
to about 9s) allows to envisage online work for experts. For enhanced models
(AOC-posets), it can be preferable to compute them offline.

enhanced models original models
M1 M2 M1 M2

fca (5) (4) 5 9

ares 16 10 5 6

iceberg30 (7) 10 6 6

iceberg40 11 8 5 6

enhanced models original models
M1 M2 M1 M2

fca - - 351 9722

ares 311149 28288 1195 1677

iceberg30 - 29864 137 144

iceberg40 796 223 127 166

Table 8. (left) Final step number and (right) computation time (milliseconds) for each
algorithm and each model
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In the light of the above evaluation, AOC-poset and Iceberg40 are appropriate
for the dataset on both M1 and M2 original models. They will be used in the
next section on a real question raised by the experts. Iceberg40 gives incomplete
information, but allows us to focus on frequent situations. AOC-poset, as it holds
all the introducer concepts, contains the whole initial information. It can be used
to build the entire concept lattice. A concept which appears in the concept lattice
and not in the AOC-poset represents a group Ext of objects and a group Int
of attributes such that (1) each object of Ext is introduced in a sub-concept
because it has an attribute which is not in Int, and (2) each attribute of Int is
introduced in a super-concept because it is owned by an object which is not in
Ext. These concepts are useful to reveal data regularities. In our context, they
could be connection points between different exploration paths. In the future,
we will evaluate in which extent they are useful during exploration, as they
could be built on the fly based on the introducer concepts. Let us notice that
the algorithm running time does not cover all the needed time for a concrete
analysis. In a real scenario, the analyst also needs to select and extract or focus
on presumed relevant data.

4.2 Aspergillus Attack: Answering a Concrete Replacement
Scenario

To assess the pertinence of our approach, we have selected a smaller dataset
from Knomana base and have explored it with both models M1 and M2 with
AOC-posets. This smaller dataset contains the same 6 plants, but only targeted
organisms of Aspergillus family. The aim is then to answer an instantiation of
general question Q1: “knowing recognized benefits of Hyptis suaveolens in the
management of Arachis hypogaea against Aspergillus parasiticus, which other
plants could alternatively be used?”.

Figure 4 gives a simplified version of an excerpt from the AOC-posets built
from BioPesticide and ProtectionSystem contexts, according to M1 model.
In this figure, arrows represent the navigation links (the relational attributes)
which allowed to find and highlight the concepts and the hierarchy we want
to give to our domain expert to explore data around their question. The bold
numbers are the concept numbers, the italic text is for objects of the AOC-poset
and normal text is for relational attributes.

Starting from the introducer concept of Hyptis suaveolens, in UsedPlant

AOC-poset (not shown), we can navigate to concepts 0, 10, 9, 7 and 5 of
BioPesticide AOC-poset (see left of Figure 4). The most specific concept among
them is concept 5 which introduces HB , i.e. the biopesticide produced from Hyp-
tis suaveolens coming from Benin. Following the relational attributes of the con-
cept 5, we can navigate to concepts 9 and 10 of ProtectionSystem AOC-poset
(see right of Figure 4). Concepts 9 and 10 are together non comparable; their
relational attributes show that concept 9 groups plant uses that protect Arachis
hypogaea (PeS 0) from Aspergillus ochraceus (TO 1), while concept 10 groups
plant uses that protect Arachis hypogaea from Aspergillus parasiticus (TO 2),
the last biological system being the one we want to manage.
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In BioPesticide AOC-poset, we also notice that concept 5 owns a subcon-
cept, concept 1, that introduces OGB , i.e. a biopesticide produced from Oci-
mum gratissimum coming from Benin. According to the lattice order, which is
preserved in AOC-posets, it can be deduced, thanks to the inheritance of the at-
tributes, that the biopesticide produced from Ocimum gratissimum coming from
Benin allows to manage at least one of the same biological systems as presented
in concepts 9 and 10 of ProtectionSystem AOC-poset. Ocimum gratissimum
can thus be used instead of Hyptis suaveolens in order to protect Arachis hy-
pogaea against Aspergillus parasiticus, but also against Aspergillus ochraceus,
and Aspergillus flavus. These facts can be checked in Knomana knowledge base.

Fig. 4. Simplified version of an excerpt from the AOC-posets built from BioPesticide

and ProtectionSystem contexts with M1 to answer Q1 in the case study: navigated
concepts and their links are highlighted

Besides, concept 5 inherits a relational attribute PoS 13 from concept 7, that
leads to concept 13 in ProtectionSystem AOC-Poset. This concept 13 is not
comparable with concepts 9 and 10, but all these three concepts are subcon-
cepts of concept 18. Concept 13 groups same plant uses as concepts 9 and 10
(protecting Arachis hypogaea against Aspergillus flavus), but also a different use
(protecting Oryza sativa against Aspergillus flavus) due to the chosen encoding.
Actually, following model M1, protected systems are first classified with respect
to the production step and the treatment location, and then with respect to the
protected organism.
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Furthermore, concept 1 is a subconcept of concept 5 but also of other concepts
in BioPesticide AOC-poset. Based on these hierarchical links we can infer
that the biopesticide produced from Ocimum gratissimum coming from Benin
can protect other biological systems than the ones previously described. The
hierarchical organization highlights these facts for the domain experts.

Let us now consider the analysis based on M2 model; a simplified excerpt of
the resulting AOC-posets is shown in Figure 5. Starting from the introducer con-
cept of Hyptis suaveolens in UsedPlant AOC-poset (not shown), we can navigate
to concept 5 of BioPesticide AOC-poset (see middle of Figure 5) that introduces
HB , i.e. the biopesticide produced from Hyptis suaveolens coming from Benin.
As for model M1, concept 5 has a subconcept introducing OGB . Both models
give currently the same result. Going further, we see that relational attributes of
concept 5 are of two types: eight of them lead to concepts of ProtectedSystem
AOC-poset (see right of Figure 5) while the seven others lead to concepts of
TargetedOrganism AOC-poset (see left of Figure 5). The attributes leading
to TargetedOrganism concepts reveal, by looking at the most specific concepts
(number 1, 2 and 0), that the biopesticides produced from Hyptis suaveolens and
Ocimum gratissimum are used to fight against Aspergillus ochraceus, Aspergillus
parasiticus and Aspergillus flavus. The attributes leading to ProtectedSystem

concepts allow to find again Arachis hypogaea that is introduced by the most
specific among the targeted concepts, concept 0, thanks to relational attribute
PeO 0.

Fig. 5. Simplified version of an excerpt from the AOC-posets built from
TargetedOrganism and ProtectedSystem contexts with M2 to answer Q1 in the case
study: navigated concepts and their links are highlighted
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To summarize, for the case study of this small dataset, both models M1
and M2 allow to find Ocimum gratissimum as an alternative plant to Hyptis
suaveolens for protecting Arachis hypogaea against Aspergillus parasiticus. In
addition, a query will not give more information, contrary to RCA. The formed
concepts not only give one or more answers to the initial question, but they also
show how these answers are classified, and which additional (not included in
the initial question) description they share. Indeed, both models also show that
Hyptis suaveolens can be replaced by Ocimum gratissimum to protect Arachis
hypogaea against Aspergillus ochraceus, and Aspergillus flavus, which is an ad-
ditional information. Besides, by examining the neighborhood of the concepts
which give the searched answer, the experts can formulate hypotheses for new
research. E.g., if they notice that a plant protects a targeted organism against
a specific aggressor, they may design experiments for evaluating if other plants
with similar characteristics (grouped in the same concept) may also have the
same effect. However, a set of three binary relations is not equivalent to one
ternary relation. Model M2 will thus be sometimes less precise because it lacks
the ternary relation. Furthermore, the navigation is more difficult in M2 than
in M1 lattice family because of the greater number of concepts and relational
attributes in M2 lattices.

5 Related Work

As for any data analysis method, studying the data encoding for Formal Concept
Analysis and its impact on the analysis results is an essential phase. In our case,
we need to take into account two specific features of our dataset: multi-relational
information and ternary relations.

Multi-relational information can be encoded through different and comple-
mentary schemes, according to the envisaged analysis. In the FCA domain, sev-
eral approaches highlight the graph nature of relational data [12, 15], and pattern
structures [8] are used to classify graphs describing objects (or tuples). Other
approaches [1, 7] rely on logical formula for relational data encoding, providing
features equivalent to the RCA scaling quantifiers.

With the RCA scheme, the objective is to classify the objects themselves
in several conceptual structures (one per object category), according to the re-
lations that the objects of one category have with objects of another (or the
same) category. The encoding scheme is rooted in an entity-relationship model,
highlighting the categories (entities, encoded through object-attribute formal
contexts) and the relationships (encoded through object-object/relational con-
texts).

Graph-FCA (G-FCA) [5] proposes to consider knowledge graphs based on
n-ary relationships as formal contexts. The intent of a G-FCA concept is a
projected graph pattern and the extent is an object relation. In the same vein,
triadic concept analysis [14] (resp. more generally polyadic concept analysis [22])
has been introduced to deal with 3-dimensional (resp. n-dimensional) formal
contexts. Both proposals could be a solution for giving additional views and
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highlighting more specific information on our data and we will consider them as
future work.

Reading and interpreting RCA structures is known to be difficult. To fa-
cilitate this interpretation, [19] proposed to synthesize the concepts of a main
lattice and their related concepts from the other lattices within a hierarchy of
closed partially-ordered (sequential) patterns, i.e. directed acyclic graphs. This
idea has been generalized by [6], where a family of concept lattices built by RCA
is summarized through a hierarchy of concept graphs. Each concept graph is
a set of concepts (potentially coming from several lattices) whose intents are
mutually dependent, allowing to highlight relational patterns. Concept graphs
are then organized according to the specialization order between concepts they
include.

Overlays on RCAExplore have been proposed in [20] to help the analyst
choices, e.g. by forecasting the number of concepts and rules resulting from a
relational concept family and a quantifier or an algorithm, and several configu-
rations are studied on an environmental dataset. Encoding legal document de-
scription in an RCF is presented in [17], where a relation links legal documents
representing orders to documents representing legislative texts. The resulting
conceptual structures are analyzed through relational queries and exploration
strategies. The effect of several encodings of the UML meta-model in a rela-
tional context family (RCF), that includes or not the navigability and unnamed
roles, has been studied in [10], allowing to conclude which RCFs are practica-
ble, and in general about the applicability of RCA in class model normalization.
Later on, using concept lattices versus AOC-posets has been studied on 15 UML
class models and 15 Java code models in [18], to conclude to the superiority of
AOC-posets in performance and relevancy of the produced structures.

6 Conclusion and Perspectives

The Knomana project provides a valuable collection of information about bio-
pesticide plants in Africa. The project comes with many challenges, including
information gathering, moving from raw information to knowledge associated
with a stable vocabulary and ontology, and exploitation of the gathered infor-
mation. In this paper, we investigate the information exploitation dimension
through the application of relational concept analysis. We analyze variants for
encoding the initial data model into a relational context family, and the effect
of several encoding options, both quantitatively and qualitatively on a few key
plants designated by the domain experts of the Knomana project as their first
investigation focus.

The Knomana project is intended to extend its geographical scope to the
whole world. The information collection is a continuous task, involving master
students and researchers from several countries. Answering the expert questions
will benefit from other approaches, such as using an on-demand algorithm [2,
3], exploring other scaling quantifiers, as well as applying metrics evaluating the
interest of formal concepts [13]. We envisage to define strategies for formaliz-



16 P. Keip et al.

ing the expert questions and automatize, at least partially, the construction of
appropriate relational context families. To save execution time, we plan to imple-
ment in RCAExplore other AOC-poset building algorithms, that we previously
implemented in a more specific tool8. Besides, RCAExplore is currently moving
to the COGUI platform9 in order to pool knowledge processing activities.
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16-CONV-0004 and by INRA-CIRAD GloFoodS metaprogram (KNOMANA
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