
HAL Id: lirmm-02093302
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02093302

Submitted on 8 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Full Compressed Affix Tree Representations
Rodrigo Cánovas, Eric Rivals

To cite this version:
Rodrigo Cánovas, Eric Rivals. Full Compressed Affix Tree Representations. DCC: Data Compression
Conference, IEEE, Apr 2017, Snowbird, UT, United States. pp.102-111, �10.1109/DCC.2017.39�.
�lirmm-02093302�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02093302
https://hal.archives-ouvertes.fr


Full Compressed Affix Tree Representations∗

Rodrigo Cánovas and Eric Rivals†

L.I.R.M.M. - UMR 5506, CNRS et Université de Montpellier
Montpellier, France

Institut Biologie Computationnelle, Montpellier, France
emails: canovas-ba@lirmm.fr, rivals@lirmm.fr

4th April 2017

Abstract

The Suffix Tree, a crucial and versatile data structure for string analysis of large texts, is often used in pattern
matching and in bioinformatics applications. The Affix Tree generalizes the Suffix Tree in that it supports full tree
functionalities in both search directions. The bottleneck of Affix Trees is their space requirement for storing the
data structure. Here, we discuss existing representations and classify them into two categories: Synchronous and
Asynchronous. We design Compressed Affix Tree indexes in both categories and explored how to support all tree
operations bidirectionally. This work compares alternative approaches for compress the Affix Tree, measuring their
space and time trade-offs for different operations. Moreover, to our knowledge, this is the first work that compares all
Compressed Affix Tree implementations, i.e., four different approaches: the Affix Array, the Bidirectional Wavelet
Index, and our two new structures, measures their space and time trade-offs, offering a practical benchmark for this
structure.

1 Introduction
Stringology offers many indexes for unidirectionally searching a pattern in a text, but recently the need for bidirectional
search tools arose for instance in genomics. An example is the search of hairpin like structures that consist of a loop
motif (a short core sequence) and a tail (such that on each side of the loop motif is one half of a palindromic string) [6].
In this search, when a candidate loop is found, one can extend the search with each branch of the hairpin. The search
of such motifs has triggered the development of bidirectional indexes: first the Affix Tree [14, 23], then the Affix
Array [24], and more recently the Bidirectional Wavelet Tree [22]. In all these approaches the procedure can switch
the search direction at any time during the search, which is needed when the whole pattern is not a single word given
at start time, but can shrink or extend in piecewise during the search. Also, recently Affix Trees have been mentioned
as a way to represent complex graphs encoding string overlaps, for example, the Hierarchical Overlap Graph [7].

Here, we introduce a classification of bidirectional indexes based on how they are traversed, Asynchronous and
Synchronous. We propose new Compressed Affix Tree indexes in both categories: the Asynchronous Compressed Af-
fix Tree (ACAT) and the Synchronous Compressed Affix Tree (SCAT), and explain their practical implementations.
Moreover, we exhibit both a reduced version of the index of [10], and a sampled version of ACAT. To evaluate the po-
tential of these approaches and to compare them with different indexes for bidirectional search, we have implemented
the Affix Array [24] (given that the original was not found), and compared seven indexing structures in practice. This
yields the first large and practical overview of bidirectional search indexes in term of memory usage, and of operation
times. Last, all the implementations designed for this article will be made available in near future.
∗Work supported by the Institut de Biologie Computationnelle (ANR-11-BINF-0002).
†to whom correspondance should be addressed.

1



2 Basic Concepts
Let Σ denote a finite alphabet of cardinality σ and T be a sequence of characters from Σ. The length of T is denoted
|T | and let n := |T |. The characters of T are indexed from 1 to n, so that the i-th character of T is Ti or T [i]. A substring
of T is denoted Ti, j = TiTi+1 . . .Tj. A prefix of T is a substring of the form T1, j, and a suffix is a substring of the form
Ti,n.

Suffix Tree Let P = {S1, · · · ,SN} be a set of N strings. A Trie [9, 12] is a tree where each edge is associated with
an element of Σ and each node represents a distinct prefix in the set P. This structure supports searching for a string in
the set in time proportional to the length of the sought string (independently of the set size).

The Suffix Trie of a text T is a Trie built over the set of all the suffixes of T (assuming that T is terminated by a
special element “$”). The Suffix Tree (ST ) [16, 25] of a text T is a Suffix Trie where each unary path is converted into
a single edge. The leaf of the Suffix Tree indicates the text position where the corresponding suffix starts. Table 1
lists some of the operations used to navigate over the nodes and leaves of the Suffix Tree and introduces a notation for
these.

Operation Description
Root() Root of the Suffix Tree.
Ancestor(v,w) True if v is an ancestor of w.
Depth(v) / T Depth(v) String-depth / Tree-depth of v.
Parent(v) Parent node of v.
SLink(v) Suffix-link of v; the node w s.th. π(w) = β if π(v) = aβ for a ∈ Σ.
WLink(v,a) Weiner-link of v given a; the node w s.th. π(w) = aβ if π(v) = β.
LCA(v,w) Lowest common ancestor of v and w.
Child(v,a) The node w s.th. the first letter on edge (v,w) is a ∈ Σ.
Children(v) The list of nodes w such that w is a child of v.
Degree(v) Number of children of v.

Table 1: Navigational operations over the nodes and leaves of a suffix tree.

Various Compressed Suffix Tree (CST ) [1, 18, 20, 21] implementations offering different space vs time trade-off
are available.

Suffix Array A Suffix Array (SA) [15] is a permutation of the interval [1,n] such that TSA[i],n <L TSA[i+1],n for all
1 ≤ i < n, where <L denotes lexicographically smaller than. Several implementations of Compressed Suffix Arrays
have been designed [8, 17]. Each provides three main operations: 1/ given i extract the value of SA[i], 2/ given a
position j in the text T , fetch its position in the Suffix Array (SA−1[ j]), and 3/ find in SA(T ) the interval of the suffixes
starting with a given pattern.

The Suffix Array and the Suffix Tree of a text are connected. When the children of each node of ST (T ) are ordered
lexicographically by their string label, SA(T ) contains the positions of the Suffix Tree leaves visited in left-to-right
order. Moreover, every internal node v of the ST (T ) can be represented as an interval [i, j] of SA(T ) whose suffixes
share a prefix corresponding to node v.

Generally the Suffix Array is equipped with the Longest Common Prefix (LCP) array, which allows solving many
string processing problems in optimal time and space. Conceptually, the LCP array defines the shape of the Suffix
Tree and thus allows any traversal of ST (T ) to be simulated using SA(T ).

Burrows-Wheeler Transform (BWT) For a text T of length n, the BWT (T bwt ) [4] is the last column
of an n× n matrix, denoted MT , whose rows are the rotations (or cyclic shifts) of T sorted in lexicographic order.
Equivalently, the BWT collects the character preceding each suffix of T in the order of SA(T ). Hence the BWT can be
identified with SA. Assuming that the last symbol of T is lexicographically smaller than all the others and unique, it is
possible to reverse the transformation: T [n−1] is located at T bwt [1], since the first element of MT starts with T [n].

2



Figure 1: Example of an Affix Tree, with the Suffix Tree for FOS and text T on the left, the Suffix Tree for BAS and
the reverse of T on the right. Dotted arrows represent the affix links.

The LF , or Last-to-First mapping, function allows us to move from the character T bwt [i], in the last column of MT
to its position in the first column of MT . Thus, LF allows us to navigate T backwards, T [n−2] = T bwt [LF(1)], and for
any position k, T [n−k] = T bwt [LFk−1(1)]. In general, T bwt is stored using a wavelet tree [11, 17]. The T bwt is mainly
used for pattern search using a method called backward search (making use of LF and a sampling of the SA), which is
implemented by the family of indexes known as FM-indexes [17].

Affix Tree The Affix Tree was introduced and tested by Stoye [23], then further studied by Maaß [14]. To support
bidirectional applications, it combines the Suffix Tree of T (denoted ST ) with the Suffix Tree of the reversed text of T
(denoted RT ). The Affix Tree distinguishes four kinds of nodes in a Suffix Tree: explicit nodes, which have at least two
children; implicit nodes, which belong to an edge between two explicit nodes; explicit leaves, which cannot be extend
any further in the tree; and implicit leaves, which belong to the edge linking an explicit leaf to its parent. In the Affix
Tree, each internal node (explicit and implicit) of ST is associated to a node in RT , and vice versa, by an affix link.
The construction of an Affix Tree theoretically takes linear time and space, but in practice it “required large amount of
memory (approximately 45n bytes) and its complex data structure decreased the algorithmic performance” [24].

3 A Classification of Bi-directional Indexes
A bidirectional index in general includes a data structure to search from left to right in T , and another to search from
right to left. We call them respectively the Forward Structure (FOS) and the Backward Structure (BAS) and say that
each is the companion structure of the other. In this work we consider two classifications for storing and maintaining
the current state: Asynchronous and Synchronous.

In the Asynchronous mode, the index maintains a single current state (or current node), say the current state for
FOS, and when a switch of direction is needed, it computes the corresponding state in BAS, before carrying on the
search in the opposite direction. To ease updating the current state, the index stores in an extra table the corresponding
node in BAS for each explicit node in FOS. A symmetrical table is needed to switch from BAS to FOS. Notice that
under this definition, it is only possible to which between the structures from a explicit node to an internal node. In
this mode an state is defined as a quadruplet 〈d, l,node,k〉, where d is the direction of the data structure to which the
(explicit) node with path length l belong, and k is the context length. The context is the prefix of the path from the root
to node that is ignored.

In the Synchronous mode, one maintains a pair of current states: one for FOS, one for BAS. Hence, at each

3



modification of the matched word, both states are updated. These indexes store less information then Asynchronous
indexes, but pay an extra time at each extension of the search. The pair of states must always be synchronized. In this
case an state is defined by the triplet 〈nodeFOS,nodeBAS, l〉. Figure 2 shows an example of states for both categories.

Figure 2: Example of possible states in the Asynchronous and Synchronous modes. Note that the nodes that are
associated are not necessarily the same in both cases.

Table 2 lists all approaches explored in this work.

4



A
pp

ro
ac

h
C

at
eg

or
y

Fu
ll

Tr
ee

O
pe

ra
tio

ns
D

es
cr

ip
tio

n
Sp

ac
e

R
ef

er
en

ce
A

FA
A

sy
nc

hr
on

ou
s

N
o

St
ro

th
m

an
n’

s
A

ffi
x

A
rr

ay
2
·(

SA
+

LC
P
+

ch
ild

ta
bl

es
+

A
Li

nk
)

[2
4]

A
C

A
T

A
sy

nc
hr

on
ou

s
Y

es
A

sy
nc

hr
on

ou
s

A
ffi

x
Tr

ee
im

pl
em

en
ta

tio
n

2
·(

C
ST

+
A

Li
nk
)

N
ew

A
C

A
T

S
A

sy
nc

hr
on

ou
s

Y
es

A
sy

nc
hr

on
ou

s
A

ffi
x

Tr
ee

im
pl

em
en

ta
tio

n
2
·(

C
ST

+
A

li
nk

sa
m

pl
ed
)

N
ew

A
C

A
T

N
A

sy
nc

hr
on

ou
s

Y
es

G
og

et
al

.A
ffi

x
Tr

ee
2
·(

C
ST

+
rm

in
q
+

rm
ax

q)
[1

0]
R

A
C

A
T

N
A

sy
nc

hr
on

ou
s

Y
es

R
ed

uc
ed

ve
rs

io
n

of
A

C
A

T
N

2
·(

C
ST

+
rm

in
q)

N
ew

B
ID

W
T

Sy
nc

hr
on

ou
s

N
o

B
id

ir
ec

tio
na

lB
W

T
2
·(

FM
-I

nd
ex
)

[1
3,

22
]

S
C

A
T

Sy
nc

hr
on

ou
s

Y
es

Sy
nc

hr
on

ou
s

A
ffi

x
Tr

ee
im

pl
em

en
ta

tio
n

2
·(

C
ST

)
N

ew

Ta
bl

e
2:

C
om

pr
es

se
d

A
ffi

x
Tr

ee
ap

pr
oa

ch
es

st
ud

ie
d

in
th

is
w

or
k.

5



4 Asynchronous Approaches
The first attempt to reduce the space required by Affix Trees was the Affix Array (AFA) proposed by Strothmann [24].
He replaced each Suffix Tree by a Suffix Array plus an LCP array. In addition, he included two child tables [2] to ease
locating the children of any node/interval. Finally, the AFA also stores for each explicit node (of FOS and BAS) the
pointer to its corresponding node in the companion structure. The arrays storing these pointers are called the Affix Link
arrays (ALink). The AFA allows both fast access to the child of a node, and fast switching between FOS and BAS.
Also it supports the operation suffix-children (prefix-children), which returns all possible nodes that are an extension
of a node by one character to the right (left).

To compute the ALink arrays, Strothmann’s algorithm precomputes for FOS the SLink (see Table 1) of all explicit
nodes. Then, it traverses the explicit nodes in depth-first preorder, checks whether the ALink value of the current
node is already stored, otherwise computes it. For a node v whose ALink value is unknown, it uses the formula:
ALink(v) :=ChildBAS(ALink(SLink(v)),c), where c is the first character on the string path of v. Computing the ALink
array of BAS is symmetrical.

We notice that Strothmann’s algorithm for compute the ALink for a node v can take many recursive calls (in the
worse case, a number equal to the length of the string path of v). Instead, we propose to visit the nodes in level order,
such that the computation of the ALink for a node v takes a number of recursive steps that is bounded by the length
of the edge linking v to its parent. We experimentally observed that Strothmann’s algorithm exhausted the available
memory for a 50 MB text. So, in this work we compute the ALink array using our proposed methodology.

Strothmann also proved that for every state 〈0, |s|,v,0〉, its reverse associated state is given by 〈1, |v|,ALink(v),k =
|v|− |s|〉. Note that when |s|< |v| (i.e., s is an implicit node), the path of s is a prefix of the path of v. Thus, the path
of the reverse of s is a suffix of the path of ALink(v) starting at position k (see Figure 2).

While the AFA improves on the Affix Tree regarding space, it still requires a huge amount of memory and supports
only operations that can be solved using the Child operation. Since Strothmann’s approach, several compressed repre-
sentations of the Suffix Tree [1, 18, 20, 21] have been reported. We propose to upgrade the AFA by keeping the ALink
arrays but representing FOS and BAS using CST s. This approach, denoted as ACAT (Asynchronous Compressed
Affix Tree), uses less memory than AFA and supports all tree operations.

Moreover, given the ALink formula, it is clear that we don’t need to store all the ALink values (provided that FOS
and BAS support SLink). According to a user defined parameter z, indicating the maximum distance to a sample node
in number of suffix links, we store whether or not the ALink value of a node is sampled. To check if we need to sample
the ALink value of a node, we just need to examine that none of the nodes traversed by doing the operation SLink z
times is already sampled. Otherwise the node is not sampled. We name this approach the ACATS (Asynchronous
Compressed Affix Tree Sampled). It reduces the space used by the Affix Link arrays, at the cost of longer time
for switching between the structures. In the worse case, for each switch at a unsampled node, ACATS would take
additional z SLink and Child operations to get the ALink value of that node.

The lightest scenario for ACATS is when we do not store the ALink arrays at all. Then, each time we want to
compute the corresponding state in the companion structure, we compute it starting from the root. Albrecht and Heun
[3] studied how to optimally obtain the ALink in this case using binary search. A faster approach was presented by
Gog et al.[10]. As the procedure is symmetrical for a node BAS or of FOS, we explain it for the latter. They noted
that if an internal explicit node v is represented as a SA interval [l,r], then all the text positions SA(k) (with l ≤ k ≤ r)
where the string path of the current node occurs are known. This also implies that it is possible to compute all the
positions where the reverse string path occurs in the reverse of T as wk = n− (SA(k)+Depth(v)). With this on mind,
Gog et al.proposed first to compute the array A[i] := SA−1

BAS(n− SA(i)) for 1 ≤ i ≤ n, which converts an entry of the
SA of FOS into the matching entry in the SA of BAS. Then to find the reverse representation of v, it is enough to have
an structure to compute the minimum and another to compute maximum values of A[k] for l ≤ k ≤ r, which points to
the leafs in BAS associated with these values, and to return their lower common ancestor (LCA in Table 1). We refer
to this approach as ACATN. For more details of how the array A is stored and queried, we refer the reader to [10].

Finally we notice that the space used by ACATN could be further reduced. When we switch from one structure
to another, it is enough to know only one extremity of the SA interval in the reverse structure, given that the lengths
of both intervals are equal [22, 24]. This simple fact implies that one of two structures is superfluous (say that for
compute the maximum), and that it reduces the number of operations performed during a switch. We denote this
reduced approach as RACATN.

6



5 Synchronous Approaches
The Synchronous scheme aims at getting rid of Affix Link arrays by keeping FOS and BAS continuously synchronized.
This necessarily increases the search time. For example, if in FOS one extends the current string path by one symbol
to the right, then one also needs to extend the string path in BAS by the same symbol to the left.

To improve over the AFA in terms of space and still support bidirectional search, two groups have proposed in
parallel to use an Affix Array like structure based on the BWT [13, 22]. This approach is called the Bidirectional BWT
(BIDWT for short). The underlying idea is to store FOS and BAS using data structures that support backward search
based on a wavelet tree (FM-Indexes). Then backward and forward extensions of a search are both possible. Indeed,
to extend a current node to the right with character c, one performs a backward search of c from the current state in
BAS. For more details, we refer the reader to [22].

While the BIDWT requires much less space than the Affix Array and offers fast search extension by one character,
it does not support any tree operation which alllow to shrink the current pattern. Moreover, the BIDWT only offers
search extension for a single character. This means that to perform an operation like suffix-children, one needs to
explore the possible extensions for all letters of the alphabet. A similar issue occurs for the Child operation, whenever
the child path is longer than one symbol.

We propose to upgrade the BIDWT by storing FOS and BAS as CST instead of FM-Indexes. We call this approach
the Synchronous Compressed Affix Tree (SCAT). The SCAT can support all tree operations within each structure, but
the issue of maintaining both structures synchronized remains. Fortunately, we noticed that each tree operation has an
equivalent operation in the reverse tree. That is, Parent-Slink and Child-WLink, and all other operations can be solved
using these four operations. Let us give the algorithms for computing Parent as an illustration.

Let 〈nodeFOS,nodeBAS, l〉 be the current state. To compute the Parent in FOS, we return

〈Parent(nodeFOS),SLinkp(nodeBAS), l− p〉,

where p is the length of the edge between the nodeFOS and its parent.

6 Results
In order to compare the approaches presented in this work, we used four different input files obtained from the piz-
zachilli text collection1: DNA, PROTEINS, XML, and ENGLISH. The alphabet of size of the text tested are 16, 27,
97, and 239 respectively, and we use the 50 Megabytes version of each of them (given the high memory requirement
used by AFA). The pizzachilli web-page provides a detailed descriptions of the input files. All experiments were
performed on a computer with Intel(R) Xeon(R) CPU E5-2623 v3 up to 3.00 GHz, The operating system was Ubuntu
14.04.01, version 3.19.0-59-generic-generic Linux kernel. Finally all the approaches described here were implemented
in C++11, using version 4.8.4 of the g++ compiler.

Each implementation uses one specific type of data structure to represent FOS and BAS (but the same for both).
We compared the following methodologies: AFA (which we implemented following Strothmann’s description [24],
since we did not find an available implementation); BIDWT (a wrap implementation using the sdsl library [11],
which includes the bidirectional backward and forward search presented in [22]); ACAT; ACATS (using as sample
parameter z = 1); ACATN (based on the work of Gog et al. [10]); RACATN (our reduced version of ACATN); and
SCAT.

In this work all the approaches that used a CST were implemented using the sct3 version from the sdsl library
[18], which offers a good space/time trade-off in practice. Even if other CST implementations could offer different
trade-offs, or reduce the number of operations to run, we assume that the sct3 implementation gives a fair methodology
to compare all studied approaches.

For space limitations, we show the results of each experiment only over the DNA and ENGLISH texts, which are
the ones with smallest and largest alphabet. Also in all figures of this section, the horizontal and vertical axes are in
logarithmic scale.

1http://pizzachili.dcc.uchile.cl/texts.html

7

http://pizzachili.dcc.uchile.cl/texts.html


 10000

 100000

 1e+06

 1e+07

 1  10  100

T
im

e
 i
n
 m

ill
is

e
c
o
n
d
s

Number of bytes per character

AFA
ACAT

ACATS
ACATN

RACATN
BidWT
SCAT

(a) DNA

 10000

 100000

 1e+06

 1e+07

 1  10  100

T
im

e
 i
n
 m

ill
is

e
c
o
n
d
s

Number of bytes per character

AFA
ACAT

ACATS
ACATN

RACATN
BidWT
SCAT

(b) ENGLISH

Figure 3: Construction time versus storage space.

6.1 Space usage and construction time
Figure 3 shows the space used by each structure (measured in bytes per character of the original text) vs its construction
time (in milliseconds). We observe that our AFA implementation takes over 20 bpc, which is consistent with the figures
in [24]. In comparison the ACAT takes 10 bpc (less than half the AFA), which makes it scalable enough to index
a Human genome (whose length is ∼ 3 Gb). Clearly, the Asynchronous indexes takes longer time and more space
than Synchronous indexes, but most of their construction time is spent for computing the Affix Link arrays (which
use ∼ 6.5 bpc when is completely stored) or some equivalent (the array A for ACATN and RACATN). The SCAT
structure uses almost twice the space of the BIDWT, auguring well of their scalability. This comparatively higher
memory usage is the price to pay for supporting all tree operations, and improving the versatility.

6.2 Performance of navigational operations
We tested four different operations (chosen to be supported by all indexes): Forward-Backward search, Degree,
suffix-children and prefix-children. Among the operations that are supported by full Affix Trees (i.e., not by AFA
nor BIDWT), we only show experiments results for SLink due to space limitations (Note that the performace of tree
operations can change depending on the CST structure used). For the Forward-Backward search, we took samples
of 1000 random sequences of length 100 from the text and searched them performing forward and backward searches
alternatively (thereby switching the direction after each symbol), and repeating the experiment with 1000 samples.
For the operations suffix-children, prefix-children, and SLink we performed each on random samples of 10000 internal
nodes. In all experiments, we report the average time taken to perform one operation.

Figure 4 shows the space used by the indexes (in bpc) versus the time (in microseconds) obtained for Forward-
Backward search. The only competitive solutions against BIDWT, are the AFA and SCAT approaches. While AFA
offers a faster performance but required huge amounts of space, SCAT, which is almost 10 times slower, supports all
tree operations. Note that the solutions containing a representation of the CST could instead incorporate a FM-index
(like the one used by the BIDWT). In this case, it would be possible to re-implement the operation Forward-Backward
search to obtain the same performance than BIDWT.

Figure 5 and 6 show the results obtained for suffix-children and prefix-children respectively. As for the Forward-
Backward search, AFA approach displayed the best time performance, since almost all required information by these
queries is explicitly stored. We also notice that with BIDWT the query time for these two operations depends on the
alphabet size of the input text, while SCAT depends on the CST structure chosen. The differences in time for the
these operations between the Asynchronous approaches are due to the way that each index switches between FOS and
BAS. So comparatively, a direct computation of Children is an advantage only with larger alphabets, when checking
all possible symbols becomes expensive for the BIDWT.

8



 0.1

 1

 10

 100

 1  10  100

T
im

e
 i
n
 m

ic
ro

s
e
c
o
n
d
s

Number of bytes per character

AFA
ACAT

ACATS
ACATN

RACATN
BidWT
SCAT

(a) DNA

 1

 10

 100

 1  10  100

T
im

e
 i
n
 m

ic
ro

s
e
c
o
n
d
s

Number of bytes per character

AFA
ACAT

ACATS
ACATN

RACATN
BidWT
SCAT

(b) ENGLISH

Figure 4: Forward-Backward search time vs space usage.

 1

 10

 100

 1000

 1  10  100

T
im

e
 i
n
 m

ic
ro

s
e
c
o
n
d
s

Number of bytes per character

AFA
ACAT

ACATS
ACATN

RACATN
BidWT
SCAT

(a) DNA

 1

 10

 100

 1000

 1  10  100

T
im

e
 i
n
 m

ic
ro

s
e
c
o
n
d
s

Number of bytes per character

AFA
ACAT

ACATS
ACATN

RACATN
BidWT
SCAT

(b) ENGLISH

Figure 5: Time of operation suffix-children vs space usage.

Figure 7 shows the results obtained for the operation Degree. To solve Degree, BIDWT takes similar times than for
suffix-children, while the time of other indexes depends mostly on how the Compressed Suffix Trees are stored. This
gives a clear advantage (≈ 1 order of magnitude) to all approaches over the BIDWT, where Degree must be computed
by brute force.

Figure 8 shows the average time to perform the SLink operation (which is not supported by BIDWT and AFA).
While the Asynchronous approaches needs only one operation to return the SLink, SCAT always had to perform two
operations, which explains the longer average times obtained with SCAT than with the other methodologies. We
found this behavior repeated when tested other tree operations.

Summarizing, while BIDWT uses less space and offers faster backward/forward search of extension of one char-
acter, it doesn’t supports all the tree operations and is sensitive to the alphabet size when computing operations related
with child. The AFA approach offers generally fastest operation times, but requires too much space, and also miss
some tree operations. When full affix tree operations are required, SCAT uses less space, while being competitive
with the Asynchronous approaches. We prove that RACATN improve both in space and time over ACATN. We show
that ACATS with a sample parameter of 1 (z := 1) uses ≈ 70% of the space of ACAT, while offering similar time
performances. Moreover, although increasing z would reduce the space of ACATS, SCAT gives a lower bound for
space and achieves almost equivalent running times (compared to ACATS with z = 1).

9



 1

 10

 100

 1000

 1  10  100

T
im

e
 i
n
 m

ic
ro

s
e
c
o
n
d
s

Number of bytes per character

AFA
ACAT

ACATS
ACATN

RACATN
BidWT
SCAT

(a) DNA

 1

 10

 100

 1000

 1  10  100

T
im

e
 i
n
 m

ic
ro

s
e
c
o
n
d
s

Number of bytes per character

AFA
ACAT

ACATS
ACATN

RACATN
BidWT
SCAT

(b) ENGLISH

Figure 6: Time of operation prefix-children vs space usage.

 1

 10

 1  10  100

T
im

e
 i
n
 m

ic
ro

s
e
c
o
n
d
s

Number of bytes per character

AFA
ACAT

ACATS
ACATN

RACATN
BidWT
SCAT

(a) DNA

 0.1

 1

 10

 100

 1000

 1  10  100

T
im

e
 i
n
 m

ic
ro

s
e
c
o
n
d
s

Number of bytes per character

AFA
ACAT

ACATS
ACATN

RACATN
BidWT
SCAT

(b) ENGLISH

Figure 7: Time of operation Degree vs space usage.

7 Conclusions
We investigated the design of compressed versions of Affix Trees proposing several new structures and introduced a
way to classify these approaches (Synchronous or Asynchronous), offering a first benchmark of Affix Tree compressed
data structures.

As future work, it will be interesting to see how the structures presented in this paper can be used for pattern
search with errors, where it is necessary to be able to extend and shrink the pattern during the search. Also, new
approaches for bidirectional search will keep emerging (for example [19]), being of great interest to explore how these
new solutions would compare with the ones presented in this work.

Remark and acknowledgements
This report is an extended version of the article published in the Data Compression Conference in 2017 [5]. We
thank the reviewers for insightful comments and suggestions. This work is supported by the Institut de Biologie
Computationnelle (ANR-11-BINF-0002).

10

http://www.ibc-montpellier.fr
http://www.ibc-montpellier.fr


 10

 100

 1  10  100

T
im

e
 i
n
 m

ic
ro

s
e
c
o
n
d
s

Number of bytes per character

ACAT
ACATS
ACATN

RACATN
SCAT

(a) DNA

 1

 10

 100

 1  10  100

T
im

e
 i
n
 m

ic
ro

s
e
c
o
n
d
s

Number of bytes per character

ACAT
ACATS
ACATN

RACATN
SCAT

(b) ENGLISH

Figure 8: Time of operation Slink vs space usage.

References
[1] A. Abeliuk, R. Cánovas, and G. Navarro. Practical Compressed Suffix Trees. Algorithms, 6(2):319–351, 2013.

[2] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing suffix trees with enhanced suffix arrays. Journal of
Discrete Algorithms, 2(1):53–86, 2004.

[3] B. Albrecht and V. Heun. Space Efficient Modifications to Structator - A Fast Index-Based Search Tool for RNA
Sequence-Structure Patterns. In 11th International Symposium on Experimental Algorithms, (SEA), pages 27–38,
2012.

[4] M. Burrows and D. Wheeler. A block-sorting lossless data compression algorithm. Technical report, Digital
Equipment Corporation, 1994.

[5] R. Cánovas and E. Rivals. Full compressed affix tree representations. In A. Bilgin, M. W. Marcellin, J. Serra-
Sagristà, and J. A. Storer, editors, 2017 Data Compression Conference, DCC 2017, Snowbird, UT, USA, April
4-7, 2017, pages 102–111. IEEE, 2017.

[6] Y. Carafa, E. Brody, and C. Thermes. Prediction of Rho-independent Escherichia coli Transcription Terminators.
Journal of Molecular Biology, 216(4):835–858, 1990.

[7] B. Cazaux, R. Cánovas, and E. Rivals. Shortest DNA cyclic cover in compressed space. In Data Compression
Conference DCC, pages 536–545, 2016.

[8] P. Ferragina, R. González, G. Navarro, and R. Venturini. Compressed Text Indexes: From Theory to Practice.
ACM Journal of Experimental Algorithmics (JEA), 13:article 12, 2009.

[9] E. Fredkin. Trie memory. In Communications of the ACM 3, pages 490–500, 1960.

[10] S. Gog, K. Karhu, J. Kärkkäinen, V. Mäkinen, and N. Välimäki. Multi-pattern matching with bidirectional
indexes. Journal of Discrete Algorithms, 24:26–39, 2014.

[11] R. Grossi, A. Gupta, and J. Vitter. High-order entropy-compressed text indexes. In Proc. 14th Symposium on
Discrete Algorithms (SODA), pages 841–850, 2003.

[12] D. Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching. Addison-Wesley, 1973.

[13] T. W. Lam, R. Li, A. Tam, S. Wong, E. Wu, and S. M. Yiu. High Throughput Short Read Alignment via
Bi-directional BWT. In Bioinformatics and Biomedicine, pages 31–36, 2009.

11



[14] M. G. Maaß. Linear Bidirectional On-Line Construction of Affix Trees. Algorithmica, 37(1):43–74, 2003.

[15] U. Manber and E. Myers. Suffix arrays: a new method for on-line string searches. SIAM Journal on Computing,
pages 935–948, 1993.

[16] E. McCreight. A space-economical suffix tree construction algorithm. Journal of the ACM, 32(2):262–272,
1976.

[17] G. Navarro and V. Mäkinen. Compressed Full-Text Indexes. ACM Computing Surveys, 39(1):article 2, 2007.

[18] E. Ohlebusch, J. Fischer, and S. Gog. CST++. In Proc. 17th International Symposium, SPIRE 2010, pages
322–333, 2010.

[19] C. Pockrandt, M. Ehrhardt, and K. Reinert. Constant-time and space-efficient unidirectional and bidirectional
FM-indices using EPR-dictionaries. ArXiv e-prints, 2016.

[20] L. Russo, G. Navarro, and A. Oliveira. Fully-Compressed Suffix Trees. ACM Transactions on Algorithms
(TALG), 7(4):article 53, 2011. 35 pages.

[21] K. Sadakane. Compressed suffix trees with full functionality. Theory of Computing Systems, 41(4):589–607,
2007.

[22] T. Schnattinger, E. Ohlebusch, and S. Gog. Bidirectional search in a string with wavelet trees and bidirectional
matching statistics. Information and Computation, 213:13–22, 2012.

[23] J. Stoye. Affix Trees. Technical Report, University of Bielefeld, 2000.

[24] D. Strothmann. The affix array data structure and its applications to RNA secondary structure analysis. Theoret-
ical Computer Science, 389(1–2):278–294, 2007.

[25] P. Weiner. Linear pattern matching algorithms. In Proc. 14th Annual Symposium on Switching and Automata
Theory, pages 1–11, 1973.

12


	Introduction
	Basic Concepts
	A Classification of Bi-directional Indexes
	Asynchronous Approaches
	Synchronous Approaches
	Results
	Space usage and construction time
	Performance of navigational operations

	Conclusions

