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Vision-based navigation of omnidirectional
mobile robots

Marco Ferro, Antonio Paolillo, Andrea Cherubini and Marilena Vendittelli

Abstract—This paper considers the problem of collision-free
navigation of omnidirectional mobile robots in environments with
obstacles. Information from a monocular camera, encoders, and
an inertial measurement unit is used to achieve the task. Three
different visual servoing control schemes, compatible with the
class of considered robot kinematics and sensor equipment, are
analysed and their robustness properties with respect to actuation
inaccuracies discussed. Then, a controller is proposed with formal
guarantee of convergence to the bisector of a corridor. The
main controller components are a visual servoing control scheme
and a velocity estimation algorithm integrating visual, kinematic
and inertial information. The behaviour of all the considered
algorithms is analised and illustrated through simulations both
for a wheeled and a humanoid robot. The solution proposed as the
most efficient and robust with respect to actuation inaccuracies
is also validated experimentally on a real humanoid NAO.

Index Terms—Visual-Based Navigation, Visual Servoing, Col-
lision Avoidance

I. INTRODUCTION

MOBILE robots have, by construction, an unlimited
workspace wherein to move safely to accomplish tasks

in industrial and service contexts. The working environments
are tipically wide, dynamic and difficult, or impossible, to
structure.

Examples include robotic tasks in logistics or office-like
environments, typically cluttered and dynamic, or exploration
and rescue tasks in post-disaster environments, highly unstruc-
tured with difficult deployment of external sensory services. In
these situations, a reactive navigation mode relying solely on
onboard sensors and exploiting the whole-body reconfiguration
capabilities of the robot is desirable.

Omnidirectional robots, both wheeled and legged, offer
a high degree of manoeuvrability that can ease navigation
in challenging scenarios, like moving sideways in narrow
passages (see Fig. 1). In conjunction with vision-based control
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Fig. 1: NAO going through a narrow passage by walking sideways.

methods, these robots can achieve the above mentioned tasks
in an effective and safe way.

Within vision-based control methods visual servoing
(IBVS) [1] techniques are particularly suited to working
conditions requiring a reactive robot behaviour because they
define the task in the sensor space, without the need of a
map nor of the robot pose estimation within the environment.
In addition, these methods are quite effective in case of
monocular cameras, almost always available also in the sensor
suite of cheap mobile robots.

In this paper we adopt the visual servoing paradigm to
keep omnidirectional mobile robots clear of the surrounding
obstacles through the regulation of properly defined features
in the image plane of the robot camera.

A. Related work

Despite the success of humanoids in recent years and the
wide use of omnidirectional wheeled robots in the industrial
context, few works address the problem of omnidirectional
navigation among obstacles. An obstacle avoidance navigation
scheme, where a number of drivable paths are defined to
generate the omnidirectional motion and avoid obstacles, while
reaching a visible target, is proposed in [2]. The method uses
laser scans to perceive the surrounding environment and does
not exploit visual information. The navigation scheme pro-
posed in [3] solves a simultaneous localization and mapping
problem, while generating an optimized trajectory that exploits
the efficient manoeuvrability of the omnidirectional platform.
The motion is planned in advance, therefore no reactive behav-
ior is possible with respect to unpredicted obstacles. A reactive
obstacle avoidance behavior is obtained in [4] based on optical
flow clustering and an optimization process. Although capable
of avoiding static and moving obstacles in wide workspaces,
the method does not exploits the high maneuverability of the
vechicle to go through narrow passages in cluttered scenarios.

On the other hand, vision-based navigation of humanoid
robots is widely studied. A comprehensive description of
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Fig. 2: Frames of interest to problem formulation.

the general problem is given in [5]. The authors of [6]
present vision-based navigation with obstacles detection for
a humanoid robot in a learning fashion. The robot detects
and classifies the obstacles in order to identify the traversable
space. However, the detection also requires the use of laser
data, along with monocular camera images. In [7], a vision-
based navigation scheme has been presented for a humanoid
robot in a maze-like environment. The robot processes the
images from the camera to extract a pair of visual guidelines
that identify the navigating corridor, and then uses an IBVS
control scheme to walk at the center of the corridor. The
scheme considers the robot moving according to a unicycle
motion model, does not exploit the omnidirectional walking
of humanoids to go through narrow passages, and assumes
that the corridor is large enough to allow safe navigation and
is obstacle-free. In [8], robot navigation is addressed through a
planner based on a pre-built visual memory. The planner takes
into account the presence of unexpected obstacles and exploits
the omnidirectional motion capabilities of the humanoid to
avoid obstacles. However, since the robot is not able to look
towards its moving direction, there is no guarantee that other
unseen obstacles are avoided.

B. Contribution of the paper

With respect to the approaches described above, this pa-
per proposes a reactive vision-based navigation scheme for
omnidirectional robots, that does not rely on map building
nor on localization methods, and takes into account possible
uncertainties on the robot velocity. Exploiting omnidirectional
mobility and kinematic redundancy, the mobile robots are kept
clear of obstacles by moving in the direction of their camera
gaze, while orienting the body in accordance to the size of the
traversable space.

With respect to [9], in this paper we show that the gaze-
velocity alignment, enforced in [9], represents a steady state
constraint in pure visual servoing control schemes that suit the
considered robot kinematics and sensors equipment.

Through a formal comparison of these IBVS schemes we
show that a single, appropriate feature and gaze-velocity
alignment, as proposed in [9], not only is sufficient to ensure
convergence of the robot to the bisector of a corridor but also
ensures better transient behavoiur.

The accurate satisfaction of the gaze-velocity alignment
constraint, however, is critical for the controller convergence.
Therefore, an open loop velocity command is not reliable. To

Fig. 3: Graphical illustration of the visual features xm, ym defined by (1),
and of the distance d used in eq. (5).

solve the problem in this paper we estimate the robot actual
velocity to be fed back in the control loop.

The paper is organised as follows: Section II formulates
the problem and summarizes the approach proposed in [9].
Section III presents the considered vision-based strategies and
discusses their ability to cope with velocity uncertainties. Sec-
tion IV describes the design of the Kalman filter for velocity
estimation and the resulting controller making use of velocity
feedback. Section V presents simulations and experiments and
Section VI concludes the paper.

II. PROBLEM FORMULATION AND PROPOSED APPROACH

Consider an omnidirectional (wheeled or legged) mobile
robot that has to safely navigate within an unknown and
cluttered environment, with flat ground. The robot can rely on
a monocular camera, an IMU and encoders at joints. Figure 2
shows the frames of interest: Fw, the world inertial frame;
Fc, the camera frame with z-axis along the camera focal axis
and the y−axis pointing downwards; Fr, the robot frame with
the x-axis directed along the forward direction of motion. The
orientation of Fc w.r.t. Fr is expressed through a tilt and a pan
angle. The first, denoted by γ, is kept fixed, while the latter,
denoted by qp, is an additional degree of freedom exploited
by the navigation algorithm to set the direction of motion. The
camera position, projected on the ground, in Fw is denoted by
x and y, whereas θ is the orientation of the robot body with
respect to yw. The camera orientation in Fw is θc = θ + qp.

The robot commands available for the navigation task are
given by the velocity vector vr = (vx, vy, ω)T , composed
by the translational velocity components vx and vy , and
the rotational velocity ω, around zr, all expressed in Fr.
Furthermore, the camera pan angle is actuated through the
joint velocity command up, such that up = q̇p.

To achieve the control objective of safe navigation, we
consider the regulation on the image plane of proper visual fea-
tures, defined as functions of all the obstacle centroids detected
on the image. We consider as obstacle each connected region
in the image, not belonging to the dominant plane, which is
determined by the image processing procedure in [10]. This
procedure yields a mask distinguishing ground (light gray in
Fig. 3) from obstacle (dark gray in Fig. 3) pixels. Denoting
by cl = (xl, yl) and cr = (xr, yr) the average of the obstacle
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centroids in the left (respectively, right) half of the image, we
define the visual features (Fig. 3):

xm =
1

2
(xl + xr) , ym = (yl − yr) (1)

where xm denotes the abscissa of the middle point between cl
and cr, while ym is the difference of ordinates. Note that (1) is
ill-conditioned if there are no obstacles in one or both halves
of the image. Therefore, we place one/two fictitious centroid/s
on the image border of the centroid-free half/ves, to keep xm
and ym well-defined. While this alters the true visual features
dynamics, it provides a conservative behavior when obstacles
are out the camera field of view, preserving the effectiveness
of the navigation both in structured scenes (e.g., 90-degree-
turns, T-junctions, see [9]), and in more general unstructured
cluttered scenarios.

The dynamics of the visual features (1) is a function of vr
and up:(

ẋm
ẏm

)
=

(
Jxvx Jxvy Jxωz

Jyvx Jyvy Jyωz

)
vr +

(
Jxωz

Jyωz

)
up =

=

(
Jx
Jy

)
vr + Jωz

up = Jvr + Jωz
up,

(2)

where J and Jωz
, are the image Jacobians with respect to

the considered velocity inputs [9]. The idea is to regulate to
zero the visual features while walking. If the motion is aligned
with the camera gaze, this corresponds to maximize the robot
distance to the obstacles in the workspace. In particular, in
case of a corridor, we have the following:

Proposition 1 [9]: Assuming navigation along a corridor
without obstacles, the regulation of the visual feature xm
to zero, implies the convergence of the camera position and
orientation to the corridor bisector, i.e.:

xm → 0 =⇒ (x, θc)
T → (0, 0)T , (3)

if and only if the following constraint is satisfied:{
vx = v cos qp
vy = v sin qp

(4)

with v =
√
v2x + v2y the norm of the robot linear velocity. Note

that, the proof of this proposition in [9], also provides a lower
bound on the value of γ (i.e., the camera has to be sufficiently
tilted towards the floor).

Proposition 1 guarantees convergence of the camera to the
corridor bisector, thus maximizing distance of the camera
from obstacles. However, depending on the robot footprint,
this does not guarantee obstacle avoidance by the robot
body, particularly in narrow passages. To allow negotiation
of narrow passages, the algorithm uses the image distance
d = |xmax,l−xmin,r| between right and left obstacle contours,
being xmax,l (xmin,r) the abscissa of the rightmost (leftmost)
pixel of left (right) obstacles (see Fig. 3). This value is related
to the measure of the passage width, used to derive a reference
value q∗p for the camera pan angle:

q∗p =


π/2 if d < dmin

π
2

(
1− d−dmin

dmax−dmin

)
if dmin ≤ d ≤ dmax

0 if d > dmax,

(5)

with dmin and dmax given hysteresis lower and upper values,
that prevent chattering effects due to image processing noise.
According to (5), if d is sufficiently high (i.e., the passage is
considered large enough) q∗p = 0, thus the robot orientation is
kept aligned with the camera. On the other hand, if d < dmax
(the passage becomes narrow) q∗p linearly changes from 0 to
π/2 and the robot starts walking sideways by enforcing con-
straint (4). It is worth noticing that, the values of q∗p have been
set assuming the robot motion along the shorter dimension
of its platform footprint, as typically happens for humanoids
or human-like wheeled robots [11]. However, determining the
q∗p that best suits other robot reconfiguration needs is out of
the paper scope and, in our envisioned architecture, is the
prerogative a higher decisional level.

A nice consequence of the above result is that, since the
corridor walls are not required to be parallel, in a maze of
corridors the robot will navigate on the Voronoi diagram of
the environment, provided that the transient phases occurring
at the transitions between corridors are short. The direct
control of the robot velocity ensures short transient in the
gaze-velocity alignment dynamics, thus minimizing risk of
collisions in these phases.

Note, however, that the corridor scenario is used only as
a benchmark (for comparison with, e.g., reference [7] in the
paper) and to prove formal properties. Since the perception
part does not assume any structure in the environment, the
strategy is effective also for navigation in generic environments
with obstacles as will be shown through simulations and
experiments.

Summarizing, the desired navigation task is achieved by
accomplishing the following tasks: (i) align the robot velocity
direction with the camera gaze (i.e., satisfy (4)); (ii) regulate
the visual features to zero; (iii) regulate the camera pan angle
to the desired values to allow sidewalk in narrow passages.

III. VISION-BASED CONTROL STRATEGIES

This section presents three controllers that regulate to zero
the error e = (ev, ep)

T , where ev is a visual error defined to
achieve task (ii), and ep = qp−q∗p is used to achieve task (iii).
The three controllers differ in the definition of ev and in the
way to achieve task (i), i.e., to enforce the constraint (4).

A. 1D-IBVS

The approach, proposed in [9], defines the visual error as
ev = xm. Exponential convergence of ev to zero is guaranteed
by the control law:

ω = −Jxω
−1
(
Kxm

xm + Jxvxvx + Jxvyvy

)
− up

up = −Kpep.
(6)

In the above equation, Kxm
and Kp are two positive gains,

and vx and vy are given by (4). The controller (6) is able
to successfully achieve the navigation task assuming that the
constraint enforced by the commanded velocity (4) is actually
satisfied. However, in real conditions, the actual velocity of the
robot may differ from the nominal one. Therefore, (6) may fail
to achieve the control objectives if the real values of vx and
vy do not satisfy constraint (4).
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Fig. 4: Comparison between 1D IBVS, 1D IBVS with Null-Space Projection, and 2D IBVS with Null-Space Projection: (a) norm of the position error x, (b)
absolute value of the orientation error θc and (c) alignment error φ.

Controller (6), in fact, relies on both the feedback provided
by vision and on a nominal value of the robot velocity. In the
following sections, we propose control schemes based only on
a properly defined visual error and exhibiting different degrees
of robustness with respect to velocity uncertainties.

B. 1D IBVS with Null-Space projection

As done in Sect. III-A, we consider ev = xm, with dynamics
given by (2). Since Jx has dimension 1 × 3, the null-space
N (Jx) has dimension 2. At steady state, when xm = 0, the
basis of N is given by

B1 =


cos qp

sin qp
0

 ,

−Zyr/f0
sin qp

 , (7)

from which we observe that the first vector of the basis is
exactly the unit vector describing the direction of the principal
axis of the camera in Fr. Thus, the alignment constraint (4)
is achieved by projecting in this null space a velocity vector
satisfying (4). The control law has the form

vr = −J#
x (Kxm

xm + Jxωup) + (I3 − J#
x Jx)v∗

up = −Kpep
(8)

being J#
x = JTx (JxJ

T
x )−1 the pseudo-inverse of Jx, I3

the 3 × 3 identity matrix, and v∗ = (v cos qp, v sin qp, 0)T .
Controller (8) guarantees the exponential convergence of xm
to 0 and, at the regulation point, satisfies constraint (4), through
the projection of v∗ in the null-space (7).

We remark that (7) holds at the regulation point xm = 0.
During the transient, the basis of the null-space is not given
by (7). As a result, the instantaneous direction of motion is
not necessarily aligned with the camera principal axis, thus
increasing the risk of collisions with undetected obstacles.
In addition, controller (8) does not solve the problem of
velocity uncertainties since regulation to zero of the feature xm
does not imply satisfaction of the constraint (4) by the robot
actual velocity. In fact, at steady state, any velocity direction
belonging to the space defined by (7) does not perturb the
visual task. The next section shows that the definition of a 2D
visual error allows to achieve the navigation task correctly.

Fig. 5: The Youbot omnidirectional base with two manipulators and a
monocular actuated camera on the top of the central grey cilynder.

C. 2D IBVS with Null-Space Projection

In this case, the visual error is defined as ev = (xm, ym)T ,
with dynamics given by (2). The matrix J has now dimension
2×3, thus the associated null-space N (J), far from singular-
ities, has dimension 1. At xm = 0, a basis for the null-space
is

B2 =


 cos qp

sin qp
0

 (9)

that is, as in the previous case, the unit vector describing the
direction of the principal axis of the camera in Fr. Thus,
to guarantee the exponential convergence of ev to 0, while
keeping the linear velocity direction aligned with the camera
focal axis, we design the following control law

vr = −J#(Kev + Jωup) + (I3 − J#J)v∗

up = −Kpep
(10)

withK > 0 and v∗ = (v cos qp, v sin qp, 0)T . Differently from
(8), the controller successfully aligns the motion direction with
the camera principal axis if and only if ev = 0. In fact, a
velocity direction, not belonging to the null space N (J), i.e.,
not aligned with (9), will generate a visual error. However,
during the transient B2 is not given by (9), and a response
similar to that generated by (8) will be observed.

D. Controllers Comparison

To illustrate the behaviour of the three described controllers,
this section proposes a set of preliminary simulations. The
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Fig. 6: Comparison between 1D IBVS, 1D IBVS with Null-Space Projection, and 2D IBVS with Null-Space Projection, in case of velocity uncertainties: (a)
norm of the position error x, (b) absolute value of the orientation error θc and (c) alignment error φ.

simulated system is the mobile manipulator shown in Fig. 5
composed by the Youbot omnidirectional base carrying two
manipulators and a monocular actuated camera positioned
at the height of 45 cm and pointing downwards with tilt
angle γ = 15◦. This setup is suitable for those applications
where it is necessary to employ an omnidirectional robot with
manipulation capabilities [11].

To evaluate the degree of violation of (4) we define the
alignment error φ = cos−1(v̂T ẑg), with v̂ = 1/v(vx, vy)T

the motion direction and ẑg = (cos qp, sin qp)
T the ground

projection of the camera focal axis.
The results shown in Fig. 4 compare the three controllers in

terms of camera positioning error x, camera orientation error
θc (defined in Sect. II), and alignment error φ. All the three
controllers regulate the errors x and θc to zero (Fig. 4a-4b).
However, the transient duration and error are smaller for the
1D-IBVS, see Fig. 4c. This reduces the risk of collisions with
undetected obstacles (see the accompanying video).

According to the above results, in nominal conditions, the
1D-IBVS control exhibits a safer transient behaviour with
respect to the two alternative controllers. However, in the
presence of actuation errors, due for example to modelling
inaccuracies or mechanical faults, the actual robot velocity can
differ from the nominal one, possibly violating (4). To analyze
the effect of this error, we repeated the simulations considering
additive perturbations on the nominal velocity components,
i.e., vx = v̄x + ∆vx, and vy = v̄y + ∆vy , where v̄x,y are
the components of the commanded velocity, and ∆vx,y the
additive, unknown, perturbation.

The simulation results obtained with ∆vx = 10%v and
∆vy = 25%v are shown in Fig 6. The 1D-IBVS (6) and 1D-
IBVS+NSP (8) are no longer able to regulate the camera pose
along the corridor bisector. Instead, the 2D-IBVS+NSP (10)
regulates the errors to zero. As explained in Sect. III-C, this
occurs because the convergence of the visual error to zero
is a necessary and sufficient condition for convergence of
the camera to the corridor bisector in case of control (10).
In fact, only velocities aligned with the camera gaze belong
to the null space of the image Jacobian in (10) and, due to
Proposition 1, this implies convergence of the camera pose to
the corridor bisector. Nonetheless, the control strategy (10)
is still unsafe during the transient response of the system,

as shown in Fig. 6c, where the violation of the alignment
constraint indicates that it is not moving toward the direction
it is looking at. In principle, this behavior might be improved
by fine tuning the controller gains. However, a robust choice
of these parameters, based on a rigorous analysis of the robot
dynamics is not easy, particularly for humanoids.

In the next Section, we provide an easier and cheaper
solution. It extends (6) with an estimation of the robot velocity,
used to close a loop on vx and vy to satisfy (4).

IV. 1D-IBVS CONTROLLER WITH VELOCITY FEEDBACK

This section illustrates the robot velocity regulation based
on the velocity estimation provided by a Kalman filter.

A. Kalman filter design
The filter fuses data from IMU, encoders and monocular

camera. Fusing proprioceptive data with visual information is
a well-established approach in the literature [12] [13] [14].
In this case, we use the acceleration measured by the IMU
in the filter prediction, to propagate an initial estimation of
the robot velocity. Filter updates are obtained through the
robot differential kinematics, relying on encoders data, and an
estimation of the robot velocity based on optical flow [15] [16].
This last estimation comes at no additional computational cost
since the optical flow is also computed to detect obstacles (see
Sect. II).

We want to estimate the vector ξ = (vTIMU ,ω
T
IMU )T de-

scribing the 6D robot velocity expressed in the reference frame
FIMU attached to the IMU of the robot. Since we use both
visual (VIS) and differential-kinematics (DK) measurements
for the filter update step, we assume a 12D measurement vector
yk. Considering the accelerometer data aIMU = u as input
of the system, the discrete-time stochastic propagation model
of the state vector ξ at step k is

ξk+1 = ξk + ∆T

(
I3
03

)
uk + nk, (11)

where ∆T is the sampling time and nk ∼ N (0,Nk) is
the zero-mean process noise with covariance matrix Nk. The
measurement model describing the output of the system is

yk =

(
I6
I6

)
ξk +wk, (12)
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Fig. 7: (a) Omnidirectional wheeled robot moving among obstacles. Comparison of: (b) measured velocities: ground truth (GT) (blue), vision-based (green)
and Kalman filter estimation (red); (c) reference velocity (blue) given by (4) and actual robot velocity (red), under the control (14). (d) Alignment error φ.

where wk = (wV IS ,wDK)
T ∼ N (0,W k) is the zero-mean

measurement noise with covariance matrix

W k =

(
W V IS,k 06

06 WDK,k

)
, (13)

with wV IS,k ∼ N (0,W V IS,k) and wDK,k ∼
N (0,WDK,k). From (11) and (12), the standard equations
of the Kalman filter are applied to estimate, at time t = k∆T ,
ξ̂k and the associated covariance matrix P k [17].

B. Velocity control loop

Once a reliable velocity estimation is available, we directly
evaluate the error between a desired velocity vd (assigned
according to (4)), and the estimation v of the actual robot
velocity provided by the filter. Given an acceleration input
vector a, the control is derived considering the ideal model
for the center of mass of the robot v̇ = a. Then, defining the
error exy = v − vd, to guarantee its exponential convergence
to zero, we compute a = v̇d − Kxyexy , with Kxy > 0.
Integrating this acceleration input we get

v = vd −Kxy

∫ t

0

exy(τ)dt (14)

which is the velocity commanded to the robot. This is an
integral control of the robot velocity which does not require
use of the (unavailable) robot position knowledge.

Used in combination with the 1D-IBVS control (6), this
controller allows to always keep the robot velocity aligned
with its gaze, thus solving the formulated navigation problem.
In the next section, we show both simulation and experimental
results validating the effectiveness of the controller.

V. SIMULATIONS AND EXPERIMENTS

To validate the controller with velocity feedback, we per-
formed simulations in the virtual environment V-REP, using an
omnidirectional wheeled robot and the humanoid NAO. Two
experiments were performed on a real NAO robot.

A. Simulations with a wheeled robot

This group of simulations uses the omnidirectional mobile
manipulator in Fig. 5, described in Sect. III-D. The camera
image resolution is 320×240. A region of interest (ROI) of the
source image has been considered for computation of the vi-
sual error to exclude detection of both too far and too close ob-
jects. This prevents the robot from reacting too fast and, at the
same time, avoids that the robot body, when moving sideways,
is erroneously considered as an obstacle. The robot velocity
norm is v = 0.095 m/s. We set dmin = {165, 180} pixels
and dmax = {185, 195} pxl for the evaluation of q∗p . For
the estimation of the robot velocity, in this case, we only
considered the vision-based velocity measurement (not the
encoders). The covariance matrices considered for the estima-
tion are Nk = diag

(
10−10, 10−10, 10−10, 10−1, 10−1, 10−1

)
,

W V IS,k = diag
(
10−9, 10−9, 10−8, 10−8, 10−8, 10−8

)
. The

control gains of the controller are Kxm
= 0.5, Kp = 0.45,

Kxy = diag(0.9, 0.9). Finally, the velocity perturbation terms
are set as ∆vx = 0.01m/s and ∆vx = 0.025m/s.

As navigation scenario, we considered a straight, long
corridor with multiple obstacles generating narrow passages
(see Fig. 7a). The figure shows the navigation pattern and the
executed trajectory: when the robot is approaching a narrow
passage, the control (6) re-orients the robot by acting on the
camera pan angle qp, allowing the robot to safely cross the
passage. In addition, control law (14) takes into account the
actuation disturbances ∆vx and ∆vy by estimating the current
robot navigation velocity (Fig. 7b), and correcting properly
the commands to satisfy (4). Fig. 7c shows the tracking of the
actual robot velocity w.r.t the desired values, while Fig. 7d
shows the resulting alignment error φ.

B. Simulations with a humanoid robot

For the simulations with a humanoid robot, we used the
small robot NAO. The robot is equipped with a pair of
monocular cameras, mounted on top and on bottom of the
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Fig. 8: (a) NAO moving among obstacles. Comparison of: (b) measured velocities: ground truth (blue), vision-based (green), kinematics-based (cyan) and
Kalman filter estimate (red); (c) reference velocity (blue) given by (4) and actual velocity (red), with control (14). (d) Alignment error φ.

head. To avoid undesired image occlusions caused by the robot
body, we only used the top camera. The robot is commanded
through the built-in library NAOqi, that allows to directly
command the robot translational velocity components vx, vy
and the angular velocity ω. The main issue in implementing
the proposed control scheme on a humanoid robot lies in the
sway motion caused by the robot walk. This may have drastic
effects on vision-based measurement processes involved in
the navigation scheme, since the optical flow is prone to
noise due to image blur. While it is possible to identify
and isolate the sway motion from the overall motion of the
robot [18] [19], satisfying results are also achieved by filtering
out the generated oscillations in the affected signals [19].
Inspired by this latter work, we applied a low-pass filter on
the detected dominant plane and the sensor measurements
used for robot velocity estimation. In addition, the oscillations
also generate erroneous acceleration measurements, due to the
projection of the gravity vector g = [0, 0, g]T along the
x- and y-axis of FIMU . We compensate such projections to
generate reliable data for the Kalman filter. By measuring the
torso angles α and β w.r.t. g through NAOqi, the compensated
acceleration a is computed from the raw measurement â as
a = â − gb, where b = (sinβ, cosβ sinα, cosβ cosα)

T .
We set γ = 11.45◦, v = 0.0476 m/s, dmin = {100, 133}
and dmax = {140, 145} pxl. For the robot velocity esti-
mation, we used filtered vision- and kinematics-based ve-
locity measurements in the filter update, with covariances
W V IS,k = diag

(
10−6, 10−6, 10−6, 10−7, 10−7, 10−7

)
and

WKIN,k = diag
(
10−9, 10−9, 10−9, 10−8, 10−8, 10−8

)
. The

control gains are Kxy = diag(0.04, 0.04), Kxm
= 0.4,

Kp = 0.05. As actuation disturbance, we set ∆vx = 10%v.

We validated the method with two simulations. First, we
considered a straight corridor with multiple obstacles and
narrow passages. Fig. 8a shows the trajectory and the reconfig-
urations of the robot: the controller compensates the actuation
disturbance estimated through the Kalman filter (Fig. 8b)

and allows to track the reference velocity determined by (4)
(Fig 8c). The alignment error φ is shown in Fig. 8d. The
peak values of the error correspond to changes on the robot
body orientation to cross narrow passages. In the second
simulation , shown in the accompanying video, NAO walks
in a general cluttered environment, avoiding obstacles and
moving sideways to cross a narrow passage.

C. Experiments with the humanoid robot

Experiments to validate the proposed control framework
have been performed with the robot NAO. Velocity ground
truth is provided by a VICON Motion Capture System. Three
markers have been placed on the robot head to identify the
reference frame Fm. The homogeneous transformation matrix
mT c between Fm and Fc has been estimated through a least-
square-based camera-VICON calibration algorithm.

The scenario consists of a straight corridor with a narrow
passage, made of wooden panels and a patched carpet. The
injected velocity perturbation term is ∆vx = 20%v. Fig. 9
shows NAO navigating with and without velocity feedback
control: on top, the robot walks under controls (4)-(6), but (4)
is violated due to the actuation disturbance, since the actual
navigation velocity is not taken into account. The velocity
is not aligned with the camera gaze and the robot collides
soon against one of the corridor walls. On bottom, using
the control (14) the robot velocity converges to the reference
values satisfying (4). Thus, the alignment error φ converges to
0 (Fig 10) and the robot crosses the narrow passage without
collisions, recovering the corridor center.

VI. CONCLUSIONS

Through a comparative analysis of three vision-based con-
trol strategies for navigation of omnidirectional robots in
environments with obstacles, this work shows that a single,
appropriate, feature and gaze-velocity alignment guarantee
obstacle avoidance. The controllers share the characteristic
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Fig. 9: NAO navigating in a corridor with a narrow passage, and a velocity
perturbation of ∆vx = 20%v. Navigation under the control (4)-(6) (top) and
(6)-(14) (bottom). For each snapshot, the dominant plane is also shown.

of aligning, at steady state, the camera gaze with the robot
velocity, thus allowing the robot to move in the direction where
it is looking while orienting the body in accordance to the size
of the traversable space.

We show that the direct enforcement of the gaze-velocity
constraint minimizes the risk of collisions also during the
transient phases of navigation. To robustly enforce the gaze-
velocity constraint the actual robot velocity is estimated and
fed back to the controller.

Future work includes analysis of the method performance
in the presence of moving obstacles.
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