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ABSTRACT In recent years, the edge computing paradigm has been attracting much attention in the
Internet-of-Things domain. It aims to push the frontier of computing applications, data, and services away
from the usually centralized cloud servers, to the boundary of the network. The benefits of this paradigm
shift include better reactivity and reliability, reduced data transfer costs towards the centralized cloud
servers, and enhanced confidentiality. The design of energy-efficient edge compute nodes requires, among
others, low power cores such as microprocessors. Heterogeneous architectures are key solutions to address
the crucial energy-efficiency demand in modern systems. They combine various processors providing
attractive power and performance trade-offs. Unfortunately, no standard heterogeneous microcontroller-
based architecture exists for edge computing.
This paper deals with the aforementioned issue by exploring typical low power architectures for edge
computing. Various heterogeneous multicore designs are developed and prototyped on FPGA for unbiased
evaluation. These designs rely on cost-effective and inherently ultra-low power cores commercialized by
Cortus SA, a world-leading semiconductor IP company in the embedded ultra-low power microcontroller
domain. Some microarchitecture-level design considerations, e.g. floating point and out-of-order computing
capabilities, are taken into account for exploring candidate solutions. In addition, a tailored and flexible
multi-task programming model is defined for the proposed architecture paradigm. We analyze the behavior
of various application programs on available core configurations. This provides valuable insights on the
best architecture setups that match program characteristics, so as to enable increased energy-efficiency.
Our experiments on multi-benchmark programs show that on average 22% energy gain can be achieved
(up to 45%) compared to a reference system design, i.e., a system with the same execution architecture,
but agnostic of the task management insights gained from the comprehensive evaluation carried out in this
work.

INDEX TERMS Edge computing, energy-efficiency, heterogeneous multicore architectures, programming
model, embedded systems

I. INTRODUCTION

THE recent trend towards edge computing witnessed in
the well-established Internet-of-Things (IoT) domain

[1] will keep on increasing thanks to new promising hard-
ware solutions enabling applications to meet computing
task requirements at affordable costs in power [2]–[4]. This
computing paradigm aims to push the frontier of comput-
ing applications, data, and services away from the usually

centralized nodes located in the cloud-first architecture, to
the periphery of the network. The resulting decentralization
brings a number of benefits [2], [5], [6] including better
reactivity and reliability thanks to local compute resources
that fill parts of application demands in an isolated way;
reduced data transmission costs towards cloud servers thanks
to local data processing capabilities; enhanced confidentiality
thanks to the ability of transforming sensible raw data before
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the transfer on cloud server if required; and human-centered
designs in which proprietary information remain under the
control of their owners, who can also manage the links of
their networks.

Among state-of-the-art compute platforms [7] entering the
race to solve the edge computing challenges, we can mention
the Intel Movidius Myriad technology [8], the Samsung
Exynos 9 Series 9810 processor [9], the Jetson TX2 board
[10] and the Machine and Object Detection processors an-
nounced by ARM in its Trillium project [11]. An important
aim of these platforms is to provide power-efficient compute
capabilities for embedded artificial intelligence. This favors
autonomous decision-making in the edge. In this context,
the integration of several low power processors within the
corresponding chips has become the current practice. On
the other hand, to deal with the data storage requirements
in edge devices (e.g., saving weights in neural networks),
Non-Volatile Memory (NVM) technologies [12] have been
adopted. They enable low energy consumption while provid-
ing fast I/O accesses. They also promote emerging computing
paradigms such as in-memory computing [13], which re-
moves the costly data movements occurring in Von Neumann
computer architecture, where memory and computing units
are physically decoupled.

Harnessing the energy-efficiency of edge computing pe-
ripheral nodes, i.e., the amount of achieved work per watt,
calls for ultra-low power hardware devices that are capable
of delivering adequate computing performance to process
data locally on the node. Typical approaches such as the
aforementioned ARM Object Detection processors, rely on
architecture specialization for particular applications tasks.
Thus, they are insufficient for dealing with the general-
purpose computing challenge on edge nodes [14]. Further
computing platforms that could be considered at the edge
include Raspberry Pi, Arduino, and Intel Galileo [7].

However, the real game-changers are expected to be het-
erogeneous multicore architectures supporting any kind of
workload within a very tight power budget. The present
paper focuses on this direction by exploring compute node
designs, built from microcontrollers, with an overall power
consumption that remains below a watt. It addresses both the
architecture construction and its programming.

A. HETEROGENEOUS ARCHITECTURES
Heterogeneous computing usually refers to systems includ-
ing various processing elements so as to meet both perfor-
mance and power-efficiency requirements. Typical heteroge-
neous architectures combine CPUs and compute accelera-
tors such as Graphical Processing Units (GPUs). While the
former are well-suited for executing sequential workloads
and the operating system, the latter are rather devoted to
massively regular parallel workloads, e.g., data-parallel al-
gorithms. For instance, the Llano processor [15] proposed by
AMD and the Jetson TX2 board [10] from Nvidia follow this
idea by combining multicore CPUs with a GPU. Other het-
erogeneous multicore platforms rather combine DSPs with

CPUs, as in the KeyStone DSP+ARM SoC1 from Texas
Instruments.

The ARM big.LITTLE technology [16] considers two dif-
ferent clusters: a big cluster composed of high-performance
application processors used to execute heavy workloads,
and a LITTLE cluster composed of low power application
processors that are used for a lightweight workload to save
energy. By exploiting this feature, a suitable runtime can
provide workloads with required performance while reducing
the power consumption whenever possible.

Despite the attractive features of the above heterogeneous
multicore chips, they do not offer a power reduction be-
low a watt for aggressive energy sustainability in battery-
powered edge nodes. This is hardly achievable with plat-
forms such as the Jetson TX board and ARM big.LITTLE
Exynos chip families, which even consume a few watts in
idle status. Moreover, platforms that combine processing
elements supporting different instruction set architectures,
such as the aforementioned Jetson TX2, Llano and KeyStone
DSP+ARM SoCs, do not facilitate a uniform and simple
programming of applications. Note that some of these chips
are not mature and robust enough in real-world commercial
solutions [17]. Therefore, exploring complementary opportu-
nities is very relevant.

B. PROBLEM FORMULATION
Our study aims to devise heterogeneous compute node de-
signs [18], [19], which have sub-watt power consumption and
can fill the current gap observed in the implementation of
edge devices. It is expressed through the following problem.

DEFINITION 1 (DESIGN PROBLEM): Starting from a family
of low power processors, supporting the same instruction set
architecture (ISA) and their complementary System-on-Chip
(SoC) blocks, we build and evaluate heterogeneous systems.
The main requirements taken into account are:

1) cores heterogeneity: the target architectures rely on
the combination of cores with different features re-
sulting from graceful customization, which could be
leveraged as much as possible in order to provide the
best trade-offs in terms of performance and power;

2) low power hardware architecture: the cores and SoC
blocks used to build the target heterogeneous architec-
tures inherently dissipate low power, which contributes
to minimizing the energy consumption of the target
architecture;

3) application characteristics-aware execution: the con-
sidered programming model favors workload manage-
ment in such a way that application programs execute
on the most energy-efficient hardware configurations
with respect to their characteristics, e.g., compute-
intensiveness versus synchronization-intensiveness.

The work carried out in this paper is based on FPGA proto-
typing so as to derive performance and power measurements

1https://training.ti.com/keystone-ii-dsparm-soc-architecture-overview
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with the highest possible confidence.

C. OUR CONTRIBUTION
In light of the issues raised above, this paper advocates
a novel asymmetric multicore architecture, together with
an associated programming model and workload manage-
ment. This architecture includes ultra-low power cores de-
voted to parallel workloads for high throughput, and a high-
performance core that copes with weakly-parallel workloads.
The covered parallel workloads can be either regular and
irregular. Even though the above design a priori resembles
a CPU/GPU heterogeneous combination, it proves far more
flexible in the sense that GPU is only practical for rather
regular parallel workloads. In addition, GPUs require specific
APIs such as OpenCL and CUDA, which are not necessarily
supported by CPUs, requiring extensive software support.
Our proposal exploits a unique programming model, thus
facilitating the programmer’s job.

A salient feature of our proposal is the usage of the cost-
effective and inherently low power core technology pro-
vided by Cortus SA [20], one of the world-leading semi-
conductor IP companies in the embedded domain. These
cores are highly energy (MIPS/µW) and silicon efficient
(MIPS/mm2) compared to existing technologies. We believe
the massive usage of such embedded cores deserves atten-
tion to achieve the energy-efficient architectures required for
high-performance embedded computing. Compared to ARM
big.LITTLE, which considers only application processors,
our approach combines a high-frequency core and several
microcontrollers (not intended to support a full OS), which
are key for aggressive energy optimization.

Another trade-off considered in our solution is the support
of floating point arithmetic, which is important for a range
of applications executed in edge computing nodes: matrix
inversion required for Multiple Input / Multiple Output
(MIMO); Fast Fourier Transforms (FFT) which often suffer
from scaling problems in fixed point; and Machine Learning
tasks (e.g., [21]) through the weights neural networks, etc. As
floating point units (FPUs) can be expensive in terms of area
and power in the very low power cores being considered, it is
considered as a customization parameter.

Finally, a tailored lightweight and flexible multi-task pro-
gramming model is defined in order to describe and man-
age application programs on the multicore architectures. By
taking different programs characteristics into account during
workload allocation, we show 22% energy-efficiency im-
provement on average (up to 45%) while executing multi-
benchmark programs, compared to a reference design, mea-
sured on FPGA prototypes.

D. OUTLINE OF THE PAPER
The remainder of this paper is organized as follows: Section
II discusses some related studies on the design of computing
solutions for edge computing; then Section III introduces the
architecture building blocks selected for our proposal; Sec-
tion IV presents the programming model devised for applica-

tion workload management on top of designed architectures;
Section V describes a comprehensive evaluation of different
architecture variants, in terms of energy gain; Section VI
shows how the insights gained from the previous evaluation
can be exploited for improving the energy-efficiency through
a better workload scheduling; finally, Section VII gives con-
cluding remarks and perspectives.

II. RELATED WORK
The need of well-suited heterogeneous architectures for IoT
devices has been already motivated [18]. Similarly, the edge
computing applications also require such architectures for
energy-efficient execution on their compute nodes. A recent
survey [19] presents the main microprocessor technologies
and computing paradigms that are under consideration for
addressing the IoT compute node requirements, i.e., in-
telligence, heterogeneity, real-time constraints, spatial con-
straints, inter-node support, etc. A certain number of com-
puting paradigms are distinguished, as follows:

• configurable architectures, which support configurable
components such as caches [22], reorder buffer [23]
or pipeline [24]: they are efficient w.r.t. energy, perfor-
mance, cost, and area; configurable, i.e., specialized to
different applications for better energy-efficiency; and
profitable for future applications without being over-
provisioned for current applications.

• distributed heterogeneous architectures [25], which
equip a microprocessor with other core types or con-
figurations, such as CPUs, DSPs or GPUs: they are
efficient, profitable for future applications, and extensi-
ble, i.e., further microprocessors could be derived from
the current ones by extending them with additional
functionalities (e.g., specialized instructions).

• approximate computing [26] [27], energy harvest-
ing [28] [29] and non volatile processors [30] [31],
which are mainly efficient. The approximate computing
paradigm tolerates less accurate results while preserving
acceptable output quality. This concession comes with
notable performance and energy gains. Energy harvest-
ing for available sources such as solar or radio frequency
radiation enables to supplement batteries in ultra-low
power nodes. Non-volatile processors integrate NVM to
save processor state and quickly restore it later on wake
up (after a power disruption). They have been leveraged
for energy harvesting systems [32].

• in-memory processing [33] [34], which reduces off-chip
communications and favors the local processing of the
data collected on a node: this computing paradigm is
efficient and extensible.

• secure microarchitectures [35] [36]: they provide secu-
rity guarantees since IoT compute node are potentially
subject to attacks.

We adopt an approach based on heterogeneous architec-
tures as a design solution in this work. As pointed out in [19],
the major part of research efforts on heterogeneous cores has

VOLUME 0, 2016 3



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2910932, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a)Quadcore template (b)Another quadcore template (c)Heptacore template

FIGURE 1: Various templates of the proposed asymmetric architecture

been conducted in general-purpose computers and embedded
systems, without explicit application to IoT microprocessors.

Several studies have been carried out in academia on
asymmetric architecture design. Hill et al. [37] applied Am-
dahl’s Law to explore different multicore chip architecture
designs, namely symmetric, asymmetric and dynamic mul-
ticore (which enables multiple cores to work together for
sequential execution). They combined an Amdahl’s soft-
ware model with a simple hardware model based on fixed
chip resources. They observed that asymmetric and dynamic
multicore chips offer the highest speedups. Morad et al.
[38] evaluated asymmetric cluster chip multiprocessors for
maximizing performance within a given power budget. Here,
serial regions of multi-task programs are executed on high-
performance cores while parallel regions are executed on
both large and small cores. A theoretical analysis, validated
by emulation, has been applied to make a comparison with
symmetric clusters. The authors observed that asymmetric
design can provide a reduction of more than two thirds in
power for similar performance while enabling more than
70% higher performance for the same power budget. Both
[37] and [38] concluded their study by pointing out the
fact that asymmetric architecture design exploration deserves
much more attention for improved performance and power-
efficiency in modern multicore systems. Reaching this goal
obviously requires suitable program execution models capa-
ble of exploiting this asymmetric feature [39].

The two major challenges raised by authors in [19] re-
garding heterogeneous microprocessors for the IoT concern
the core configuration (i.e., number and type of cores) and
the scheduling of applications to the appropriate cores. This
requires a careful analysis of the execution requirements of a
wide variety of application characteristics, w.r.t. considered
cores. Only a few existing works partially addressed this
problem in the literature. In [40], authors tried to under-
stand the interaction between execution characteristics of
IoT applications (such as compute or memory intensity)
and the architectural features of edge nodes (such as clock
frequency, memory capacity) designed with ARM and Intel
CPUs. In [41], authors described a design space exploration
methodology that focuses on the combination of different
CPU microarchitectures to design energy-efficient proces-

sors for IoT applications. In both studies, authors mainly
focused on the impact of CPU frequencies and cache sizes on
the performance and energy when executing the considered
benchmarks. They used existing architecture simulators (i.e.,
gem5 and ESESC) combined with power estimation tools
(e.g., McPAT) to perform their respective analyses. While
such tools enable reasonable virtual prototyping, they can
lead to biased evaluations. For instance, the average error of
the used CPU models in such tools is rarely low, e.g., below
20% [42].

The current paper deals with similar issues as in [40], [41].
It relies on a novel asymmetric single-ISA architecture built
with cost-effective and very low power core technology. Un-
like the aforementioned studies, it considers microarchitec-
ture design trade-offs targeting advanced mechanisms such
as out-of-order, in-order, float-point unit execution supports.
It adopts an FPGA-based prototyping to avoid unbiased eval-
uation. Special attention is given to the application workload
management on such an architecture in order to optimize
both performance and power consumption. We also show
that the design trade-off of floating point support plays an
important role in performance improvement while benefiting
the inherently low-power nature of the cores. Finally, we
demonstrate that leveraging some knowledge of application
characteristics contributes to reaching this goal.

III. HETEROGENEOUS ARCHITECTURE DESIGN
The design approach adopted for the considered heteroge-
neous multicore architectures relies on different core cus-
tomization degrees: i) a basic ultra-low-power and high code
density CPU microprocessor without a floating point unit
(FPU), ii) a low-power microprocessor having a FPU, and
iii) a high-performance application processor based on a
fully-out-of-order multiple issue architecture, FPU and full
MMU support. This offers more opportunities in terms of
performance and power tradeoffs.

A. GENERAL PRINCIPLE
Fig. 1 shows three templates of candidate designs. These tem-
plates are arbitrary designs, which, however, aim at providing
a trade-off regarding the core diversity requirements, e.g.,
out-of-order versus in-order cores, cores with versus without
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FPU, for global energy-efficiency. The quadcore architecture
depicted in Fig. 1a comprises one high-performance core,
referred to as HP-Core2; and three low power cores, i.e.,
micro-controllers, with various features: one core with FPU,
referred to as LPF-Core3 and two cores without FPU referred
to LP-Cores4. Assuming the Amdahl’s law, considering only
one single high-performance core for fast execution of serial
regions combined with several power-efficient cores appears
relevant [37].

In the quadcore architecture depicted in Fig. 1b, the low
power cores configuration is different: two LPF-Cores are
combined with a single LP-Core.

Core count can be increased as shown in Fig. 1c, through
an heptacore system representing a superset of the previ-
ous two quadcore templates. This provides a diversity of
microarchitecture features that meets the requirements of
applications. Indeed, floating point operations are not always
present in embedded workloads. In all templates, the cores
are connected to the shared memory via a hierarchy of
crossbars. The cache memory hierarchy is organized in such a
way that every core has its private L1 cache. On the contrary,
a unique L2 cache is shared by these cores. This ensures
cache coherence by construction for the considered multi-
programmed workload setup in this paper. Fig. 2 illustrates
a synthesizable implementation of this heptacore template.

B. DESIGN INSTANTIATION
The generic HP-Core, LPF-Core and LP-Core cores ref-
erenced in Fig. 1 are respectively implemented with the
APSX2, FPS26 and APS25 core technologies5, developed by
the Cortus company.

The APSX26 is a recent high-end multiple-issue, out-of-
order CPU supporting floating point computation. It was
designed as an application processor with features such as
precise exceptions handling, branch prediction and multiple
threads of execution. Compared to other cores from Cortus,
it provides a higher memory bandwidth thanks to wider
memory buses.

The FPS26 is an extensible 32-bit core featuring single
precision floating point combined with excellent code den-
sity. As most Cortus cores, it relies on Harvard architecture
with 2 × 4 GByte address space. It is suitable for creating
complex embedded systems with caches, co-processors, and
multiple cores, e.g., in audio, vision, advanced control and
communication applications. Floating point arithmetic bene-
fits a number of algorithms in those domains.

The APS25 is similar to the FPS26, but has no FPU as a
major part of embedded applications do not require floating
point calculations. This reduces its complexity in terms of

2Acronym for the high-performance core.
3Acronym for low-power core with floating point unit.
4Acronym for low-power core without floating point unit.
5Note that in the Cortus hardware platform, RISC-V cores and their

software tools have been already adapted by the company to provide a
leading RISC-V based solution.

6For reasons of confidentiality, some details are omitted.

area as well as decreases power consumption. The execution
of floating point computations on this core is achieved via
a software emulation mechanism. There is a strict inclusion
between the above Cortus cores in terms of instruction sets:
APS25 is included in FPS26, itself included in APSX2.

TABLE 1: Design elements assessment

FPGA metrics ASIC metrics

Slices Gates Area (µm2) Power (mW)

HP-Core 122941 1471462 1341624 4

LPF-Core 7919 93083 134039 0.86

LP-Core 3981 47648 68613 0.42

Intercon. (Quadcore) 7359 24736 119733 0.78

Quadcore (Fig. 1a) 164653 1551905 4431142 6.48

Quadcore (Fig. 1b) 168591 1599038 4499015 6.92

Heptacore 205135 1809319 6160819 8.62

Table 1 provides an assessment of different design ele-
ments in terms of the number of FPGA slices. Furthermore,
number of gates, area and power figures resulting for a syn-
thesis targeting a UMC 55nm ULP ASIC technology are in-
dicated. This assessment relies on two prototypes: a Kintex-7
FPGA embedded in the Genesys 2 board of Diligent [43],
and a Virtex Ultrascale VCU108 FPGA evaluation kit. The
power consumption indicated in Table 1 has been estimated
while assuming a toggling activity of 50% of the synthesized
logics every clock tick. Cache memory is covered in these
design estimations, but not the external memory. Through
the reported numbers, we can observe the higher complexity
of the HP-Core compared to LPF-Core and LP-Core, due to
its advanced features. In addition, the presence of a floating-
point unit in LPF-Core makes this core twice costly than the
LP-Core.

In order to meet the energy-efficiency requirements of the
overall target system, the design of the communication in-
frastructure should consider a trade-off between complexity
(required die area and the corresponding dissipated power),
transfer speed, latency, and throughput. In general, very
simple systems composed of a few cores can use a shared
bus. When the core count increases, a crossbar becomes more
attractive, allowing multiple accesses between cores via high-
speed paths. As the number of potential paths between cores
increases the complexity of the crossbar increases to a point
that a large portion of the die is reserved for the crossbar
and timing closure becomes increasingly difficult. At this
point a network-on-chip (NoC) is desirable. Nevertheless, the
point at which a NoC becomes necessary can be postponed
by using a multi-level crossbar system where the number
of communicating cores per crossbar is reduced. Our design
templates adopt this last approach (see Fig. 1).

For instance, Table 1 shows that the cost of the crossbar
interconnect is reasonable compared to that of cores. An esti-
mate for the three design templates (memory is not included
as assumed to be off-chip). An interesting observation is
that the scalability of these templates does not dramatically
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FIGURE 2: Design of the asymmetric heptacore architecture shown in Fig. 1c.

degrade their cost in area and power, while performance
improvement is expected thanks to more parallelism.

Compared to ARM microarchitectures, which are the
biggest competitors, the aforementioned cores provide more
attractive performance scores as illustrated in Table 2. Here,
a comparison of considered Cortus cores with relevant ARM
microarchitectures [44] is given in terms of Dhrystone Mil-
lion Instruction per Second (DMIPS) per MHz, which is a
representative metric for processor performance evaluation.

TABLE 2: Microarchitecture comparison: Cortus versus ARM.

Performance values (DMIPS/MHz)
APS25 2.51 DMIPS / MHz Cortex-M0 0.93 DMIPS/MHz
FPS26 2.51 DMIPS / MHz Cortex-M3 1.25 DMIPS/MHz

Cortex-M4 1.25 DMIPS/MHz
APSX2 4 DMIPS / MHz Cortex-A7 1.9 DMIPS/MHz

Cortex-A15 3.5 DMIPS/MHz

IV. TAILORED MULTITASK PROGRAMMING
Having a suitable programming model is crucial for ade-
quate exploitation of the proposed asymmetric system de-
sign. Here, a task data-flow programming models similar to
OpenMP 4.0 [45] or OmpSs [46] is considered. It allows one

to define the job of each task and how to execute it on the
available cores.

A. PROGRAMMING MODEL
From a syntactic point of view, the programming model con-
sidered in this work is close to POSIX Threads programming
[47]. Fig. 3 illustrates the correspondence between the two
programming styles. One can distinguish the declaration and
definition of the functions that are performed by created
threads or tasks depending on the programming model. In
particular, when focusing on our task-oriented programming
model, the specified parameters include the input arguments
taken of the functions realized by every task, and the depen-
dency information between tasks. The programming model
considered in this work is adequately tailored for Cortus
technology-based architecture. Nevertheless, automatic code
generation from existing code, e.g. written in POSIX Threads
could be envisioned due to their high syntactical similarity.

B. DATA MANAGEMENT
We separate program and data memories for each core. Two
additional memory zones are reserved for shared memory
and for the memory management unit (MMU) configuration.
This makes it possible to compile the same program for
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FIGURE 3: Pthread (left) versus our proposed programming model (right)

cores implementing different instruction sets. In Fig. 4a, three
different functions a(), b() and c() can be compiled
differently, resulting in different machine codes, sizes and
memory placements, but unchanged functionality. If a spe-
cific code fragment has to be executed by a specific core, the
cpu_id() run-time function is used to indicate this core.

At the data level, each core has its own data, stack, and
heap. To share data, a shared memory section is available,
including a shared heap. For dynamic memory allocation, the
smalloc() and sfree() functions are available. A basic
lock mechanism for exclusive access is implemented in those
functions. The MMU configuration for all cores is stored in
a dedicated memory section. Since direct memory mapping
is used and is same for every core, this allows for memory
saving, hence reducing information replication.

In the shared data, three status vector are provided:

• cpu_ready[4] to indicate if a core is ready,
• cpu_valid[4] to indicate to a core if data is valid

and execution can be started,
• cpu_assigned_task[4] to store the address of the

task to execute.

Furthermore, a cpu_lock variable is available to imple-

ment exclusive access to shared resources.

C. TASK SCHEDULING
A cooperative task scheduling is adopted, i.e., a task com-
pletes before switching to another task on a given core (mean-
ing no context switch). While this approach is less flexible
for real-time workloads, it is simple and more effective for
computation-intensive workloads. Multi-tasked execution is
eased here by giving tasks a list of dependencies to be met by
the scheduler. The scheduling is also dynamic, i.e., tasks can
be executed by any available core in any order when allowed.
Task declaration is static, thus fixed at compile time. A library
of user-level functions and data structures is provided for task
scheduling.

Here, the scheduler is executed on the HP-Core, which
plays the role of "master" core that assigns tasks to "slave"
cores (i.e., LPF-Core and LP-Cores) and itself.

1) Task creation
Tasks and functions are represented by data structures:

• cFunction makes the link between a function and its
physical address in memory. This is very important to
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(a)memory organization (b)task creation (c)task execution

FIGURE 4: Multi-threaded management approach

support different instruction sets.
• cTask contains the reference to the function with its

parameters, the return value, dependencies, status, exe-
cution time and further information.

Two creation functions populate these structures and link
them in lists:

• cFunction_create(): takes a function pointer and
a string tag, and associates them in a linked-list working
as a look-up table in the heap memory. Each core must
perform this creation to have its LUT in its heap.

• cTask_create(): takes a function string tag, the
parameters, return value, dependencies and information
on the presence of floating point computation; then,
puts them in a linked list in the shared heap memory.
The information about the presence of floating point
computation allows the scheduler to execute the tasks
on the appropriate CPU configurations, i.e. HP-core and
LPF-cores when floating point computation is involved.
Parameters and return values are always cast void*.
This information is available to every core in the shared
heap.

In Fig. 4b, cFunction_create takes the address of a
function and links it with the string tag function_a (blue
solid arrows). Then, cTask_create takes the string tag to
create a task in the shared memory (blue dashed arrow).

2) Task execution
When the two steps of creation are performed, the "master"
core can start task scheduling, and finally all cores can start
execution. For this purpose, two methods are provided:

• cScheduler_execute(): launches one iteration of
the scheduler, which checks whether:

– there are tasks available in the task list;

– dependencies are fulfilled;
– a core is available (cpu_ready[i] == 1);

If all conditions are satisfied, then a task is assigned
to a core. Its address is copied in cpu_assign-
ed_task[i] where i is the identifier of the target
core. The core is signaled via an interrupt or by set-
ting cpu_valid[i] to 1. cScheduler_execute
returns the identifier of the task to be executed.

• cTask_execute(): executes a task after retrieving
the function to be executed from the function list. When
it has finished, it notifies the "master" core.

In Fig. 4c, cScheduler_executes (on HP-Core)
assigns the task to LP-Core: cpu_ready[3] goes 0,
cpu_valid[3] is set to 1 while the task address is stored
in cpu_assigned_task[3] (red solid arrows). Then,
cTask_execute (on LP-Core) takes this address and the
control of the task. It uses the function string tag to retrieve
the address of the function and executes it (red dashed
arrows).

In the above scheduler description, we mentioned a
"polling" approach which uses cpu_valid[] for signaling
and an "interrupt" approach which relies on interrupt rou-
tines. The polling approach consists of continuously looking
at a memory location waiting for some value (in this case,
cpu_valid[i] == 1). During idle phase, "slave" cores
do nothing and "master" core runs the scheduler. All cores
can run a task. A corresponding pseudo-code is as follows:
00 if (cpu_id() == 0) {
01 do {
02 remaining = cScheduler_execute();
03 if (cpu_valid[0]) cTask_execute();
04 } while (remaining != 0);
05 } else {
06 do {
07 if (cpu_valid[cpu_id()]) cTask_execute();
08 } while (1);
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09 }

This approach is much simpler but less effective. In fact,
the "master" core assigns a task to itself and re-runs the
scheduler only once this task is completed.

The interrupt approach consists of notifying the core
whenever an interrupt signals the start of execution. An
interrupt is also sent to signal the end of execution; launching
the scheduler. The interrupt routines then call the execution
functions. Corresponding pseudo-code is as follows:
00 void interrupt_handler(IRQ_MSGBOX_0Mto1S) {
01 msgbox[1]->req[0] = 0;
02 cTaskExecute();
03 }
04 void interrupt_handler(IRQ_MSGBOX_1Sto0M) {
05 msgbox[0]->req[1] = 0;
06 cSchedulerExecute();
07 }

Here the routines, shown for HP-Core and LPF-Core, exist
for all four cores. This approach is more difficult to handle
but, if nesting interrupts is enabled, is more effective. In fact,
the "master core" can interrupt its assigned task execution to
run the scheduler and assign a new task to a free core as soon
as possible.

V. EVALUATION OF THE ASYMMETRIC ARCHITECTURE
A. BENCHMARKING APPROACH
The explored architecture designs will be evaluated by using
selected benchmarks. We re-encoded these benchmarks in
the task-based programming model presented previously.
Table 3 summarizes the entire set of benchmarks. Some
characteristics of interest are specified for each program:
parallelism (i.e., multi-task), floating point manipulation
alongside the major algorithmic features: compute-intensive,
many branching instructions, synchronization-intensive, high
instruction parallelism and memory-boundedness. This en-
ables to study the tradeoff between the possible architecture
configurations w.r.t. the workload characteristics.

TABLE 3: Selected benchmarks

Benchmarks Parallel workload Float Intensity
I-Factorial No No Compute-intensive
F-Factorial No Yes Compute-intensive

FFT Yes Yes Compute-intensive
I-Matmul Yes No Compute-intensive
F-Matmul Yes Yes Compute-intensive

Mpeg Yes Yes Compute-intensive
RandNumCmp Yes No Branch instructions

HashSync Yes No Sync.-intensive
InstPar Yes No Instr. parallelism
Bitonic Yes No Memory-bound
KNN Yes Yes Memory-bound

Stencil Yes Yes Memory-bound

1) Considered benchmarks
The I-Factorial and F-Factorial benchmarks implement algo-
rithms that compute the factorial of integer and floating-
point numbers respectively. They are the only sequential
programs considered in our experiments. Henceforth, they

will be only executed on single-core configurations. This
enables to compare the three core types part of the Cortus
IP portfolio.

On the other hand, since multicore heterogeneous designs
are the main focus of our study, all remaining benchmarks
have been re-encoded as parallel multi-task programs. Most
of them consist of a set of identical tasks, i.e. each task
realizes the same function. FFT [48] is a benchmark where
each task executes the same Fast Fourier Transform. The
aim is to devise a typical embarrassingly parallel workload
that is compute-intensive. In the Mpeg benchmark7, each task
executes an MPEG algorithm.

The RandNumCmp benchmark encodes an algorithm con-
sisting of a loop that iterates five successive if-condition
statements. All Boolean conditions in these statements de-
pend on a random integer value. The aim of this benchmark
is to make the branch prediction difficult to the processor.
Hence, this will result in a high number of branch mispredic-
tions, with variable impact on processor microarchitecture.

The HashSync benchmark implements an algorithm that
triggers frequent accesses to a shared and synchronized hash-
table. Each task calculates a key corresponding to a row
where to insert some elements in the hash-table. By specify-
ing a high number of tasks, this benchmark allows to repro-
duce the behavior of synchronization-intensive workloads.

InstPar is a simple benchmark that contains a sequence of
independent operations that can be executed in parallel. Pro-
cessors with deeper instruction pipelines efficiently execute
such a benchmark.

The last three benchmarks, Bitonic [49], K-Nearest Neigh-
bours (KNN) [49] and Stencil [50], have in common are
memory-bound. They can handle large array data structures
that lead to many cache misses. Bitonic is an algorithm
that sorts the elements of an array in ascending order. KNN
implements a classification algorithm commonly used in
machine learning. It relies on the calculation of distances
between the points within a bi-dimensional space. Finally, the
Stencil benchmark often used in image processing consists of
matrix cell averaging algorithms. Given a cell, it computes
the average of the values in the current cell and its four
adjacent cells.

Finally, I-Matmul and F-Matmul encode a matrix multipli-
cation, respectively on integer matrices and floating-point
value matrices. Unlike the other parallel benchmarks, these
two benchmarks are encoded in such a way that each task
computes a different column of the resulting matrix. Note
that the following benchmarks are in-house programs that
capture well-known algorithms: I-Matmul, F-Matmul, InstPar,
HashSync, RandNumCmp, I-Factorial and F-Factorial.

2) Multi-benchmark programs
Based on above benchmarks, we define multi-benchmark
programs to reflect realistic application workloads. In-
deed, such workloads generally combine more than one

7Adapted from http://www.jonolick.com/uploads/7/9/2/1/7921194/jo_
mpeg.cpp.
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of the separate characteristics found in a given bench-
mark. These considered multi-benchmark programs are de-
scribed in Table 4. We arbitrarily selected five bench-
marks, reflecting different characteristics, which are com-
bined in different ways: I-Factorial (compute-intensive),
RandNumCmp (branching), Bitonic (memory-bound), Hash-
Sync (synchronization-intensive) and InstPar (instruction
parallelism). The idea is to have five different phases in terms
of algorithm characteristics. Each phase consists of several
similar tasks.

Six variants of multi-benchmark programs are defined
(see Table 4). In the variant referred to as Multi-B, each
phase has 10 tasks with the same characteristic, i.e., a total
of 50 tasks in this multi-benchmark program. Then, in the
other program variants, we increase the number of tasks for
each phase. This moves the nature of a program towards
the algorithmic characteristics of the increased task phase.
For instance, the program Multi-CI, which is composed of
50 compute-intensive tasks and 10 tasks for each of the
four remaining characteristics will tend to have a compute-
intensive dominant characteristic. In total, it has 90 tasks.

TABLE 4: Multi-benchmark program variants

Variants Dominant character. Composition
Multi-B Balanced 10 tasks per characteristic
Multi-BI Branch instructions
Multi-CI Compute-intensive 50 tasks with dominant charac.
Multi-MB Memory-bound & 40 tasks with the remaining
Multi-IP Instr. parallelism characteristics by groups of
Multi-SI Sync.-intensive 10 tasks

B. EXPERIMENTAL SETUP
A major part of the experimentation reported in the sequel
is performed on the two quadcore configurations mentioned
in Fig. 1. They are implemented separately on two Genesys
2 Kintex-7 FPGA boards of Diligent [43]. The template
presented in Fig. 1a is considered for benchmarks without
floating-point computations, while Fig. 1b is preferably used
for benchmarks with floating-point computations since it
includes more cores supporting an FPU.

Both the execution time and power consumption are mea-
sured to compare the energy variations according to bench-
marks and explored architecture configurations. To enable
a high accurate power measurement of the architectures
synthesized on the FPGAs, we implemented the apparatus
illustrated in Fig. 5, inspired by the JetsonLeap approach
[51]. An interesting feature of the considered FPGA board
is that it offers the possibility of setting a targeted power
supply of the board. Indeed, without using the default 12V
power supply, the board can be powered based on the voltage
values shown in Table 5. This allows us to directly mea-
sure the consumption of the FPGA chip itself (covering all
design components, including the external memory used in
the FPGA). It is illustrated in Fig. 5. A shunt resistance is
used between a power supply (i.e., a current generator) and
the power supply of the FPGA board. It enables to measure

FIGURE 5: Energy measurement setup

the voltage at its boundaries. This voltage is used afterward
to compute the instantaneous power consumption and the
resulting energy consumption.

In addition to the aforementioned experiments, some com-
plementary evaluations are conducted on an implementation
of the heptacore architecture version (see Fig. 1c) to analyze
the performance tendency observed on the quadcore archi-
tecture prototypes. For this purpose, the Virtex Ultrascale
VCU108 FPGA evaluation kit is used to synthesize the
heptacore architecture.

TABLE 5: Genesys 2 power supplies

Supplied voltage Covered circuit components
1.0 V FPGA cores
1.8 V FPGA auxiliary
3.3 V FPGA peripheral & ect
5 V USB Host & HDMI & DDR3 & ect

C. BENCHMARK EVALUATION
We execute the benchmarks presented in Table 3 on the core
configuration space corresponding to the proposed quadcore
architectures. The obtained energy consumption values are
summarized in Fig. 6. The corresponding execution time and
measured power consumption are given in Fig. 7 for a fine-
grain analysis.

In the sequel, to enable a convenient comprehensive com-
parison of all system execution scenarios, we consider two
different reference scenarios according to which all the
remaining ones are normalized. In the assessment of the
quadcore architecture templates (Section V-C1), the refer-
ence design consists of a single HP-Core execution. For the
heptacore template (Section V-C2), the reference design is
the quadcore architecture shown in Fig. 1a.

1) Quadcore architecture assessment
For the sake of simplicity, the following notations8 are
adopted to encode the different architecture configurations:

• single core: 1X
• two cores: 1X 1Y, and 2X

8Note that only the benchmarks with floating point computations include
configuration abbreviations that contain "2F", which refers to the two LPF-
Cores available in the template of Fig. 1b.
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(a)I-Factorial (b)F-Factorial (c)FFT

(d)I-Matmul (e)F-Matmul (f)Mpeg

(g)RandNumCmp (h)HashSync (i)InstPar

(j)Bitonic (k)KNN (l)Stencil

FIGURE 6: Normalized energy consumption comparison for evaluated benchmarks

• three cores: 1X 1Y 1Z, and 1X 2Y
• four cores: 1X 1Y 2Z

where X, Y and Z denote either HP-Core (abbreviated as H),
LPF-Core (abbreviated as F) and LP-Core (abbreviated as I).
For instance, the configuration 1H 1F 2I denotes the full
quadcore configuration depicted in Fig. 1a.

Compute-intensive workloads. Overall, the obtained re-
sults show that for single core execution of compute-intensive
workloads, the HP-Core is more energy-efficient than the
others. For I-Factorial benchmark, we observe that the HP-
core is 8% more efficient than LPF-Core, as reported in Fig.
6a. Since this benchmark has no floating point computation,
one would expect the same efficiency for both LPF-Core and

LP-Core, but the former is slightly better, i.e., by 4%. When
considering the floating point version of the benchmark, i.e.,
F-Factorial, the benefit of the FPU in the LPF-Core becomes
clearly visible through its higher energy efficiency compared
to LP-Cores, estimated around 91% as shown in Fig. 6b.
Most importantly, for benchmarks performing intensive float-
ing point operations such as F-Factorial, FFT and F-Matmul,
the LPF-Core can be even more efficient than HP-core by
26%, 96% and 11.5% respectively, due to the aggressive FPU
optimization in LPF-Core.

Similar single-core energy tendencies are observed for all
compute-intensive parallel benchmarks, i.e., FFT, I-Matmul,
F-Matmul and Mpeg, respectively shown in Figs. 6c, 6d,
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6e, and 6f. The multicore configurations show that only
two LPF-Cores combined with HP-Core provide the best
energy consumption for benchmarks containing intensive
floating point computations (FFT and F-Matmul). Without
floating point computation, as in I-Matmul benchmark, the
full quadcore configuration shown in Fig. 1a is the best.
Nevertheless, this configuration does not bring a significant
gain compared to configurations with three cores. Finally, in
presence of floating point computations, both full quadcore
architecture depicted in Fig. 1a and Fig. 1b yield a similar
energy consumption for the parallel F-Matmul and Mpeg
benchmarks. This pertains to the significant execution time
overhead induced by LP-Cores in both architecture configu-
rations, which hides any improvement enabled by HP-Core
and LPF-Cores. For the FFT benchmark, the full quadcore
including two LPF-Cores is slightly better than the other
quadcore configuration. More generally, we observe that the
best energy gain for parallel floating-point compute-intensive
benchmarks is obtained with the configuration 1h 2F. It
means that the combination of HP-Core and LPF-Cores
provides the most efficient floating-point execution. When
adding LP-Cores, which do not include any FPU in their
microarchitecture, the overall performance becomes worse
despite a higher execution parallelism due to more cores.

Branching, instruction parallelism and synchroniza-
tion intensive workloads. Unlike the above observations,
the RandNumCmp benchmark containing a high number of
branching instructions exhibits similar energy consumption
for both LPF-Core and LP-Core in single-core executions
(see Fig. 6g). The HP-Core is the least efficient with an
additional energy consumption, the low power cores have a
better energy efficiency of almost 50%. This is explained by
the detrimental impact of frequent branch mispredictions on
the microarchitecture of the HP-Core. As a matter of fact,
the processor often needs to revert all intermediate results
whenever the prediction turns out to be wrong: this implies
emptying the instruction pipeline of the core, which further
requires to save and restore structures such as renaming
tables. In multicore configurations, even though the full
quadcore configuration is the most energy-efficient, its gain
is very marginal compared to a configuration with only three
low power cores. This minimum energy gap is induced by the
branch misprediction penalty on HP-Core with quadcore.

For the InstPar benchmark, which is characterized by
high instruction parallelism, the HP-Core is more energy-
efficient than the LP-Cores by 33% (see Fig. 6i). This is
favored by the advanced microarchitecture of HP-Core, e.g.,
out-of-order execution, deeper pipeline stages. The parallel
execution of this benchmark improves the energy by 50%
compared to a single core. Most of the configurations with
equivalent core count have comparable energy consumption,
while those including the HP-Core run 25% faster compared
to configurations using only low power cores (see Fig. 7i).

While the above observations were expected for InstPar, a
different outcome is obtained for the HashSync benchmark,
which is synchronization-intensive. On a single-core, the ex-

ecution of this benchmark shows low power cores are slightly
more energy-efficient than HP-Core, as illustrated in Fig. 6h.
In configurations with an equivalent number of cores, those
including the HP-Core are less efficient, by 25% compared
to low power cores only. This is explained by the overhead
induced by the HP-Core microarchitecture management in
presence of task synchronizations. More precisely, this over-
head comes from the costly context switches occurring in the
complex microarchitecture of this specific core (contrarily to
low power cores). The HashSync algorithm involves frequent
task suspension and resumes. In the end, there is an important
execution time overhead due to pipeline stages emptying.

Memory-bound workloads. The Bitonic sorting algo-
rithm shows that execution on two cores makes it possible
to obtain an improvement of the efficiency of the order
40% with HP-core and 70% with LP-core compared to a
single core (see Fig. 6j). Multicore configurations with the
same number of cores have comparable execution time as
shown in Fig. 7j, while those using only low power cores
are more energy-efficient. The only exception concerns the
3-core configuration 1F 2I and the full quadcore, which have
equivalent energy consumption. The latter configuration has
a gain of 24% in execution time compared to the former.

In the case of KNN benchmark, an energy gap of 70%
between an LP-Core and an LPF-Core is observed, due to
the presence of floating-point operations in this program (see
Fig. 6k). The HP-Core is also 40% less energy-efficient than
the LPF-core. Actually, the quadcore template shown in Fig.
1b, which contains two LFP-Cores is the best choice for the
KNN benchmark.

For the Stencil benchmark, which also contains floating-
point computations, the LP-Core is, of course, the least
energy-efficient. Similarly to the KNN benchmark, the LPF-
Core is the best, being nearly 280% better than the HP-
core (see Fig. 6l). This huge difference reduces the benefits
of the program parallelization. In general, the configura-
tions including one or two LPF-Cores are the most energy-
efficient. The LP-core is extremely penalizing, while the HP-
core enables only a limited improvement, about 3%, as shown
in Fig. 6l when comparing the configurations 2F and 1H 2F.

Finally, we generally observe that thanks to the adopted
data management approach, the memory bandwidth is never
saturated during the execution of the above memory-bound
benchmarks. This also confirms an adequate dimensioning
of the system.

2) Heptacore architecture assessment

We extend the previous assessment to the heptacore template
through a brief comparison of the speedup obtained with
the above two quadcore designs (Fig. 1a and Fig. 1b) and
the heptacore design (Fig. 1c). For brevity, in the following
these three designs are referred to as Archi_A, Archi_B and
Archi_C respectively.
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(a)I-Factorial (b)F-Factorial (c)FFT

(d)I-Matmul (e)F-Matmul (f)Mpeg

(g)RandNumCmp (h)HashSync (i)InstPar

(j)Bitonic (k)KNN (l)Stencil

FIGURE 7: Power consumption and execution time for evaluated benchmarks on different core configurations

Overall, we observe in Fig. 89 that the heptacore architec-
ture C provides a speedup improvement of 2.4x on average.
It is worth mentioning that in the F-Matmul benchmark,

9Only, parallel benchmarks are considered in this comparison. In other
words, the two sequential variants of the factorial algorithm are ignored.

architecture C does not bring any speedup improvement
compared to the full quadcore configurations. As discussed
earlier, this comes from the very low performance of LP-
Cores, which always makes the execution time higher: tasks
assigned to HP-Core and LPF-Cores terminate earlier, while
those executed by LP-Cores complete later. So, the execution

VOLUME 0, 2016 13



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2910932, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a)FFT (b)I-Matmul (c)F-Matmul (d)Mpeg (e)RandNumCmp

(f)HashSync (g)InstPar (h)Bitonic (i)KNN (j)Stencil

FIGURE 8: Speedup comparison for quadcore and heptacore architecture configurations

acceleration enabled by HP-Core and LPF-Cores is still
hidden by the penalty induced by LP-Cores. It is not the case
of the Mpeg, which is similar to F-Matmul on the two full
quadcore configurations. The negative impact of LP-Cores
on the speedup obtained with heptacore is mitigated.

VI. TOWARDS BETTER ENERGY-EFFICIENCY
We first summarize the main insights gained from the above
comprehensive architecture evaluation. Then, we show how
these insights can be exploited for additional energy gains.

A. SUMMARY OF GAINED INSIGHTS
First of all, even though the covered benchmarks are rela-
tively modest application workloads, the maximum power
consumption threshold reached in our experiments is always
below 0.4 W. This is favored by the inherently low power SoC
blocks integrated in our designs. Note that complementary
well-known power saving techniques such as power or clock
gating [52], [53] could further contribute to reduce the power
consumption measured in our current experiments.

On the other hand, the different architecture evaluations
show that the expected energy gains often depend on the
workload nature. Fig. 9 summarizes for each benchmark,
its best configuration. Fortunately, the heterogeneity of the
proposed architecture enables to run workloads on the most
favorable configurations.

For benchmarks that scale with several cores, such as
I-Matmul or InstPar, noticeable energy gains are observed
while selecting configurations with higher core count. As
presumed, the architecture configurations including LPF-
Cores provide the lowest energy consumption in presence
of floating-point computations, e.g., see the F-Matmul, FFT
and Mpeg benchmarks. An interesting insight is that the
FPU customization implemented in the LPF-Core by the
Cortus company is powerful enough to become an alternative
choice compared to the HP-Core. Using the latter, which

FIGURE 9: Best configuration for each benchmark

dissipates much more power, can be even notably worse for
the memory-bound KNN and Stencil benchmarks. However,
in the case of the Bitonic benchmark, which is also memory-
bound but without floating point computations, increasing
the number of LP-Cores contributes to energy minimization,
even without the help of the HP-Core.

A non-trivial insight concerns synchronization handling
in the considered heterogeneous multicore architecture. The
usage of the HP-Core to execute synchronization-intensive
algorithms reveals penalizing. A similar remark concerns
workloads with high branch misprediction rates as illustrated
by the RandNumCmp benchmark. The HP-Core becomes
less energy-efficient because of the costly operations oc-
curring in its microarchitecture upon branch mispredictions.
More generally, low power cores turn out to be better in the
above two situations.
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B. LEVERAGING THE GAINED INSIGHTS
The above insights result from experiments while consider-
ing the task scheduling (described in Section IV-C), which
assigns any ready task to a CPU as soon as it becomes
available. Let us refer to this scheduler as the Default-sched
scheduler.

The affinity between workload nature and architecture
configurations, depicted in Fig. 9 can be leveraged to refine
the task scheduling policy on cores. More precisely, the ready
tasks of a program should be assigned to their most favorable
core configurations. To show the potential benefit of such a
scheduling strategy, we consider the multi-benchmark pro-
grams already presented in Table 4. Then, a typical applica-
tion example is evaluated to further confirm the relevance of
our gained insights. We only present execution scenarios on
quadcore architectures.

1) Multi-benchmark evaluation
Each multi-benchmark program is executed according to
three scenarios: i) on the full quadcore using Default-sched,
ii) on low power cores only, using Default-sched, and iii) on
the full quadcore using a new scheduler Opt-sched, which
assigns tasks to their best matching configuration in terms
of workload nature. The main idea of this experiments
is to show that when taking algorithmic characteristics of
tasks into account, further energy-efficiency improvements
become reachable.

FIGURE 10: Normalized energy gain

Fig. 10 summarizes the normalized energy gain corre-
sponding to the above three scheduling scenarios for each
multi-benchmark program. Globally, we observe that using
only low power cores with Default-sched (i.e., referred to
as "LP-Cluster-sched" in the figure) is less efficient than the
Default-sched scenario, by about 20%. The only exception
appears for the Multi-SI multi-benchmark where the poor per-
formances of the HP-core negatively influence the execution
of the benchmark with Default-sched.

For all multi-benchmarks, the Opt-sched provides the best
energy improvements. The energy gains are about 22% on av-
erage (and vary between 5% and 45%) compared to Default-
sched in the reported case studies. This confirms the benefits
of adaptive workload assignments on the heterogeneous ar-
chitecture. Here, the task allocation decisions rely on the in-
sights obtained from the comprehensive evaluation presented

in Section V-C. There are advanced well-known approaches
to deal with such decisions, which are under consideration
in our future work. Typically, we can mention dynamic
information monitoring and workload mapping techniques
[54] [55] and adaptive mapping techniques based on static
program analysis [56].

EXAMPLE 1 (FOCUS ON THE EXECUTION OF MULTI-B): To
give a more precise idea of the improvements enabled by the
gained insights, let us focus on the executions of the Multi-
B multi-benchmark when using the Default-sched and Opt-
sched.

(a)Default-sched

(b)Opt-sched

FIGURE 11: Execution of Multi-B with different schedulers

Fig. 11 depicts the respective energy consumptions for
each sub-part of Multi-B, corresponding to a benchmark
with a specific algorithmic characteristic. To improve the
readability of the produced results, we inserted a dummy task
(represented by the light-blue portions of the graphs in Fig.
11a and Fig. 11b) between the different sub-parts of Multi-B.
This dummy task has a constant power consumption within
each execution scenario.

We observe that the overall execution time of Multi-B is
reduced with Opt-sched compared to Default-sched. In addi-
tion, for each sub-part (excluding the dummy task portions),
the corresponding energy consumption is annotated in the
figures. This reflects the obtained improvements.
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2) Typical data analytics application evaluation
We consider an artificial, yet typical example of application
workload that is representative of functions executed on edge
nodes. The application features data analytics and mainly
performs a linear regression on a set of data collected from
some sensors (see Fig. 12). Its result is subsequently used
to make predictions. The advantage of deporting such a
regression task on the edge node is the reduction of the costly
frequent transfer of raw data from sensors to centralized
cloud servers.

FIGURE 12: Data analytics application example

The executed application is composed of four tasks: the
tasks Sensor1 and Sensor2 collect data aggregated and
exploited in a linear regression process realized by the task
LinReg. Concretely, the tasks Sensor1 and Sensor2
are implemented by random number generation functions.
The LinReg task implements a linear regression algorithm
that takes as inputs two vectors of data values. Finally,
a task named Forecast takes the regression coefficients
computed by LinReg for prediction.

FIGURE 13: Energy comparison for data analytics application

Fig. 13 describes the energy consumption comparison of
a few execution scenarios of the data analytics application.
This comprises three monocore ("1H", "1F" and "1I") and
four quadcore scenarios ("2I 1H 1F", "2I 1F 1H", "1I
2F 1I" and "2I 1F 1I"). These scenarios are normalized
w.r.t. the HP-Core monocore execution, denoted by 1H.

According to the tasks’ characteristics, their mapping to
the most suitable cores enables an energy-efficient execution.
Here, this is obtained by executing Sensor1, Sensor2,
LinReg and Forecast respectively on LP-Core, LP-Core,
LPF-Core and LP-Core, corresponding to the architecture
configuration 2I 1F 1I. Indeed, Sensor1, Sensor2
and Forecast are not compute-intensive, contrarily to
LinReg. From our gained insights, the latter might be
executed on either the HP-Core or LPF-Core due to the
presence of floating point computations in the corresponding

algorithm. Here, the LPF-Core reveals more energy-efficient
than the HP-Core. The other three tasks can be executed on
low power cores. This makes configuration "2I 1F 1I" a
better candidate than all the others as confirmed in Fig. 13.

VII. CONCLUSION AND PERSPECTIVES

In this paper, we presented the design of heterogeneous mul-
ticore architecture templates based on cost-effective and very
low power core technology targeting the embedded domain.
Our solution combines a high-performance core suitable
for sequential execution, and several lightweight low power
cores devoted to parallel execution. Prototypes of designed
architectures have been implemented on FPGA and reported
performance and power consumption figures were measured
rather than estimated as in existing works [40], [41]. Further,
a tailored and flexible multi-task execution model / API is
proposed for efficiently leveraging the flexibility offered by
the template in selecting at run-time target cores for process-
ing. This is the first attempt to develop an asymmetric mul-
ticore architecture based on the low power core technology
of Cortus company. The opportunity of customizing certain
low power cores, w.r.t. floating point processing makes it
possible to provide a tradeoff in terms of performance, area
and energy efficiency. Based on a comprehensive evalua-
tion of the proposed architecture designs, we showed that
an adequate multi-benchmark workload management on the
heterogeneous cores can provide about 22% energy gain on
average, compared to a reference design. This makes our
solution a very promising candidate for edge compute nodes
where energy efficiency is key.

The core customization exploited in this paper is not lim-
ited to FPU or out-of-order execution supports. It can be also
extended to other features such as cryptographic primitives or
pattern-oriented computations, particularly useful for secu-
rity or channel coding in edge computing devices. Actually,
the Cortus company already provides a range of SoC IPs
for addressing security issue. Integrating such IPs in our
architectures is one relevant perspective to the present study.
Another important perspective concerns the integration of
more advanced workload management techniques to increase
the overall energy-efficiency of the designed systems. One
possible direction may rely on compiler-based static analysis
on programs before execution, to infer their features, e.g. see
[56]. Then, these features could be exploited for efficient
workload mapping and scheduling on the heterogeneous
architectures.
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