Investigation of Mean-Error Metrics for Testing
Approximate Integrated Circuits

Marcello Traiola!, Arnaud Virazel!, Patrick Girard', Mario Barbareschi2, Alberto Bosio'
ILIRMM - University of Montpellier / CNRS - France - Email: {firstname.lastname } @lirmm.fr

2DIETI - University of Naples Federico II -

Abstract—Approximate Computing (AxC) is increasingly be-
coming a new design paradigm for energy-efficient Integrated
Circuits (ICs). Specifically, application resiliency allows a trade-
off between accuracy and efficiency (energy/area/performance).
Therefore, in recent years, Error Metrics have been proposed
to model and quantify such accuracy reduction. In addition,
Error thresholds are usually provided for defining the maximum
allowed accuracy reduction. From a testing point of view, Approx-
imate Integrated Circuits offer several opportunities. Indeed, ap-
proximation allows one to individuate a subset of tolerable faults,
which are classified according to the adopted threshold. Thanks
to fewer required test vectors, one achieves test-cost reduction
and improvements in yield. Therefore, using metrics based on the
calculation of Mean Errors (ME metrics), has become a major
testing challenge. In this paper, we present this problem and
investigate the technical requirements necessary for ME metric
testing. We perform experiments on arithmetic circuits to study
opportunities and challenges in terms of complexity. Our results
show that one can filter up to 21% of faults and also highlight
the complexity of the problem in terms of execution-time.

Keywords: Approximate Computing; Testing; ATPG; Func-
tional Approximation; Integrated Circuits

I. INTRODUCTION

Over the last few years, many research works proved that
some computing domains are inherently resilient to inaccu-
racy. Although some inner operations, or involved data, of
a computing system are inexact, some applications are able
to produce good-enough results [1]-[4]. The Approximate
Computing (AxC) paradigm benefits from such a property by
providing gains in efficiency (i.e., less power consumption,
less area, higher manufacturing yield) at the cost of a slight
accuracy reduction. The inaccuracy can involve every system
layer from hardware to software components [5]. In this paper
we focus on Functional Approximation [1], [6]-[15] applied to
hardware components. The Functional Approximation aims at
modifying the circuit structure so that its original functionality
is replaced by a similar one, whose implementation leads to
an area/energy reduction at the cost of a reduced accuracy.
This means that a variation can be observed between the
output values of the original IC and those of the approximate
integrated circuit (AXIC). Such variation is the accuracy loss
measured by means of Error Metric(s). For instance, we can
mention the Error Rate, i.e. how many times an error is
observed at the circuit outputs, and the Error Magnitude,
measured as the difference between the golden and erroneous
outputs, both formally defined in [3].

During the manufacturing process, physical defects (either
random or systematic) can affect the Integrated Circuit (IC)
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and may be the cause of faults leading to observable errors.
These errors (due to faults) may further reduce the accuracy
- already reduced as result of the functional approximation -
and may affect outputs more than expected. In this context, the
role of testing is to ensure that the observed error due to the
presence of defects is never greater than the acceptable error
threshold fixed by the final user. In other words, all the faults
that reduce the circuit accuracy more than allowed must be
tested. Authors of [16], presented a pre-process to classify
each fault of the AXIC either as approximation-redundant
(i.e., tolerable compared to the threshold) or as non-redundant
(i.e., non-tolerable), before applying the classical Automatic
Test Pattern Generation (ATPG). In a previous work [17], we
presented an approximation-aware ATPG approach to generate
test vectors only for non-tolerable faults. The above mentioned
works consider only metrics based on local or maximum
errors, such as:

o Worst Case Error (WCE): the largest possible error be-
tween the outputs of the precise and approximate circuits;

e Maximum Bit-flip error (MBFE): the largest possible
hamming distance between the outputs of the precise and
approximate circuits.

As far as we know, there are not any works that face the
problem of testing Approximate Circuits considering more
complex metrics, such as those which require the calculation
of mean errors. Among them, we can include:

e Mean Absolute Error (MAE): the sum of all the Error
Magnitudes, averaged over all the input vectors, where:

— the Error Magnitude (EM) is the absolute difference
between the precise and approximate circuit outputs;

o Mean Squared Error (MSE): the sum of all squared EMs,
averaged over all the input vectors;

« Error Probability (EP): the percentage of incorrect outputs
among all the possible outputs.

The fundamental problem related to the above mentioned
metrics is their complexity in terms of number of input
combinations related to their computation. Therefore, in this
paper we present the problems related to testing AxICs con-
sidering this kind of metrics and we investigate challenges and
opportunities.

The remainder of the paper is organized as follows. Sec-
tion II describes the above mentioned issues. Section III
describes an approach to deal with them. Experimental results



are presented in Section IV. Finally, conclusions and some
future directions are given in Section V.

II. PROBLEM STATEMENT

As described in Section I, functional approximation mod-
ifies/simplifies the circuit structure by relaxing some design
requirements at the cost of introducing a certain amount of er-
ror. During the manufacturing process, physical defects could
cause an error greater than the acceptable one. Therefore, in
this context, testing aims at avoiding that AxICs affected by
unacceptable errors are shipped to the customer. The general
and fundamental assumption is that only one fault at a time
could occur within the circuit. This relies on the statistic
that failures are only rarely the product of two or more
simultaneous faults.

In general, given the list of all possible faults that can occur
within an IC (whether approximate or not), each detectable
fault impacts on the circuit outputs. By considering different
metrics, the impact of such faults can be measured and
expressed as error. Given a metric M, we can measure the
error e; induced by a fault f stimulated by the input vector .
By considering another metric M, the error due to the same
fault f, is measured as é; # e; when stimulated by the same
input vector i. Moreover, by stimulating the fault with two
different input vectors 7 and j, the measured errors will be
ei # ej (& # €)).

For clarifying the idea, let us consider as example two metrics
for arithmetic circuits: the Error Magnitude (EM) (or Arith-
metic Distance) and the Bit-Flip Error Metric (BFE). The
first can be expressed as the absolute value of the arithmetic
difference of two values. The second can be expressed as the
hamming distance of two sequences of bits. As depicted in
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Fig. 1: Fault impact depending on metrics

Figure 1, the error measured at the output of a circuit as a
consequence of a fault f depends on the input vectors, as well
as the considered metric. Indeed, by stimulating the circuit
with two different input vectors ([3,1],[2,2]), fs induces the
errors ¢; = 1 and e; = 2, measured by considering the EM
metric; on the other hand, the errors é; = 3 and €; = 1 are
measured by considering the BFE.

In the context of AxICs, the goal of the testing is to identify
the whole set of detectable faults whose impact on the circuit
outputs is non-acceptable compared with a chosen metric
(i.e., the error is greater than the given threshold), for all the
possible combinations of inputs.

Figure 2 represents the above concept. Once considered a
specific metric and a threshold, the set of all possible faults
which can affect an AXIC can be classified into two subsets,
depending on the error F induced by the faults. We refer
to Fr as the set of faults which would not induce an error
greater than the given threshold. Conversely, we name Fs the
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set of faults which would induce an error greater than the
given threshold. Testing only for the set of detectable faults Fig
guarantees to have an error that does not exceed the acceptable
one, defined by the threshold.

The advantage of applying such procedure is, above all,
the yield increment (i.e., fewer circuits will be rejected).
Moreover, by reducing the number of faults to be tested, the
size of the test set is also expected to be reduced. This results
in lower test costs. The reduction of the test time is very
important especially in the perspective of online testing.

Depending on the considered metric, the complexity of the

classification process can change significantly. In [16], authors
stated that the problem of finding the so-called approximation-
redundant faults - whose effect will always be below the
given threshold - is #P-complete when the considered metric
is the Worst Case Error. Conversely, finding approximation-
redundant faults considering the Error Probability metric turns
out to be a NP-complete problem. Moreover, in [17], we
proposed an ATPG-based technique capable of generating test
vectors only for non-redundant faults, classified according to
the WCE metric. Such technique relies on the usage of a circuit
that computes the error metric and evaluates it against the
given error threshold. Thanks to that, for a given fault, the
ATPG can quickly find an input vector producing an output
affected by an error greater than the WCE. Thus, the fault is
classified as non-redundant. If the ATPG cannot find an input
vector, the fault is classified as approximation-redundant.
Unfortunately, this analysis is not sufficient to ensure that a
fault will not impact on metrics which require the calculation
of mean errors (Mean-Error Metrics or ME Metrics).
Let us resort to an example to depict the issue. We consider
a 2-bits arithmetic circuit (that we call “original” circuit) to
which we apply a functional approximation technique. The
outcome is an approximate circuit that is more efficient (e.g. it
has reduced area or reduced energy consumption or better per-
formance) but shows some errors at outputs. The graph shown
in Figure 3a represents the hypothetical error magnitude
profile of such fault-free approximate arithmetic circuit (i.e. the
circuit produces such errors due to the approximation and not
due to manufacturing faults). By considering three different
metrics - MAE (Equation 1), EP (Equation 2), and WCE
(Equation 3) - the measured error changes (M AE = 1.5625,
EP =0.5,and WCE =T7).
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(a) Error profile of a fault-free approximate arithmetic circuit

oy .
¥ may increase

it

may increase/decrease

Error Magnitude

P i

0 PR | O I A N | [ |
0000 0001 0010 00110100 01010110 0111 1000 1001 1010 1011 1100 1101 1110 1111
Input value

(b) Error profile of a faulty approximate arithmetic circuit

Fig. 3: Error profile of a fault-free approximate arithmetic circuit (a); error profile possible variations of the same approximate

arithmetic circuit in presence of a fault (b).
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We refer to Z as the set of all the possible input combinations
and to n as the number of input bits. The i-th bar of the
graph in Figure 3a reports the arithmetic distance (i.e., error
magnitude) between the original output (i.e. the output of the
original circuit) and the approximate output (i.e. the output
of the approximate circuit), measured when applying the i-th
input vector. This is exactly the value of |0 — O;"¢|. The
mean value over all the inputs is represented by the MAE,
the WCE represents the maximum value, and the ratio of the
number of bars to the numbers of inputs vectors gives the EP.
We can now imagine that, during the manufacturing phase, a
fault (i.e., Stuck-at-fault) is introduced within the circuit. Its
impact on the MAE depends on the variation of each bar of
the graph, as shown in Figure 3b. In other words, it depends
on the error magnitude of the AXIC for each possible input.
Similarly, the impact of the fault on the EP depends on the total
number of input vectors which generate an error. The WCE
value changes only if the maximum possible error changes, as
a result of the fault. Thus, to perform the fault classification
w.r.t. the WCE is sufficient prove either the existence or the
non-existence of an input vector which increase the maximum
possible error, for a given fault. Figure 4 and 5 illustrates the
above consideration. Figure 4 depicts the hypothetical impact
of a fault f; on the Error profile of the 2-bit arithmetic circuit
mentioned above. The fault impacts the error magnitude when
applying the input vectors “0011” and “1100”. While the WCE
is increased by 1, the MAE metric remains unchanged. Indeed,
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Fig. 4: Impact of the fault f;: WCE increases, MAE and EP
remain unchanged

an error magnitude increase of 1 is measured when applying
the input vector “0011”, modifying the WCE value from 7 to 8.
By applying the vector “1100”, the measured error magnitude
is decreased by the same amount, leaving the MAE unchanged.
Moreover, also Error Probability (EP) remains unchanged.

In the same way, Figure 5 describes the hypothetical impact
of another fault (f3) on the same circuit. In this case, the fault
impact can only be measured by applying the input vector
“1110”. The measured error increased from O to 1. In this
case, the WCE remains unchanged while both MAE and EP
increase.

Finally, the two mentioned faults would be filtered or not,
depending on the considered metric. Specifically, f; would be
filtered only when considering WCE, whereas f> only when
considering EP and/or MAE.

Hence, it is less complex to evaluate the impact of a fault
when considering metrics which only need a single condition
to be met. Indeed, for a given fault, if we prove the existence
of a single vector that makes the error exceed the threshold,
we can state that such fault is non-redundant w.r.t. the WCE.
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Fig. 5: Impact of the fault fo: WCE remains unchanged, MAE
and EP increase

Conversely, classifying faults w.r.t. ME metrics is a O(2")
complexity problem, with n = number of input bits. Indeed,
to state whether a fault generates an error exceeding the
threshold or not, we need to know the error contribution for all
the input vectors. In the next section, we introduce an approach
for filtering approximate-redundant faults considering ME
metrics.

III. MEAN-ERROR METRICS AWARE TESTING OF AXICS

As stated in Section II, the process of classifying faults by
considering ME metrics is not trivial. Therefore, we aim at
studying the opportunities offered by such classification. To
illustrate the underlying idea, let us consider the eqs. (1), (2)
and (4), which formalize the ME metrics defined for arithmetic
circuits [18].
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The impact of a fault within the approximate circuit affects
the AXIC outputs (i.e., the O value) for a subset of input
combinations. As shown in Figure 3a we are interested in the
error magnitude variation for all input combinations (i.e., the
variation of |O;""* —O;"| Vi € ). The goal is to understand
whether a fault impact increases or not the value of the sum
of all the errors, for all input combinations (i.e., the term
> ‘O?ppmx — O™)). For the special case of EP, it is enough

VieT
to study a fault impact on the number of input combinations

which cause O} £ O"¢.

For this reason, we propose a Fault Filtering Architecture
(FFA), shown in Figure 6a. This circuit is never manufac-
tured. It is only used to support the fault classification into
approximation-redundant and non-redundant. Given the input
vector [X,Y], the fault affecting the AxIC, and a specific ME
metric, this architecture is capable to determine whether such
fault changes or not the metric value, for that vector (i.e., a
single bar in Figure 3a). The “Mean-Error Metric Block” will
depend on the target metric. As depicted in Figure 6b, for EP
metric we use a block with only two output bits whose values
state whether the fault has changed (increased or decreased)
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Fig. 6: FFA

the value of the Error Probability or not, for the given input
vector. The M*E (MAE and MSE) metric block, shown in
Figure 6¢c, has an additional output signal that reports the
metric value variation.

Let us take as example the MAE metric. By using the
notation D; = |0 — O7"¢|, we apply MAE Equation (1)
to fault-free (ff) and faulty (fa) AxICs in order to show the
theory behind this approach:
> ’ O™ Xrr _ O?ng
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As stated in Equation 5, the metric value for the fault-free
AXIC can be expressed as the sum of the Dy values for
all the input combinations (see Figure 6a). In the same way,
Equation 6 states that the value of the metric for the faulty
AXIC can be expressed as the sum of the Dy, values for
all the input combinations. Finally, Equation 7 represents the
target value of the investigation: the variation of the metric
value due to presence of the fault. If the AMAFE value is
less than or equal to zero, then the fault can be considered
as approximation-redundant and filtered. Otherwise, the fault
must be tested.

The same considerations can be applied to the MSE metric.
In addition, for each of the M*E metrics, the A value is
proportional to the variation of the sum Y. D;. This is

vieZ
the value obtained as output of the M*E metric Block after
applying all the inputs € Z. Thus, the number of faults that



will be filtered is exactly the same for the two metrics.
As for EP metric, let us introduce the following function:

if D; >0
0, if D;,=0 (8)

where Di — ‘O?Pprox _ O;)rlg

By leveraging Equation 8, we can apply EP Equation (2) to
fault-free (ff) and faulty (fa) AXICs as follows:
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Just as Equation 7, if the AEP value is less than or equal
to zero, then the fault can be considered as approximation-
redundant and filtered. Otherwise, the fault must be tested.

Finally, by knowing the subset of input vectors J C Z
that stimulate and propagate each fault, one can perform the
classification. Indeed, by simulating vectors belonging to J
while injecting - one by one - all the faults, allows us to
accomplish the goal. However, we left out for future works
the problem of characterizing the subset .

In this work, we applied the FFA-based technique, by
applying the exhaustive set of input vectors. The simulation
produces a detailed report about the fault impact on the
error profile. Afterwards, we perform a report analysis for
extracting the information about the fault impact on the metric
being investigated. Figure 7 sketches the overall flow. By
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Fig. 7: Overall flow

applying the above described approach, we carried out some
experiments. In the next section, we report the results. The goal
is to investigate the opportunities offered by the classification
of AxIC faults when considering metrics based on the mean
errors. In other words, these experiments are not intended to
prove the efficiency of the technique; rather, we want to asses
the upper bound for the number of faults that can be filtered,
when using ME metrics to measure the error.

IV. EXPERIMENTAL RESULTS

In this section, we report experimental results obtained
by applying the proposed approach on several approximate

arithmetic circuits. Indeed, we applied the proposed approach
on 448 non-dominated 8-bit approximate adders and 471
non-dominated 8-bit approximate multipliers taken from the
EvoApprox8b library [18]. Adders were obtained by functional
approximation of a Ripple-Carry Adder (RCA), a Carry-Select
Adder (CSA), a Carry-Look-ahead Adder (CLA), a multiple
Tree Adder (TA) and a Higher Valency Tree Adder (HVTA).
As for multipliers, they were obtained by functional approxi-
mation of Ripple-Carry Array, multiple Carry-Save Array and
Wallace Tree architectures. We synthesized the circuits using
Synopsys Design Compiler and a 65-nm industrial CMOS
technological library. We utilized the Fault Manager and the
simulator within Synopsis TetraMAX to generate fault lists
and perform simulations. Concerning the complexity, 8-bit
adders are composed, on average, of 57 nodes (min 30, max
128); 8-bit multipliers are composed, on average, of 453 nodes
(min. 239, max. 787).

We performed the experiments by evaluating EP metric and
M*E metrics (i.e., MAE and MSE) and by considering the
Stuck-at-fault model. In Figure 8 and Table I we report the
results of the experiments. Specifically, for each metric and
each circuit, we calculated the percentage of faults that do
not induce on the circuit an error greater than the maximum
allowed. Figure 8 depicts, for each circuit type, the percentage

(X
20 ,*
pg
L.
L)
o8
g ;\
2 g
S
& °%
°
g 10 . s
g ° ’ ° 3o
ic o ® °
(1] 1}
[ ]
5..
0 - a
Adds Mul8
EP M*E EP ME

Metric

Fig. 8: Distribution of the percentage of filtered faults consid-
ering different metrics and circuits

of filtered faults for both the M*E metrics group and the EP
metric. For each experiment group, the x-axis is spread out
for clarity. For the metrics belonging to M*E group (MAE,
MSE), we performed the very same analysis. Therefore, the
number of filterable faults is the same. In Table I the five-
number summary is reported (i.e., the five most important
sample percentiles). In details, the Min column reports the
sample minimum (the smallest amount of filtered faults), the
QI column the first quartile, the Med column the median
(the middle value), the Q3 column the third quartile and the
Max column the sample maximum (the largest amount of
filtered faults). In addition, Avg column reports the average



Circuits Metric  Min Q1 Med Q3 Max Avg AvgTime(s)
Adders EP ‘ 0.00% ‘ 0.00% ‘ 0.00% ‘ 090% | 9.43% | 0.59% 106.73
M*E  0.00% 0.00% 1.08% 2.97% | 12.35% | 1.83% 448.05
e EP ‘ 0.00% ‘ 0.94% ‘ 2.16% ‘ 435% | 10.33% | 2.85% 924.50
Multipliers
M*E 0% 3.67% 6.72% 10.23% | 21.42% | 7.22% 72164.9

TABLE I: Experiment results - five-number summary

value and the last column the average time, in seconds, to
analyze a single circuit. The fault reduction is calculated as
the percentage of filtered faults over the total number of faults:
Fault Reduction = Appmxm}zggﬁfl‘iam faults 100

Results show that it is possible to filter up to 9% of the
faults for the 8-bit adders, when considering EP metric and up
to 12% in the case of M*E metrics. In the case of Multipliers
we were able to filter up to 10% of the faults when analyzing
the EP metric and up to 21% when evaluating M*E metrics.
However, comparing results with previous works, we can no-
tice that the fault reduction gives better results when evaluating
errors using the WCE metric. Indeed, in [17], 42% of faults
were filtered on average, for 8-bit adders (18% min, 99%
max). Concerning 8-bit multipliers, 59% of faults were filtered
on average (5% min, 85% max). In [16], authors filtered on
average 53% of the faults, by applying their methodology
to arithmetic circuits. In the collected experiments for ME
metrics, the average of filtered faults is not that promising:
for 8-bit adders, only 0.59%, by analyzing EP metric and
1.83%, when evaluating M*E metrics; multipliers gave slight
better results: 2.85%, when considering EP and 7.22%, by
measuring the M*E. Ultimately, the opportunity of filtering
faults by considering ME metrics appears not so attractive if
compared to the required effort. Indeed, due to the complexity
of the problem, the average time we needed to realize the
experiments was very high, as shown in Table I. Nevertheless,
this work allows to define the upper bound of faults that
can be filtered within AxICs, when considering ME metrics.
Consequently, this opens to further research for finding more
efficient methodology to reduce the problem complexity and
thus the execution time.

V. CONCLUSIONS

In this paper, we presented the problems related to the test of
approximate digital circuits considering Error Probability (EP)
and Mean-Error (ME) metrics, such as Mean Absolute Error
(MAE) and Mean Squared Error (MSE). The core problem
is to ensure that the faults introduced in the manufacturing
phase do not introduce errors greater than the acceptable
error threshold. From this perspective, we are allowed to
filter approximate-redundant faults and generate test vectors
only for faults which impact negatively the considered metric.
Since the above mentioned metrics are strictly related to all
the possible combinations of the circuit inputs, the problem
is not trivial. For this purpose, we proposed a methodology
to investigate the possible opportunities of classifying faults
considering ME metrics. As far as we know, this is the first
attempt to address such problem. We proposed a Fault Filtering
Architecture and we performed experiments on several 8-bit
approximate arithmetic circuits to assess the upper bound of

faults that can be filtered. Results showed that it is possible
to filter up to 21% of the faults. On the other hand, given the
high complexity of the problem, the required time to apply the
methodology is very long. Therefore, in the future, we aim to
reduce the problem’s complexity by reducing the number of
input signals needed for calculating the metric variation.
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