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Abstract

Architecture parameter exploration is one of the main analysis that needs
to be performed in order to ensure that a multicore system has an optimal set
of parameters. The main drawback of current simulation approaches is the long
simulation times in order to extract performance metrics while varying a sys-
tem parameter. Trace-driven simulation approaches allow to abstract selected
components of the system under analysis by creating traces during the execu-
tion time of an application. This technique reduces the simulation time while
keeping the accuracy levels. Even tough trace-driven techniques have proven to
be useful, most of them are focused on mono-core systems, and some does not
completely capture the behavior of multi-threaded programs. In this regard,
we developed a trace-driven simulation approach based on the gem5 framework.
This approach is based on a collection phase of the instructions and depen-
dencies of a given application and two extra traces depending on the selected
analysis. It allows weak and strong scaling analysis along with the possibility
to perform extensive parameter exploration analysis. For weak scaling analysis
simulations, we collect synchronization traces for OpenMP applications, and for
strong scaling analysis, we collect task traces for OmpSs applications.

Keywords: Multi-threaded programs, OpenMP, Parameter Exploration,
Scalability Exploration, Trace-Driven Simulation.

1. Introduction

One of the main objectives when designing a multicore system is to accu-
rately determine how the different metrics are escalated with the increase in
the number of cores. For instance, weak-scaling analysis allows designers to
analyze applications that are memory-bonded or that made intensively use of
system resources. On the other hand, strong-scaling analysis, allows designers
to analyze applications that are mainly computed bounded by determining the
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optimal number of core that an application will require to run properly without
parallelization overheads. In addition to scalability analyses, another critical
point is the need for design tools that allows parameter exploration analysis. It
is vital to know how many cores an optimal system has but also how its memory
hierarchy is been used, along with which are the optimal set of values.

Simulation is widely used in system design for evaluating different design
options. Depending on the abstraction level considered for simulating a given
system configuration, there is a trade-off between the obtained precision and
speed. Generally, simulating a detailed system model provides accurate eval-
uation results at the price of potentially high simulation time. On the other
hand, less detailed or more abstract system representations usually provide less
accurate evaluation results, but in a fast and cost-less manner. In practice, such
representations are defined such that they only capture system features that are
most relevant to the problem addressed by a designer. Trace-driven simulation
is a popular technique that enables fast design evaluation by considering system
models where inputs are derived from a reference system execution, referred to
as traces.

Considering multicore architectures, a typical trace-driven simulation relies
on collecting reference traces in a trace-collection phase based on an accurate
reference architecture with a low core count. Because traces are collected on
an accurate reference architecture, most relevant phenomena are captured such
as CPU micro-architecture events, memory transaction events, event jitter due
to the underlying operating system execution, etc. The resulting traces can
be then reused in a number of target trace-driven simulations in which the
CPU is replaced with trace injectors as an abstraction, thereby enabling to
refocus the simulation effort on other performance-critical systems as caches,
communication architecture and memory sub-system.

Elastic Traces (ET) framework [1] is an extension of the gemb environment
[2] that allows collecting and to playback micro-architecture dependency and
timing annotated traces attached to the Out-of-Order (OoO) CPU model. The
focus of this tool is to achieve memory performance exploration in a fast and
accurate way compared to the slow gem5 OoO CPU model. It relies on ex-
tensive modifications of the OoO CPU model by adding probe points in the
different pipeline stages. Each instruction is monitored and a data dependency
graph is created by recording data Read-After-Write dependencies and order
dependencies between loads and stores [3]. Two different traces are produced:
one for instruction fetch requests and one for data memory requests. To ease
the capture of a large amount of trace data, the Google protobuf format is used
[4]. While Elastic Traces simulation provides an attractive design evaluation
support, it does not enable to address multicore architecture.

We present the complete framework of the ElasticSImMATE (ESM) tool. A
trace-driven approach that allows weak and strong scaling analysis along with
a fast parameter exploration capability. In this regard, we presented in [5],
the initial framework of ESM and experimental results for weak-scaling analysis
along with a parameter exploration analysis. In this case, we extended these
two features to perform strong-scaling analysis, the problem size is fixed and the



number of cores increased. In addition to being capable of analyzing the impact
of changing different architectural parameters. In this regard, ElasticSimMATE
enables to conduct explorations belonging to the following categories:

e Fast System Parameter Exploration: thanks to trace-driven simu-
lation speed, the influence of various parameters such as cache sizes, co-
herency policy, memory speed can be rapidly assessed through replaying
the same traces on different system configurations.

e Weak-Scaling Exploration: this approach relies on replicating traces
for emulating more cores, thereby analyzing how performance scales when
increasing the number of cores. This means that the workload is increased
with the increase in the number of cores. This approach requires recording
and carefully handle the synchronization semantics in the trace-replay
phase so as to carefully account for the execution semantics on such an
architecture.

e Strong-Scaling Exploration: this approach uses the capabilities of
task-based programming. Based on the trace collection of a defined prob-
lem size application, task traces can be assigned to a different number
of cores, allowing the analysis how a fixed size problem scales with the
increase of the number of cores.

This paper is organized as follows. Section 2 discusses related work. Sec-
tion 3 describes the main concepts of the ElasticSimMATE approach. In Sec-
tion 4 we present the experimental results on selected applications for ESM
in synchronization-mode and in Section 5 for ESM in task-mode. Finally, we
conclude this paper in Section 6.

2. Related Work

Simulation speed and accuracy are two crucial considerations for architec-
tural and scalability analysis exploration. In the follow-up, we review some
relevant simulation approaches.

2.1. Traditional simulators

Existing techniques can be classified into two fundamental families [6]. The
first family focuses on the increase of computational power, e.g., increasing
the number of simulated events per second. Usually, it is achieved by running
the simulation distributed across multiple host machines [7, 8]. Distributed
simulation is a known difficult technique as the simulation partitioning and
event synchronizations among available hosts have to be carefully assigned.

Another popular approach for accelerating simulation is just-in-time (JIT)
dynamic binary translation, e.g., OVP [9] and QEMU [10]. JIT-based sim-
ulators are instrumented with timing models so that basic architecture block
models and their inter-operations can be driven according to the annotated
timing information.



The second family of techniques includes approaches reducing the number
of simulation events required for accurate results. It concentrates on optimizing
component descriptions (e.g. CPUS, interconnect infrastructure) following the
transaction-level modeling strategy [11] or by using trace-driven simulation [12].

The above approaches lack expressive modeling supports such as those re-
lated to cache hierarchies, coherency protocols and communication architecture
which are of bold importance. Such simulators can achieve speeds close to thou-
sands of MIPS at the cost of a limited accuracy. They often focus on functional
validation rather than architectural exploration.

In order to allow architectural parameter and scalability exploration with
acceptable accuracy, a trace-driven simulation is an alternative approach. It
collects reference traces from baseline systems with a low core count. In this
way, most relevant phenomena are capture, such as jitter related to Operating
System execution. The traces are then reused in a number of target trace-
driven simulations in which CPU cores are replaced with trace injectors, thereby
enabling to refocus simulation effort on other performance-critical system sub-
components (cache, memory sub-system, communication architecture).

Authors in [13] proposed PinPlay a trace-driven technique that captures and
replays traces in the form of pinballs (execution log files) for multi-threaded ap-
plications. The main drawback of this technique is that it does not take into
account timing changes during replay time, leading to not so accurate results
on highly non-deterministic applications. Authors in [14, 15] proposed Syn-
chroTrace, a trace-driven technique that address these non-deterministic appli-
cations by collecting synchronization and dependency-aware traces. The main
idea of this proposal is to record computational, thread synchronization and
communication events separately, derived by native runs of the program. And
then using this traces on a replay mechanism connected to the gem5 simulator.
SynchroTrace is mainly focused on in-order core models, which is a restriction
on its usage as most of the current multicore system works with out-of-order
(000) cores.

Elastic Traces is a gemb extension that allows collecting and playback micro-
architecture dependency and timing annotated traces attached to the OoO CPU
model. The focus of this tool is to achieve memory performance exploration in a
fast and accurate way compared to the slow gem5 OoO CPU model. It relies on
extensive modifications of the OoO CPU model. Probe points have been added
to the pipeline stages. Each instruction is monitored and a data dependency
graph is created by recording data Read-After-Write dependencies and order
dependencies between loads and stores [3]. Two different traces are produced:
one for instruction fetch requests and one for data memory requests. To ease
the capture of a large amount of trace data, the Google protobuf format is used
[4].

In Elastic Traces, the replay phase allows playing traces for architecture ex-
ploration. Instruction traces and data dependency traces are injected on the
I-side and D-side generators respectively (see Fig. 1). This trace re-player sup-
ports only single-threaded applications which are one main limitation. Elastic
Traces demonstrates a speedup of 6 — 8x compared to a reference Out-of-Order
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Figure 1: Elastic Traces Capture and Replay Mechanism [1].

core and is accurate, with less than 10% error versus the reference [1].

SimMATE [16] is a trace-driven simulator that operates on top of gem5 and is
devoted to the exploration of in-order many-core architectures. Traces collected
on a reference architecture in Full-System mode are made of outgoing memory
transactions collected at Level-1 caches, i.e. cache misses. In trace replay phase
CPU cores are replaced with Trace Injectors (TIs) that are connected to the
interconnect subsystem cache and initiate the transactions recorded in the trace
database. The interconnect and memory subsystems remain fully simulated so
as to account for the latencies incurred by the traffic in the given simulated
architecture configuration.

SImMATE takes into account inter-core synchronizations: additional infor-
mation such as barriers are recorded in the traces through a redefinition of
the used shared-memory API functions (e.g., Pthreads) in trace collection. An
arbiter takes care of locking/unlocking trace injectors whenever necessary, ac-
cording to the synchronization constructs recognized in the traces.

SIMMATE speedup is directly related on the application nature: observed
memory-intensive applications result in 7x speedup at worse, whereas compute-
intensive kernels with low memory activity result in speedups measured at up to
800x. Accuracy error compared to the reference full-system varies from 0.02%
to 6% also depending on the application nature and scope of changed parameters
in the targeted architecture configurations [16].

2.2. Trace-Driven simulation of OmpSs programs

OmpSs is a programming language based on StarSs and OpenMP directives.
It makes use of task-based programming to enhance the parallelization of the
applications. One of its main advantages is that it does not use synchroniza-
tion points between threads, but allows the application to be executed in an
asynchronous way accordingly to the data flow [17]. OmpSs is implemented by
using Mercurium and Nanos++ runtime [18]. Task constructs are interpreted
by Mercurium compiler and calls are generated by the Nanos++ runtime. The



runtime checks if the dependencies of a newly created task have been resolved
to properly schedule free-dependency tasks.

A trace-driven approach for OmpSs applications was proposed in [19]. The
application is annotated with Nanos++ calls. The trace collection is performed
in real hardware. Then, the traces are replayed in a framework called TaskSim.
Authors report simulation speedup close to 19x while keeping accurate results
with regard to the real execution of the application. One of the main drawbacks
on trace-driven simulation approaches is the large size of the generated traces. In
order to reduce the trace size problem, the author’s proposed in [20] a filtering
approach without losing accuracy. It is a sampling methodology that works
on top of TaskSim called TaskPoint. TaskPoint identifies the task types and
determines how to schedule the tasks. Tasks can be executed in three different
modes, a warm-up mode, a detail mode, and a fast-forward mode. In the warm-
up mode tasks are executed to avoid misleading results due to cold caches. In
detail mode tasks results are gathered into a list that keeps track of the history of
executed tasks. This history is then used in the fast-forward mode to fasten the
simulation. This approach has been proven in the X86 architecture, however, it
cannot yet be applied to ARM architectures.

ElasticSimMATE leverages the benefits of both Elastic Traces and Sim-
MATE trace-driven approaches in gem5 for multicore architectures: FElastic
Traces provides an accurate modeling of CPU core instruction pipeline for Out-
of-Order cores whereas SINMATE brings a solution that makes it possible to
account for the inter-core execution dependencies. It offers a single simulation
solution of great interest for a fast and accurate exploration of next-generation
multicore systems. In addition, it makes use of OmpSs programming languages
to provide strong-scaling analysis in a fast and accurate manner.

3. ElasticSimMATE Framework

ElasticSimMATE integrates the advantage of Elastic Traces and SimMATE.
On the one hand, we modified Elastic Traces to simulate multi-core architectures
alongside with synchronization event detection and recording. On the other,
based on the synchronization mechanism proposed in SInMATE, we adapted
its methodology to be used with out-of-order cores. One of the main differences
with regard to SimMATE is the way it is performed the trace collection. In
SImMATE, the traces are based only on recording transactions between the CPU
and the L1 cache, while ElasticSiImnMATE uses a complete set of instruction and
dependencies.

The main objective of ElasticSimMATE is to allow a fast scalability and
parameter exploration. ElasticSimMATE supports the following gemb features:
ARMv7 and ARMv8 ISA, OoO CPU model and SimpleMemory model (re-
quired by Elastic Traces). It can be used in two modes, synchronization-mode,
and task-mode. ElasticSimMATE is composed of four phases, code annotation,
checkpoint creation, trace collection, and trace replay. In this section, we ex-
plain in detail these phases for the synchronization-mode, and then the main
changes to use it in Task-Mode.



8.1. ElasticSimMATE: Synchronization Mode
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Figure 2: ElasticSinMATE Workflow: Synchronization Mode

Figure 2 conceptually depicts the ElasticSimMATE in synchronization mode
(ESM-SM) workflow, from the OpenMP application source files to the replay
on different target architecture configurations. The red-colored #pragma omp
statements listed in the source are read by the pre-processor in the usual case
and result in the insertion of calls to the OpenMP runtime. In ElasticSimMATE,
these calls further require calling a tracing function that will make it possible to
record the start and end of a parallel region in the trace. The resulting binaries
are then executed in a Full-System (FS) simulation (Trace Collection phase)
S0 as to generate the execution traces. Three traces are created: instruction
and data dependencies trace files (as per the Elastic Traces approach) and an
additional trace file that embeds synchronization information. These three trace
files are used in the trace replay phase devoted to the architecture exploration.

ElasticSimMATE is compatible with both OpenMP3.0 and POSIX thread
APIs. The focus is put on OpenMP3.0 in this document. Recording synchro-
nization traces requires using a specific gem5 pseudo-instruction created for
this purpose: mb_trace(). This pseudo-instruction requires being inserted ei-
ther manually or automatically by means of using an instrumented run-time
system.

3.1.1. Code Annotation

In order to collect the traces, gemb has to be capable of detecting the be-
ginning and end of the recorded events. To do so we annotate the code with
a pseudo-instruction that is recognized by gemb5 and starts the collection pro-
cess. We called to this pseudo-instruction mb_trace() and it is added before
compilation either manually or automatically. This pseudo-instruction is only
valid int he gem5 framework, and it generates the collection of traces once is
detected during the execution of the application. The aim of using this pseudo-
instruction is to detect the beginning and the end of a given parallel event. We
need to insert it on the source code every time an OpenMP event is called dur-
ing run-time. This insertion can be done manually or automatically. However,
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Figure 3: Function insertion while using Nanos++ and mercurium

manual insertion is rather cumbersome and there we have considered two other
automatic options:

e Source to source approach. This approach relies on parsing application
input files and automatically inserting the m5_trace calls wherever needed.
We have verified that the proposed approach works for C/C++ but would
require being ported to other languages.

e Automatic tracing call insertion. This solution relies on modifying
the API runtime so that whenever a parallel code region is detected a
tracing call gets automatically inserted right at the precise instant where
parallel execution starts. It is regarded as the most suitable solution as it
is accurate and only requires to work with a specific version of the runtime
system.

We selected the automatic tracing call insertion, which is available for OpenMP
using the Nanos++ runtime system and the Mercurium compiler. The advan-
tage of this approach is that we can annotate any code with the m5_trace().
It means that every time a selected OpenMP event is detected, the m5_trace()
pseudo-instruction will be detected by gem5 and activate/stop the recording of
the synchronization event. To do so, we modified the source code of Nanos++
that add a macro function that encapsulates the pseudo-instruction, i.e. we in-
cluded it on the specific functions of Nanos++ that creates the selected OpenMP
events. A summary of the currently supported set of constructs is in table 1.

8.1.2. Checkpoint creation

Once the desired architecture parameters are decided for the trace capture,
the simulation is launched in order to create a checkpoint after system boot and
before application execution. It makes possible to obtain clean traces without
OS boot phase information. This checkpoint resets all statistics in gemb and
allows to resume simulation from that point.



Table 1: OpenMP constructs supported in Nanos++ tracing tool

’ OpenMP Event \ Position \ Nanos++ Call ‘
Parallel / Parallel for | Beginning | nanos_enter_team()
End nanos_leave_team()
Critical Beginning nanos_set_lock()
End nanos_unset_lock()
Barrier Beginning | nanos_omp_barrier()

3.1.3. Traces collection

In this phase, ElasticSimMATE restores the system state from the check-
point and begins trace collection. Three types of events are considered in parallel
sections: instruction executed, dependencies (load/store), and synchronization
events. Instruction and data dependency traces are captured thanks to an
enhanced TraceCPU model. This enhancement is directly related to the incor-
poration of the synchronization mechanism and arbiter during the replay phase.
The following information is captured into the synchronization trace for each
CPU and each event:

e Tick: the tick count of a CPU at the entrance in the parallel region.

e Program Counter: the program counter at the beginning of a parallel
region; it will be used during the replay phase for identifying parallel
sections.

e Thread ID: the thread ID assigned by the scheduler.

e Event Type: an enumerate type that encodes events corresponding to
parallel for, critical and barrier.

e Number of instructions: the number of instructions executed by a
CPU between the beginning and the end of a parallel section.

e Number of data accesses: the number of data accesses performed be-
tween the beginning and the end of a parallel section.

It has to be noted that for each thread under analysis the Tick and PC infor-
mation will be the same since all threads are created at the same time. It means
that the information on the synchronization traces is the same. In the case of
the dependency trace, the load and store information is only collected between
the CPU and the L1 caches. At the end of the trace collection phase, three
Google Protobuf files are obtained per simulated CPU core with the required
data for the replay phase:

e Instruction Executed Trace File.
e Dependency Trace File (LOAD/STORE).

e Synchronization Event Trace File.



3.1.4. Traces replay

As illustrated in Figure 4(a), collected traces can be replayed in target archi-
tecture configurations in different ways. In this case, N represents the number
of cores used in trace collection and M in trace replay, two main purposes are
considered as follows:

e Parameters exploration: we perform an architectural exploration in
which we replay the exact number of simulated cores, i.e., N = M. The
objective is to analyze the influence of a number of architectural parame-
ters such as cache sizes, interconnect bandwidth or memory latency.

e Replication: we perform a scalability analysis, by targeting a higher core
count compared to that of the initial system from which given traces are
captured, i.e., M > N. This is achieved by simulating more trace injectors.
Note that the replication mechanism allows us to perform weak-scaling
analysis as the problem size is increased by the ratio of % In addition,
the current implementation is performed with no address offsetting mech-

anism. This means that most of the resources are shared among cores.
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Instruction
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1Trace trace file
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Figure 4: Trace replay approach
Figure 4(b) shows the interplay of the principal objects involved during the

replay phase in ElasticSimnMATE. A number of TraceCPU objects operate and
check if LOAD/STORE dependencies are met on the basis of the traces they
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access, as per the Elastic Traces base model. These further read out the syn-
chronization trace and keep track of the parallel regions. The actual behavior
when entering a parallel region is as follows:

e Init: whenever one such region is detected on a TraceCPU, a notification
is sent to the arbiter so as to properly handle the synchronizations.

e Processing: TraceCPU model continues the execution. The length of
a region is encoded in the trace in form of a number of instructions to
be executed alongside a number of data dependencies to be met. Local
counters keep track of both instruction and dependency counts.

e Stall: when counters reach the two values (number of executed instruc-
tions and number of executed dependencies) listed in the synchronization
trace record TraceCPU stalls (locked state) and simultaneously notifies
the arbiter it has reached a barrier.

e End: when the arbiter has received lock notifications from all TraceCPU
objects it unlocks them all and execution is resumed.

3.2. FElasticSImMATE: Task Mode

In order to perform strong-scaling analysis, it is necessary to create traces
related to the workload execution and not to the cores. For this reason, we
decided to use the OmpSs programming language as our approach can detect
the beginning and the end of each created task. Figure 5 presents the work-
flow of ElasticSimMATE in task mode (ESM-TM). In this case, annotations
are made in order to track the beginning/end of each task. Then, by doing a
Full-System simulation in gem5, traces are collected and split into task traces.
Afterward, task-traces can be assigned to be executed by any available core in
the replay phase.

Code Annotation Trace Collection ElasticSimMATE Traces Trace Replay
gem5 Y = gem5

Co

Detailed
#pragma omp task Execution-Driven
for (i=0,i<n,i++){ Out-of-order CPU
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d i

/

} D) —
o e N
e

Mercurium&Nanos++ ) CTTTTTTTmmmmmm T

Automatic Insertion
Memory System

Input Application Files Reference Architecture Target Architecture
N Generated Traces
1 Core Collection M Cores Replay

@ Dependency Trace per Task [T ] Instruction Trace per Task T | TaskTrace Record

Figure 5: ElasticSinMATE Workflow: Task Mode
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3.2.1. Code Annotation

In the task-mode, the application is annotated with calls with a m5_task()
gem) pseudo-instruction. We modified the API runtime to automatically de-
tect the beginning and the end of a task. In order to properly annotate the
application, we need to use Mercurium and the modified version of Nanos++.
We determine which functions of the runtime control the creation/exit of a
task and added in those function the pseudo-instruction. These functions are
the nanosSMPThread inlineW orkDependent() for the task creation and the
workDescriptor finish() for the end of the task.

3.2.2. Checkpoint Creation
In a similar way than on the synchronization mode, a checkpoint is created
to avoid tracing any non-useful information of the OS boot phase.

8.2.8. Trace Collection
In this case, in addition to the instruction and dependency trace, we collect
a task record trace. This trace includes the following information:

e Task ID: Task ID number of the executed task.

e Core ID: Thread ID assigned by the scheduler.

e Tick: Tick count of a CPU at the beginning of the task.

e Program Counter: Program counter at the beginning of the task.

e Number of instructions: Number of instructions executed inside the
task by a CPU.

e Number of data accesses: Number of data accesses performed inside
the task by a CPU.

In a post-processing phase, we analyze the instruction and dependency traces
and based on the information collected on the task trace we generate instruction
and dependency traces per tasks. In this way, we can assign different tasks to
different cores and perform scalability analysis in the replay phase.

3.2.4. Trace Replay

Figure 6 shows a representation of the trace replay phase in Task-Mode.
Once the instructions and dependencies per task are obtained, different tasks
can be assigned to different cores. In this version, we use a static scheduler
mechanism (task2core file). This file is read by the arbiter and populates a list
of task to be executed per core. In this way, we can analyze different types of
scheduling mechanisms and how they impact the execution of the application
because we can increase the number of cores and assign the different number of
tasks to each core.

One of the most important features in this phase is the task2core file. This
file works as a fixed schedule and it determines which task will be executed in
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Figure 6: ElasticSimMATE Task-Mode: Trace Replay.

which cores. In this way, it is possible to create different scheduling alternatives
and evaluate which one suits better in terms of execution time. In the next
version, we plan to include dynamic scheduling of tasks to cores.

4. Experimental Results ElasticSimMATE: Synchronization-Mode

In this section, we evaluate and compare ElasticSiImnMATE against Elastic
Traces and gem5 Full-System simulation (reference), and ElasticSimMATE in
synchronization-mode. As figures of merits, we analyze execution time, sim-
ulation time and the simulation accuracy with respect to both the reference
gemb5 Full-System simulation and Elastic Traces. Further results are reported
concerning scalability analysis. They rely on the ”trace replication” approach
(see Section 3.1.4), which is based on trace reuse for emulating the presence of
more cores in the considered targeted system. As traces are replicated on a per-
core basis, these results account for weak-scaling analysis. Finally, parameters
explorations are performed considering different L2 cache sizes.

4.1. Ezperimental Setup

As the reference model, we consider an Out-of-Order (or O3) CPU model
in gemb that represents an ARMv7 architecture. Figure 7 depicts a four-core
architecture along with the cache hierarchy, an interconnect and the main mem-
ory. For the trace collection, we set up the same configuration from 1 to 4 cores
while omitting the L2 cache in a similar way as Elastic Traces approach.

Unless otherwise stated, all experiments are done using the parameters
shown in Table 2. Each core has its own L1 Data and Instruction caches. The
unique L2 cache is shared between all cores through a bus. We run FS simula-
tion which is instrumented for capturing traces. All experiments are conducted
on a 56-core server (Xeon E5 clocked at 2.6GHz).

13



Core 1 ‘ ‘ Core 2 ‘ ‘ Core 3 ‘ ‘ Core 4 ‘

00 o000 0D
|

L2 Cache ]
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4.2. Benchmarking

We perform benchmarking of ElasticSimMATE in three different modes so as
to analyze both intrinsic accuracy/simulation speed and usability in scalability
analysis. The following sections, therefore, display results that correspond to
three modes:

e Base replay: we use a matrix multiplication workload with matrix input
sizes ranging from 16x16 to 128x128 such that simulation complexity can
be easily scaled. For each input, size experiments are performed on 1,
2 and 4 cores. Full System (FS) simulation in gemb is performed as a
reference scenario for both accuracy and simulation speedup evaluation.

Trace replication for scalability analysis: these results are gathered
on the basis of a 1-core trace that is reused for every TraceCPU of the tar-
get simulation. Per-core workload, therefore, remains unchanged, as well
as synchronization semantics: a synthetic synchronization barrier is emu-
lated by the arbiter that ensures all TraceCPU objects reach the end of any
parallel region before resuming the execution of the subsequent statements
in a code. These experiments are conducted on the matrix multiplication

Table 2: Reference baseline system

Parameter Value
CPU Model 03

Size 32kB

I Cache Associativity 2-way
Cycle Hit Latency 2

Size 64kB

D Cache Associativity 2-way
Cycle Hit Latency 1

Size 1MB

L2 Cache Associativity 8-way
Cycle Hit Latency 12

Main Model Simple Memory
Memory latency 30ns
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workload (up to 512x512 matrix sizes) and 3 compute-intensive applica-
tions defined in Rodinia [21] and Parsec [22] benchmark suites respectively:
Hotspot, K-means and Blackscholes.

e Architectural parameter exploration: we use K-means application
with 1, 2 and 4 cores for collection. Then, we replay varying the L2 cache
size. F'S simulations are also run to serve as references.

4.8. Accuracy and Speedup FEvaluation

In this section, we evaluate how correlated are the results obtained with ESM
in relation to ET and FS. In all cases, the deviation percentage is calculated
based on F'S results (VFS}‘+STESM) Table 3 shows the execution times reported
by the three tools. We observe that ElasticSimMATE preserves Elastic Traces
accuracy with negligible deviation in predicted execution time for single core
experiments. On the other hand, the error decreases when analyzing multicore
systems.

Table 3: Simulation accuracy for the matrix multiplication: Execution time comparison

#Core | FS [ms| | ET [ms] | ESM [ms] | FS vs ET [%] | FS vs ESM [%)]

1 115.61 98.55 98.72 14.76 14.61

16x16 2 99.36 102.15 -2.80
4 105.75 106.79 -0.99

1 116.83 99.77 99.77 14.60 14.60

32x32 2 100.19 102.82 -2.63
4 106.25 107.46 -1.14

1 126.34 109.30 109.31 13.48 13.48

64x64 2 106.84 106.58 0.25
4 110.43 109.42 0.91

1 225.39 183.92 183.92 18.40 18.40

128x128 2 159.96 142.41 10.97
4 132.67 127.47 3.92

4.3.1. Speedup FEvaluation

Figure 8 shows the simulation speedups achieved by respectively Elastic
Traces and ElasticSimMATE compared to gem5 FS simulation. Speedups are
in the same order of magnitude for both solutions. Modest speedups of around
3x for small input set sizes find root in the short application execution time for
which gemb spends a comparatively significant time in simulation initialization
versus simulation run.
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Figure 8: Simulation speedup for matrix multiplication.

4.3.2. Trace Replication:

Results in this section use trace replication only. Though traces can be
collected on an arbitrary number of cores (up to 4 in our setup), all figures
reported here are made on the basis of 1 core trace collection that is replicated
according to the target core count. Similar results were obtained when using
two and four cores count. All of the experiments in this section are carried out
using only ESM since FS simulation up to 128 cores would take a prohibitive
amount of time.
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Figure 9: Execution time for matrix multiplication.

Figures 9(a) and 9(b) show the corresponding execution times accounting
for weak scaling. The rather early increase in execution time obviously relates
to contention in the interconnect / memory subsystem (shared bus in these
experiments). Note that trace replication is in the current version made without
any address offsetting i.e. all cores issue requests to the same addresses (encoded
in the trace) which results in unrealistic data sharing during replay. This is
confirmed after analyzing gem5 execution statistics which report well above
80% data sharing in most experiments.

Figures 10(a) and 10(b) show the simulation time versus core count for the
matrix multiplication for 2 sets of input sizes, small (16x16 to 64x64) and large
(128x128 to 512x512). Simulation times for large input sizes have experimented
for systems comprising up to 64 cores. In the worst case (512x512 matrix
sizes, 64 cores) simulation time was about 65 hours which remains tractable
for scalability evaluation.
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Figure 10: Simulation time for matrix multiplication

Ezxperimental results on selected applications: . Similar experiments
have been carried out on sample applications extracted from Rodinia and Parsec
benchmark suites. Blackscholes, Hotspot, and K-means have been selected for
their different memory access patterns.
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Figure 11: gemb Full-System Simulation Time for selected applications.

One of the main objectives of ESM is to reduce the overall simulation time.
In this regard, we ran some initial gem5 full-system simulations with different
core number and a small input set. We then measured the simulation time to
have a reference on how much an FS simulation will take. Figure 11 shows
the simulation time in log scale for these applications. We can observe that
the simulation time increases linearly (hence exponentially due to the log scale)
with the number of cores. We can assume that a simulation of 128 cores will
take a prohibitive amount of time to finish, even more taking into account if we
increase the problem size.

Figures 12(a) and 12(b) give execution times and simulation times for sys-
tems comprising up to 128 cores. Better weak-scaling is observed compared
to the matrix multiplication. Interconnect saturation occurs from 32 cores for
the hotspot. Simulation times are in the tens of hours for the chosen applica-
tions/input set sizes for 128 core systems, which is acceptable.
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Figure 12: Trace replication analysis for selected applications.

4.3.3. Architectural Parameter Exploration
By using ElasticSinMATE in an architectural parameter exploration mode
we vary the L2 cache size and measure the execution time. We compared our
results with regard to gem5 Full-System simulation for one, two and four cores.
Here we focus on relative accuracy between FS and ESM instead of absolute
accuracy. For this analysis, we chose a compute-intensive application (kmeans)
and a memory-intensive application (canneal).
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Figure 13: Execution time for different
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Execution time results are shown in Figure 13. While the observed exe-
cution times for ESM and FS differ, they globally follow the same tendency.
For instance, given any pair of configurations (i.e., L2 cache size) the relative
comparison of their associated execution times is similar for both simulation
approaches. In addition, for a given cache configuration the relative compar-
ison of the execution times obtained with different core counts is similar for
both simulation approaches. The above observations suggest the soundness of
ESM with regard to FS. Since ESM is on average 3x faster than FS, a designer
can, therefore, exploit the capabilities of our approach to perform detailed and
complex architecture parameter exploration in a fast way. To illustrate this
opportunity, let us consider a simple exploration of typical design decisions that
can have an impact on system performance. Here, we vary the size of the L2
cache in the memory hierarchy and we analyze the resulting effect on the related
performance metrics such as the total cache miss rate and the total cache miss
latency. Experimental results are presented in Figure 14. In this figure, we can
observe that other important parameters for the architectural exploration are
well analyzed by ESM for the different type of applications.
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Figure 14: Parameter exploration analysis for different L2 cache sizes for selected applications.
The upper figure shows how the L2 cache miss rate change when increasing the L2 cache size
while the lower the L2 cache miss latency.

4.4. Summary

The displayed results show that overall simulation accuracy remains in the
same range compared to that of Elastic Traces for low core counts while a
slight error is observed towards higher numbers of cores. This finds roots in the
lack of address offsetting when emulating more cores in the target simulation,
as well as a coarse-grained handling of instructions and data synchronizations.
Simulation time scales satisfactorily and most simulations completed in usually
hours, occasionally days when selecting large input sets and core counts. Trace
collection, even though done once for each application is time-consuming and
produces large trace files, in the order of tens of gigabytes for the applications

19



used in these experiments. Synchronization trace account for well below 1% of
overall trace files, the rest is related to intrinsic Elastic Traces tracing approach.

5. Experimental Results: ElasticSimMATE - Task Mode

ElasticSimMATE in task-mode is validated with regard to gem5 Full-System
simulation. In this case, we mainly analyzed the execution time (accuracy anal-
ysis) and simulation time (speed-up analysis). In this mode, ElasticSinMATE
allows strong scaling analysis as the problem size remains the same while in-
creasing the number of cores. We selected the OmpSs version of the Parsec
benchmark suite [23]. In the first analysis, we show the accuracy level of dif-
ferent applications for a system configuration similar to the one used to collect
the traces. Then, we selected three applications with different complexities and
increased the number of cores (strong scaling analysis).

5.1. Experimental Setup

Simulation results from ElasticSimMATE are compared to Full-System gem5
simulation. The first analysis intends to validate and determine the error per-
centage of our approach. The second to show how it can be used for strong
scaling analysis for applications with different complexity levels. In this case,
we performed the analysis for an ARMvS8 64b architecture.

The trace collection phase was performed in a system with one core and
a simple memory model. We choose the small input set in all cases, as our
main objective is to prove the usefulness of the approach. Table 4 shows the
application domain, the problem size and the total number of instantiated tasks.

Table 4: Selected Benchmark Characteristics

Benchmark | Application Domain Input Set #Tasks
blackscholes Financial Analysis 16K 400
canneal Engineering 10000 swaps per temperature step 32
ferret Similarity Search 16 image queries, database with 3544 images 384
freqmine Data Mining 250000 anonymized click streams 1737
streamcluster Data Mining 4096 input points, block size 4096, 32 point dimmensions 1319
swaptions Financial Analysis 16 swaptiosn, 10000 simulations 16

In order to do a fair comparison, the task2core file is created based on the
way Full-System simulation executes the tasks. This means that we emulated
the FS-scheduler to avoid any bias in our analysis.

subsectionAccuracy and Speedup Evaluation

As an initial validation test, we collected the traces for the different applica-
tion of the PARSEC benchmark suite. Then we replay all the tasks using Elas-
ticSINMATE in Task-Mode. Figure 15(a) shows the execution time for selected
PARSEC applications. The average error percentage is 19%, with a minimum
value of 12.5 or streamcluster and a maximum of 30.2 for ferret. These errors
are directly related to the way ElasticTraces handles the dependency graph and
then it impacts the way dependencies are executed inside a task.
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Figure 15(b) shows the simulation time for the selected applications. In
average, ESM-TM is 8x faster than Full-System simulation. The speed-up
depends on the application type and according to with our findings, it can be
between 5x and 10x.
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Figure 15: Simulation results of selected PARSEC applications

5.2. Strong Scaling Analysis

Strong scaling analysis targets the analysis of how the execution time of a
solution of a problem varies with the increase in the number of cores for a fixed
size problem. In this case, we choose three different applications, with different
complexity levels and increased the number of cores from 1 to 16. Then, we
compared our results to F'S simulation.

5.2.1. Blackscholes

Figure 16(a) shows the execution time of Blackscholes when the number of
cores is increased. We can observe that after 4 cores the execution time is no
longer improved. This can be explained based on the fact that the application
can execute only four tasks in parallel and then a taskwait synchronizes the
result of each of these tasks. We observe in Figure 16(b) that the simulation
time in Full-System simulation increases exponentially with the number of cores,
whereas in ESM-TM, it increases linearly, been 9x faster than FS gem5.
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Figure 16: Blackscholes Simulation Results
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5.2.2. Swaptions

Figure 17 shows the execution and simulation times for swaptions application
for different core number. The particularity of this application is that it only
presents 16 tasks. The execution time is reduced whit the increase in the number
of cores. In this case, the smaller execution time will be accomplished with a
system with 16 cores, as the 16 tasks will be executed in parallel. We can
observe the execution time tendency in Figure 17(a). Regarding the simulation
time, ESM-TM is 8 faster than FS simulation.
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Figure 17: Swaptions Simulation Results

5.2.8. Ferret

Finally, the third application is Ferret. It has a total of 384 tasks and it
does not present any taskwait condition in its code. With the increase in the
number of cores, we can observe a clear reduction on the execution time (Figure
18(a)). Even though the absolute error is in average 26%, we can observe that
the overall tendency is well tracked by ESM-TM. This means that ESM-TM
presents an excellent relative accuracy and with a 5x speed-up over gemb FS
simulation (Figure 18(b)).
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Figure 18: Ferret Simulation Results

5.8. Comparison against real-hardware simulation

This section aims at analyzing the accuracy of the predicted results when
targeting a physical platform. The de-facto platform is here the Mont-Blanc
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3 Dibona prototype [24]. This platform is based on the Cavium ThunderX2
chip, which includes full custom out-of-order 64 bits cores and features a 32KB
instruction and data L1 caches, a 256KB L2 shared cache and a 32MB L3
distributed cache. It uses an ARM CCI interconnect and presents 8 DDR4
memory controllers for a total size of 256GB [25].

In order to compare ESM-TM with regard to Dibona, we devised a dibona-
like model. The main idea was to ensure that most of the available gemb

parameters match with the values of this platform, these values are presented
in Table 5.

Table 5: Dibona gemb model (Latencies are reported in cycles)

Parameter Value
CPU Model 03
Size 32kB
I Cache Associativity 8-way
Cycle Hit Latency 4
Size 32kB
D Cache Associativity 8-way
Cycle Hit Latency 4
Size 256kB per core
L2 Cache Associativity 8-way
Cycle Hit Latency 15
Size 32MB (1MB per core)
L3 Cache Associativity 16-way
Cycle Hit Latency 68
Model DDR4
Size 8GB
Main Frequency 2.4GHz
Memory Channels 8
Ranks 2
Model XBar
Interconnect Width 128
Frequency 2GHz

5.8.1. Accuracy analysis

As the gem5 dibona-like model is a first approximation to the real hardware
configuration the absolute values of ESM-TM are higher than the once computed
on the Dibona platform. In this case, we decided to analyze the relative accuracy
of the strong scaling experiments by taking into account the speedup reported
by both approaches. Figures 19(a), 19(b) and 19(c), show the speedup figures
obtained from 2 to 16 cores, with both ESM-TM replay simulations and averaged
runs on the Dibona prototype. For all three applications, ESM-TM replays
accurately capture reference scaling properties, with a slight tendency towards
overestimation. Average tracking error in speedup is below 5%, with a maximum
15% error on Blackscholes on 4 and 8 cores experiments.

5.3.2. Experimental Results on Real-World Applications
We perform experimental results on a real-world application. We selected
LULESH application, as is one of the most representatives among the HPC
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study problems [26]. We choose a medium problem size (120) with dynamic
scheduling. We use the OmpSs run-time, which seamlessly treats each of the
loop chunks as a task. We perform native runs of the application in Dibona
with 1 to 16 cores, which are the comparison baseline for our analysis.

Figure 20 shows the different speedup curves obtained on for Dibona native
executions and the different simulation infrastructures. As can be seen for up
to 8 cores all speedups of ESM-TM are well correlated with Dibona platform.
However, for 16 core we can observe that ESM-TM speedup is higher than the
one reported on Dibona. We assume this is due to the fact that there is no gem5b
model for the ARM CCI interconnect and that we are using a generic crossbar
working at the same frequency. Further work will focus on the modeling on this
kind of interconnect to enhance our results. Another source of error is the values
on the created gemb dibona-like model, as some of the parameters are initial
estimations. This is due to the fact that true values are not publicly available.

5.4. Summary

ElasticSimMATE in task-mode uses the task construct capabilities of OmpSs
programming languages. By collecting traces in one defined reference system
we can perform fast strong-scaling analysis with a high relative accuracy. This
means that ESM-TM is able to track correctly how an application scales with the
increase in the number of cores. Experimental results show that our approach is
in average 8x faster than Full-System gem5 simulation. The average absolute
error is close to 18%. In this approach, we replay individual tasks based on
a task2core file that works as a static scheduler, which is not the case in FS
simulation. In comparison with real-hardware ESM-TM shows great accuracy
for different academical benchmarks.

6. Conclusion and Future Work

This paper describes a gemb trace-driven simulation solution. It relies on two
former contributions, Elastic Traces, and SimMATE. The resulting tool, Elas-
ticSimMATE, preserves the accuracy at the heart of Elastic Traces and makes
it possible to conduct a fast architectural parameter exploration. We illustrated
the opportunity offered by ESM for fast and sound architecture exploration.

Our approach can be used to perform scalability and parameter exploration
analysis. The synchronization-mode uses an adequate trace replication mech-
anism to allow weak-scaling analysis. This mechanism relies on reusing traces
collected on a reference architecture onto more cores thereby enabling to per-
form weak scaling experiments (workload/problem size remains same per core).
Experimental results confirmed that ESM can simulate up to 128 cores. Fur-
thermore, based on the application complexity, ESM-SM is at least 3x faster
than FS simulation.

The task-mode uses a task-based mechanism to assign tasks to available
cores, allowing the strong-scaling analysis. It can be used to analyze how a
given workload can be divided and allocated into the available cores and how
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it can be adapted to the number of cores. Experimental results show that, in
comparison with FS simulation, ElasticSimMATE is 8x faster with an average
error of 18%. Despite this error, our approach can accurately track the overall
tendency of scaling experiments for different architectures in a fast way. In
comparison with real-hardware execution, ESM-TM shows a good correlation
up to 16 cores for academical benchmarks and up to 8 cores with real-world
applications. Further work will be focused on improving our gem5 models to
enhance the overall accuracy of ESM.

Beyond the simple architectural exploration reported in this work, we plan
to address further design issues, e.g., interconnect topologies and protocols,
memory hierarchy, etc. We also plan to enhance our synchronization-mechanism
to take into account trace offsetting. For the task-based methodology, we plan to
implement a dynamic scheduler that checks on-line data dependencies. Finally,
our tool will be freely-available once we have made the proposed improvements.
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Figure 19: Speedup comparison against Dibona
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