
HAL Id: lirmm-02100287
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02100287v1

Submitted on 17 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compiler-assisted adaptive program scheduling in
big.LITTLE systems

Marcelo Novaes, Vinicius Petrucci, Abdoulaye Gamatié, Fernando Magno
Quintão Pereira

To cite this version:
Marcelo Novaes, Vinicius Petrucci, Abdoulaye Gamatié, Fernando Magno Quintão Pereira. Compiler-
assisted adaptive program scheduling in big.LITTLE systems. PPoPP 2019 - 24th Symposium on
Principles and Practice of Parallel Programming, Feb 2019, Washington, United States. pp.429-430,
�10.1145/3293883.3301493�. �lirmm-02100287�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02100287v1
https://hal.archives-ouvertes.fr

Compiler-assisted Adaptive Program Scheduling in
big.LITTLE Systems

Marcelo Novaes

Department of Computer Science

UFMG

Brazil

marcelonovaes@dcc.ufmg.br

Vinícius Petrucci

Department of Computer Science

UFBA

Brazil

vinicius.petrucci@dcc.ufba.br

Abdoulaye Gamatié

LIRMM

CNRS

France

abdoulaye.gamatie@lirmm.fr

Fernando Quintão

Department of Computer Science

UFMG

Brazil

fernando@dcc.ufmg.br

Abstract
Energy-aware architectures provide applications with a mix

of low (LITTLE) and high (big) frequency cores. Choosing the

best hardware configuration for a program running on such

an architecture is difficult, because program parts benefit

differently from the same hardware configuration. State-of-

the-art techniques to solve this problem adapt the program’s

execution to dynamic characteristics of the runtime envi-

ronment, such as energy consumption and throughput. We

claim that these purely dynamic techniques can be improved

if they are aware of the program’s syntactic structure. To

support this claim, we show how to use the compiler to

partition source code into program phases: regions whose

syntactic characteristics lead to similar runtime behavior.

We use reinforcement learning to map pairs formed by a

program phase and a hardware state to the configuration

that best fit this setup. To demonstrate the effectiveness of

our ideas, we have implemented the Astro system. Astro uses

Q-learning to associate syntactic features of programs with

hardware configurations. As a proof of concept, we provide

evidence that Astro outperforms GTS, the ARM-based Linux

scheduler tailored for heterogeneous architectures, on the

parallel benchmarks from Rodinia and Parsec.

Keywords big.LITTLE architecture, Adaptation, Compiler

1 Introduction
Contemporary hardware found in mobile phones and data

centers sport multiple ways to reduce energy consumption.

Two of these techniques are the combination of low and high

power cores (the so called big.LITTLE architectures) [7], and

the ability to adjust power and speed dynamically (DVFS) [15].

This design gives us the possibility to allocate to each par-

allel application the hardware configuration that best suits

it. A hardware configuration consists of a number of cores,

,

.

their type and their frequency level. We say that a configu-

ration H1 suits a program better than another configuration

H2 if H1 runs said program more efficiently than H2, accord-

ing to some metric such as runtime or energy consumption.

Nevertheless, even though we have today the possibility of

choosing among several configurations, the one that better

fits the needs of a certain program, we still have no clear

technique to perform this choice seamlessly.

We call the task of allocating parts of a parallel program

to processors the code placement problem. State-of-the-art

approaches solve this problem dynamically or statically. Dy-

namic solutions [18, 20, 22] are implemented at the runtime

level, at the operating system, or via a middleware. Static

approaches [11, 19, 21, 31] are implemented at the compiler

level. The main advantage of the dynamic approach is the

fact that it can use runtime information to weight the choices

it makes. Static techniques, in turn, provide reduced runtime

cost and better leverage of program characteristics. In this pa-

per, we claim that it is possible to join these two approaches,

achieving a synergy that, otherwise, could not be attained

by each technique individually.

To fundament this claim, we start from a technique that

has been proven effective to schedule computations in big.

LITTLE architectures: Reinforcement learning. Nishtala et

al. [20] showed that reinforcement learning helps to find

good hardware configurations to applications subject to vary-

ing dynamic conditions. The beauty of this approach is adapt-

ability: it provides the means to explore a vast universe of

states, formed by different hardware setups and runtime

data changing over time. Given enough time, well-tuned

heuristics find a set of scheduling decisions that suits the

underlying hardware. Yet, “enough time" can be too long.

The universe of runtime states is unbounded, and program

behavior is hard to predict without looking into its source

code. To speedup convergence, we resort to the compiler.

The compiler gives us two benefits. First, it lets us mine

program features, which we can use to train the learning

1

ar
X

iv
:1

90
3.

07
03

8v
1

 [
cs

.P
L

]
 1

7
M

ar
 2

01
9

, Marcelo Novaes, Vinícius Petrucci, Abdoulaye Gamatié, and FernandoQuintão

algorithm. Second, it lets us instrument the program. This

instrumentation allows the program itself to provide feed-

back to the scheduler, concerning the code region currently

under execution. Based on previous knowledge, collected

statically, about characteristics of that region, the scheduler

can take immediate action. An action consists in choosing a

new state to represent program behavior, and collecting the

reward related to that choice. Such feedback is then used to

fine-tune and improve scheduling decisions. As we show in

Section 4, convergence is faster, and runtime shorter.

To validate our ideas, we have materialized them into a

framework to instrument and execute applications in het-

erogeneous architectures: the Astro System. Astro collects

syntactic characteristics from programs and instruments

them using LLVM [14]. Experiments in programs from Par-

sec [4] and Rodinia [6] running on an Odroid XU4 show that

we can obtain speedups of more than 10% over the default

GTS scheduler used in ARM-based systems. Such numbers

result from the following contributions:

Observations: in Section 2, we demonstrate that the perfor-

mance of a program running on a heterogeneous ar-

chitecture vary depending on which part of its text we

consider. This observation points us to the key insight:

the possibility of augmenting an adaptive runtime ap-

paratus with awareness of program characteristics.

Compiler: in Section 3.1, we explain how to collect and dis-

cretize program features, and in Section 3.2, we explain

how to instrument a program, so to use said features

to fine-tune an adaptive code placement algorithm.

Runtime: in Section 3.3, we show how to integrate the static

information that we collect with an adaptive runtime

environment. Once we train a program, we generate

code that maps different parts of it to suitable hardware

configurations.

2 Empirical Observations
This section motivates our work through three empirical

observations. First, different hardware configurations yield

very different tradeoffs between power consumption and run-

time speed for a program (Figure 1). Second, this behavior

happens because programs have power phases: depending on

the operations that they perform, they might consume more

or less power per time unit (Figure 2). Third, the best hard-

ware configuration for a program might not suit the needs

of a different application (Figure 4). Central to the discussion

in this section is the notion of a hardware configuration:

Definition 2.1 (Hardware Configuration). A heterogeneous

architecture is formed by a set P = {p1,p2, . . . ,pn} of n proces-

sors. A hardware configuration is a function H : P 7→ Boolean.

If H (pi) = True, then processor pi is said to be active in H ,

otherwise it is said to be inactive.

First Observation. The same application might benefit dif-

ferently from different hardware configurations. This benefit

0	

5	

10	

15	

20	

25	

30	

35	

40	

0	 3	 6	 9	 12	 15	 18	 21	

8	

9	

10	

11	

12	

2.8	 3	 3.2	 3.4	 3.6	 3.8	 4	

0L1B

1L0B

2L0B
3L0B

4L0B

0L2B

4L4B
4L1B1L4B

0L4B

0L3B
4L3B

Time (secs)

E
ne

rg
y

(jo
ul

es
)

Freqmine

Streamcluster

Time (secs)

E
ne

rg
y

(jo
ul

es
)

0L1B
0L
3B

4L0B
1L0B

1L1B

2L1B

xLxB

1L2B
2L2B

1L3B

2L3B
1L4B

3L2B

2L4B

4L1B

3L1B

3L3B

4L4B

4L3B

4L2B

Best Energy

Best Runtime

Best Energy/Time
1L1B

Best Runtime
Best Energy
Best Energy/Time

Figure 1. Energy vs Processing time spent by two PARSEC

benchmarks using simsmall inputs. The notation xLyB de-

notes x LITTLE cores, and y big cores.

is measured in terms of processing time and energy con-

sumption. Figure 1 shows how two benchmarks from the

PARSEC suite – Freqmine and Streamcluster – fare on an

Odroid XU4 board featuring 4 Cortex-A15 2.0Ghz cores and 4

Cortex-A7 1.4Ghz cores. Following a nomenclature adopted

by ARM, we shall call the A15 cores bigs, and the A7 cores

LITTLEs. By switching on and off the different cores, we have

24 different hardware configurations
1

Each dot in the figure represents the average of 10 execu-

tions on the same configuration, using the smallest
2
input

available in PARSEC. Variance is almost negligible, staying

under 1% in every sample, for the two benchmarks. The

X-axis shows the sum of the execution times of processors

active in a particular configuration; hence, it is not clock time.

Energy is measured with the Odroid XU3 on-board power

measurement circuit and refers to work performed within

the processors only; thus, peripherals are not considered.

Figure 1 lets us conclude that the energy and runtime foot-

print of applications vary greatly across different hardware

1
We have 24 = 5 × 5 − 1 configurations, because we do not count the setup

in which all cores are off.

2
This experiment would take 12 days using the largest inputs.

2

Compiler-assisted Adaptive Program Scheduling in big.LITTLE Systems ,

configurations. For instance, the most time efficient configu-

ration for Freqmine is 0L4B, i.e., four bigs and no LITTLEs

(2.90secs, 10.43J). However, the most energy efficient config-

uration is 4L0B (4.01secs, and 8.65J). Results are not the same

for Streamcluster. The best energy configuration is 0L1B
(0.48secs, 0.69J). This is also the most time efficient configu-

ration. Freqmine showsmore parallelism than Streamcluster;
therefore, it benefits more from a larger number of cores.

This diversity of scenarios happen because programs have

phases. Energy and runtime behavior are similar within the

same phase, and potentially different across different phases.

Second Observation. The instantaneous power consumed

by a program is not always constant. In other words, a pro-

gram has power phases. Figure 2 (a) shows a program which

we have crafted to emphasize the different phases that a

program undergoes during its execution. This program per-

forms the following actions: (i) read two matrices from text

files; (ii) multiply them and (iv) prints all the matrices in the

standard output. In between each of these actions we have

interposed commands to read data from the standard input.

Figure 3 shows the power profile of this program. This

chart has been produced with JetsonLeap [3], an apparatus

that let us measure the energy consumed by programs run-

ning on the Nvidia TK1 Jetson board
3
. JetsonLeap is formed

by three components: the target Nvidia board (Figure 2 (b)), a

data acquisition device, which reads the instantaneous power

consumed by the board (Figure 2 (c)), and a synchronization

circuit, which lets us communicate to the power meter which

program event is running at each instant (Figure 2 (c)).

Distinct phases exist within the same program because it

might use the hardware resources differently, depending on

which part of it is running. By reading performance coun-

ters, we know that during matrix multiplication, CPU is

at is maximum usage. During the input/output operations,

this utilization drops slightly, and other components of the

hardware, such as its serial port, are more exercised instead.

This fall is steep once the program is waiting for user inputs.

The CPU is not the only hardware component that accounts

for power dissipation. The JetsonLeap apparatus measure

energy for the entire hardware. Thus, the under utilization

of the CPU does not mean that overall power consumption

will decrease. Nevertheless, variations in the CPU usage are

likely to cause variations in the power profile of the program.

Discovering such program phases by means of purely

dynamic techniques is possible, yet difficult. As we shall

demonstrate in Section 4, we can use profiling techniques, à

la Hipster [20], to identify variations in program behavior.

However, this approach has two shortcomings. First, dis-

tinct program parts, with very different resource demands

3
In this section we use two different experimental setups: Odroid XU4

and Tegra TK1. The former gives us the richness of configurations seen in

Figure 1. This diversity is absent on the latter, that has only one LITTLE core.

However, the TK1 board gives us access to JetsonLeap, and, consequently,

the ability to measure energy per programming events.

int main(int argc, char** argv) {
 int M1, N1, M2, N2;
 // Read first matrix from file 'argv[1]'
 int** m1 = readMatrix(argv[1],&M1,&N1);
 read_user_data();
 // Read second matrix from file 'argv[1]'
 read_user_data();
 int** m2 = readMatrix(argv[2],&M2,&N2);
 read_user_data();
 // Multiply both matrices, giving m3
 int** m3 = mulMatrix(m1,m2,M1,N1,N2);
 read_user_data();
 // Print all the matrices in the
 // standard output
 printMatrix(m1, M1, N1);
 printMatrix(m2, M2, N2);
 printMatrix(m3, M1, N2);
 read_user_data();
} (a)

(c)

(b) (d)

Figure 2. (a) Simple matrix multiplication implemented in

C. (b) The Nvidia TK1 board. (c) NI 6009 Data Acquisition

Device. (d) Synchronization circuit.

0	

2	

4	

6	

8	

0	 50	 100	 150	 200	 250	 300	 350	 400	

readMatrix

mulMatrix printMatrix

Time (msec)

2	

4	

6	

big	 LITTLE	

P
ow

er
 (W

)
(a)

(b)

Figure 3. (a) Power profile of program seen in Figure 2. The

NI 6009 sample rate was 1000 samples/sec. (b) Zoom of the

power profile obtained during the last phase of the program.

in terms of memory, CPU, disk and such, can display similar

dynamic characteristics. For instance, we could imagine a

scenario in which function read_user_data, in Figure 2 is

implemented via busy waiting. In this case, instead of the

valleys observed in Figure 3, we would encounter a power

line similar to that produced by CPU-intensive functions like

mulMatrix. Second, profiling-based techniques face a trade-

off between precision and overhead. Fast detection asks for

high sampling rates; thus burdening the application which

originally we intended to optimize. On the other hand, purely

3

, Marcelo Novaes, Vinícius Petrucci, Abdoulaye Gamatié, and FernandoQuintão

0 1 2 3
0

1

2

3

Number of LITTLE cores in use

N
um

be
r o

f b
ig

 c
or

es
 in

 u
se

blacksholes

bodytrack

facesim

ferret

streamcluster

bodytrack

facesim

ferret

streamcluster

vips

freqmine

freqmine

vips

5% loss

1% loss

blacksholes

Figure 4.Best configurations for seven PARSEC applications,

if we accept an slowdown of 1% or 5% to save more energy.

static approaches are not better either. Although likely to

yield lower adaptation overhead, they fail to account for

information only available at runtime such as varying input

sizes. For instance, a static scheduler might decide always run

mulMatrix and read_user_data in different configurations.

However, when operating on matrices that are too small,

the cost of changing the hardware configuration might al-

ready overshadow the possible gains available through more

parsimonious usage of the architecture’s resources.

Third Observation. The best architecture configuration, in
terms of runtime or energy consumption, differs among pro-

grams. Figure 4 shows the best configurations that we have

found on the Odroid XU4 setup, for six PARSEC applications.

We define the best configuration as the one that spends less

energy, given a certain slowdown compared to the fastest

configuration. Clearly, there is not a single winner. Config-

urations vary among programs, and even within the same

program, given different acceptable slowdowns.

In the rest of this paper, we shall describe a generalmethod-

ology, henceforth called the Astro system, which mixes static

and dynamic analyses, to find good hardware configurations

for the functions invoked during the execution of a program.

In this section, we have highlighted key motivation behind

our design: (i) a modern heterogeneous hardware exposes

a number of different configurations that is too large to be

evaluated manually; (ii) a program presents power phases,

which can be more easily detected by methods that are aware

of structural properties of the code. Thus, we claim that effec-

tive adaptation demands knowledge of program character-

istics. Such information is readily available to the compiler;

however, it is hard to be precisely acquired by techniques

unaware of the program’s structure.

3 The Astro System
This section describes the design and implementation of our

approach to solve the problem of finding good hardware con-

figurations for programs. We state this problem as follows:

Definition 3.1. Scheduling of Programs in Heteroge-

neous Architectures (SPha)

Input: a program P , its input I , hardware configurationsH1, . . .Hn ,

energy threshold E, and performance threshold S .
Output: P ′

, a new version of P , which switches between config-
urations, and process I using E% less energy, with a slowdown

of no more than S%.

In this paper, we solve SPha using an assortment of tech-

niques, which give us the means to generate code that is well

adapted to different architectures and workloads. Figure 5

provides a general overview of these techniques, emphasiz-

ing the different stages over which we go in the process of

solving SPha. Section 3.1 describes program instrumenta-

tion, a necessary step to partition a program into phases.

Section 3.2 goes over actuation; and Section 3.3 discusses the

generation of the final program. However, before we move

into the particulars of our solution to SPha, we provide a

Program P

Instrumented Program P'

Trace

Neural Net Actuator

Assembler

Final Code Generation

Program
Instrumentation

Actuation

Code-Level
Features

Clang

BytecodesExtractor
LLVM-opt

Annotator
LLVM-opt

Assembler

report

predict

actuate

CodeGen
LLVM-opt

Final
instrumented
program P"

PerfCounter write

read

Device

Agent
read

Heterogeneous Platform

write

done

[optional](static or hybrid)

Figure 5. The Astro System.

4

Compiler-assisted Adaptive Program Scheduling in big.LITTLE Systems ,

brief introduction to Q-Learning, the flavour of reinforce-

ment learning that we have adopted.

Q-Learning. Q-learning is a reinforcement learning algo-

rithm [28]. Given some notion of state (Definition 3.2) and

reward (Definition 3.7), it finds an optimized policy to per-

form the best action (Definition 3.9). Q-learning is attractive

because there is no need to know in advance the precise

results of the actions before we perform them; that is, we

learn about the environment as we perform actions on it. A

Markov Decision Process (MDP) drives Q-learning. A MDP

is given by a set of states S , a set of possible actions A, a re-
ward function R : S ×A → R, and a state transition mapping

T : S ×A → S that describes the effects of taking each action

in each state of the environment. The Markov property says

that the results of an action depends only on the state where

the action was taken, regardless of any other prior states.

3.1 Phase Partitioning
A running program might cause the hardware to go over an

infinite number of different states. Because this universe is

unbounded, Definition 3.2 discretizes the notion of a State.

In that definition, S is a Program Phase and D is a Hardware

Phase. Program phases are discussed in Section 3.1.1, and

hardware phases are discussed in Section 3.1.2.

Definition 3.2 (State). A state is a triple ⟨H , S,D⟩ represent-
ing a hardware configuration H , a program phase S and a

hardware phase D.

3.1.1 Program Phases
Static Program Phases depend only on the syntax of a pro-

gram. Definition 3.3 formalizes this notion. A static program

phase is not equivalent to a program region, because dif-

ferent regions can present the same set of feature ranges.

Example 3.4 clarifies the meaning of these definitions.

Definition 3.3 (Program Phase). A code-level feature (also

called code feature or simply feature) is a syntactic charac-

teristic of a program, such as number of n-nested loops or

instruction mix. A feature range is a contiguous interval of val-

ues that a feature can assume, and that partitions the feature

space into equivalence classes. A program phase S is a group

of feature ranges, covering different features.

Example 3.4. The density of arithmetic and logical instruc-

tions is a code-level feature, which we obtain by dividing the

number of such opcodes by the total number of program in-

structions. We can define different feature ranges covering this

metric, such as [0, 0.25), [0.25, 0.50) and [0.5, 1.00]. The num-

ber of nested loops yields another feature. In this case, possible

ranges are [0, 1], [2, 3] and [4,+∞]. Finally, an expectation

on the number of I/O routines called in a function gives us a

third feature. A heuristic to estimate it is: Σi10
n
, for every I/O

call i nested into n loops. Potential intervals for this metric are

[0, 1), [1, 10), [10, 100) and [100,+∞]. The 3 × 3 × 4 possible

0	

0.6	
1.2	
1.8	
2.4	
3	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.5	 2	 8	 32	 128	 512	

readMatrix

read_user_data

mulMatrix

printMatrix

main

(1, 0.25, 1)

I/O Weight

A
rit

h.
 D

en
si

ty

Ne
st

in
g

Fa
ct

or

Figure 6. Mapping the functions in Figure 2 (a) to program

phases.

combinations of these ranges gives us 36 program phases. If

we collect these features for each function in the program code,

then we can map any of them to one of these program phases.

In this paper, we mine (e.g., collect) features from the

intermediate program representation that the compiler ma-

nipulates before producing executable code. We have imple-

mented a Phase-Extractor using the LLVM compiler. The re-

sult of mining program features is a map that assigns phases

to program regions. This map depends on the choice of pro-

gram region. Many different granularities of regions are

possible, such as instruction, basic block, loop, Single-Entry-

Single-Exit block [9], etc. We have chosen to work mostly at

the granularity of functions. The “mostly" in this case, refers

to the fact that we also change phases before and after li-

brary calls that cause the program to block waiting for some

event (see the Barrier phase, in the discussion that follows).

Pragmatically, this amounts to say that the instrumented

program adds logic to change phases at the entry point of

functions, and around certain library calls.

Example 3.5. Figure 6 shows the five functions in Figure 2,

classified according to features seen in Example 3.4. We are

assigning these functions hypothetical values. Because we have

three features, we canmap them into a three-dimensional space.

Each phase corresponds to a cube in this space. Figure 6 shows

the sub-space that corresponds to the phase: Arith.Density ∈
[0, 0.25), I/O Weight ∈ [0, 1) and NestingFactor ∈ [0, 1).
Function main, in our example, fits in this phase.

Our Choice of Program Phases. In our implementation,

we combine four code features to determine program phases.

These features are all “densities", i.e., they represent a certain

quantity of instructions normalized by the total of instruc-

tions in the target function. We use the following features:

• IO-Dens: proportion of library calls that perform I/O

operations;

5

, Marcelo Novaes, Vinícius Petrucci, Abdoulaye Gamatié, and FernandoQuintão

• Mem-Dens: proportion of instructions that accessmem-

ory (loads and stores);

• Int-Dens: proportion of arithmetic and logic instruc-

tions that operate on integer types.

• FP-Dens: proportion of arithmetic and logic instruc-

tions that operate on floating point types.

• Locks-Dens: proportion of lock instructions.

• Barrier: true when the program invokes a multi-thread

barrier that forces it to wait for some blocking event.

• Net: true when the program invokes a library call that

forces it to wait for some network-related event.

• Sleep: true when the program invokes a sleep library

call that forces it to wait unconditionally.

We have defined four program phases, which appear as

combinations of the features above. This choice is arbitrary.

We have opted for a simple partitioning, involving only a

handful of features for convenience, as this choice already

lets us support the main thesis of this paper: that static fea-

tures greatly enhance the dynamic scheduling of computa-

tions in heterogeneous hardware. The program phases that

we shall consider in Section 4 are:

• Blocked: Barrier = true or Net = true or Sleep = true

or Locks-Dens > 0.5;
• I/OBound: IO-Dens +Mem-Dens> 0.5 and not(Blocked)
and Locks-Dens = 0;

• CPUBound: Int-Dens + FP-Dens> 0.5 and not(Blocked);
• Other: in case none of the previous relations hold.

3.1.2 Hardware Phases
While the program phases seen in Section 3.1.1 depend only

on syntactic program characteristics, hardware phases de-

pend on the dynamic state of the hardware:

Definition 3.6 (Hardware Phase). A Performance Counter

is any monitor that collects dynamic information about the

hardware state, such as CPU performance and cache miss rate.

The domain over which the performance counter ranges can

be partitioned into phases. Given a collection of performance

counters {C1, C2, . . . ,Cn}, where each Ci is partitioned into

Ri phases, then a hardware phase is any combination within

the product R1 × R2 × . . . × Rn .

The monitoring of hardware phases does not require pro-

gram instrumentation. Instead, an actuator reads the state of

hardware performance counters periodically. Modern archi-

tectures already provide an array of performance counters

that can be queried. In this paper, we consider four kinds of

counters to define hardware phases:

• IPC: instructions per cycle in the ranges [0, .5), [.5,
1.0), [1.0,+∞);

• CMA: cache misses per cache accesses in the ranges

[0, 1%), [1%, 5%), [5%,+∞);
• CMI: cache misses per instruction executed, in the

ranges [0, .1%), [.1%, .5%), [.5%,+∞);

Inst. Program Actuator

Log

Experience

State

Weighted
Actions

Neural NetDevice

PerfMon Di

Si

ri = reward(ei, pi)

(Hi-1, Si-1,
Di-1, Hi, ri)

backprop.
(Hi, Di, Si)

(A1, R1)
...

(An, Rn)

H' = best(Ax, Rx) 1 � x � n

Hi+1 = chg(H', Hi)

Next
ConfigH'

feedforward

i

i+1

i > 0 M
O
N
I
T
O
R

L
E
A
R
N

A
D
A
P
T

OS (Hi, pi)

PowMon ei

Figure 7. The Actuation Algorithm.

• CPU: utilization of the CPU, in the ranges [0, 20%),
[20%, 50%), [50%,+∞).

Each counter is partitioned in three buckets. Therefore, we

consider a total of 3 × 3 × 3 × 3 = 81 hardware phases.

3.2 Actuation
The heart of the Astro system is the Actuation Algorithm

outlined in Figure 7. Actuation consists of phase monitoring,

learning and adapting. These three steps happens at regular

intervals, called check points, which, in Figure 7, we denote

by i and i+1. The rest of this section describes these events.

3.2.1 Monitoring
To collect information that will be later used to solve SPha,

Astro reads four kinds of data. Figure 7 highlights this data:

• From the Operating System (OS): current hardware
configuration H and instructions p executed since last

check point.

• From the Program (Log): the current program phase S .
• From the device’s performance counters (PerfMon):
the current hardware phase D.

• From the power monitor (PowMon [32]): the energy e
consumed since the last checkpoint.

The monitor collects this data at periodic intervals, whose

granularity is configurable. Currently, it is 500 milliseconds.

The recording of the program phase is aperiodic, following

from instrumentation inserted in the program by the com-

piler. As discussed in Section 3.1.1, information is logged at

the entry point of functions, and around library calls that

might cause the program to enter a dormant state. The hard-

ware configuration is updated whenever it changes. The

metrics e and p lets us define the notion of reward as follows:

6

Compiler-assisted Adaptive Program Scheduling in big.LITTLE Systems ,

int main(int argc, char** argv) {
 save_feature_range(
 0.12, /* Arithmetic Density */
 0.8, /* IO weight */
 0, /* Nesting factor */
 False /* Sleeping state */);
 // Read first matrix from file 'argv[1]'
 int** m1 = readMtrix(argv[1], &M1, &N1);
 toggle_sleeping_state(
 True /* compiler knows next function blocks */);
 read_user_data();
 toggle_sleeping_state(
 False /* we left blocking function */);
 // Read second matrix from file 'argv[1]'
 ... same as original figure.
}

int main(int argc, char** argv) {
 /* Conf == 1 is 0L1B */
 determine_active_configuration (1);
 // Read first matrix from file 'argv[1]'
 int** m1 = readMatrix(argv[1],&M1,&N1);
 /* Conf == 0 is 1L0B */
 determine_active_configuration (0);
 read_user_data();
 /* Conf == 1 is 0L1B */
 determine_active_configuration (1);
 // Read second matrix from file 'argv[1]'
 ... same as original figure.
}

(b)

int main(int argc, char** argv) {
 DYN = read_run_time_data();
 STA = {0.12, 0.8, 0, 0};
 determine_active_conf (STA, DYN);
 // Read first matrix from file 'argv[1]'
 int** m1 = readMatrix(argv[1],&M1,&N1);}

(c)

(a)

Figure 8. (a) Instrumentation to mine features. (b) Final

instrumentation, inserted in production code.

Definition 3.7 (Reward). The reward is the set of observable

events that determine how well the learning algorithm is adapt-

ing to the environment. The reward is computed from a pair

(e,p), formed by the Energy Consumption Level e , measured

in Joules per second (Watt), and the CPU Performance Level

p, measured in number of instructions executed per second.

The metric used in the reward is given by a weighted

form of performance per watt, namelyMIPSγ /Watt , where
γ is a design parameter that gives a boosting performance

effect in the system. This is usually a trade-off between

the performance and energy consumption. To optimize for

energy, we let γ = 1.0. A value of γ = 2.0 emphasizes

performance gains: the reward function optimizes (in fact,

maximizes the inverse of) the energy delay product per in-

struction, given byWatt/IPS2; letting IPS = I/S we have

(Watt × S × S)/I 2 = (Enerдy × Delay)/I 2. This aims to min-

imize both the energy and the amount of time required to

execute thread instructions [5].

Example 3.8. Continuing with Example 3.5, Figure 8 (a)

shows the instrumentation of function main (Figure 2) to log

program phases.

3.2.2 Learning
The learning phase uses the Q-learning algorithm. As il-

lustrated in Figure 7, a key component in this process is a

multi-layer Neural Network (NN) that receives inputs col-

lected by the Monitor. The NN outputs the actions and their

respective rewards to the Actuator so that a new system

adaptation can be carried out. Following common method-

ology, learning happens in two phases: back-propagation

and feed-forwarding. During back-propagation we update

the NN using the experience data given by the Actuator

(Figure 7). Experience data is a triple: the current state, the

action performed and the reward thus obtained. The state

consists of a hardware configuration (Hi−1), static features

(Si−1) and dynamic features (Di−1) at check points i-1. The
action performed at check point i-1 makes the system move

from hardware configurationHi−1 toHi . The reward is given

by ri , received after the action is taken. The NN consists of

a number of layers including computational nodes, i.e., neu-

rons. The input layer uses one neuron to characterize each

triple (state,action, reward). The output layer has one neu-
ron per action/configuration available in the system. During

the feed-forward phase, we perform predictions using the

trained NN. Each node of the NN is responsible to accumu-

late the product of its associated weights and inputs. Given

as input a state (Hi ,Di , Si) at check point i, the result of

the feed-forward step is an array of pairs A × R, where A
is an action, and R is its reward, estimated by NN. Actions

determine configuration changes; rewards determine the ex-

pected performance gain, in terms of energy and time, that

we expect to obtain with the change. We use the method of

gradient descent to minimize a loss function given by the

difference between the reward predicted by the NN, and the

actual value found via hardware performance counters.

3.2.3 Adaptating
At this phase, Astro takes an action. Together with states

and rewards, actions are one of the three core notions in

Q-learning, which we define below:

Definition 3.9 (Action). Action is the act of choosing the next

hardware configuration H to be adopted at a given checkpoint.

An actionmay change the current hardware configuration;

hence, adapting the program according to the knowledge

inferred by the Neural Network. Following Figure 7, we start

this step by choosing, among the pairs {(A1,R1), . . . , (An ,Rn)},
the action Ax associated with the maximal reward Rx . Ax
determines, uniquely, a hardware configuration H ′

. Once H ′

is chosen, we proceed to adopt it. However, the adoption

of a configuration is contingent on said configuration be-

ing available. Cores might not be available because they are

running higher privilege jobs, for instance. If the Next Con-

figuration is accessible, Astro enables it; otherwise, the whole

system remains in the configuration Hi active at check point

i. Such choice is represented, in Figure 7, by the function

Hi+1 = chg(H ′,Hi). Regardless of this outcome, we move on

to the next check point, and to a new actuation round.

3.3 Code Scheduling
After we have trained a program to a given architecture, we

imprint this knowledge directly in that program’s code. In

Figure 5, this step is named Final Code Generation. Code gen-

eration consists in inserting instrumentation into the target

program. Instrumentation is inserted in the same regions

modified to mark program phases (see Section 3.1.1): at the

entry point of functions, and around particular library calls.

Example 3.10 illustrates this instrumentation.

7

, Marcelo Novaes, Vinícius Petrucci, Abdoulaye Gamatié, and FernandoQuintão

Example 3.10. Figure 8 shows the final actuation code for the

program in Figure 2. Function determine_active_configuration
tries to move the program to the configuration that has pro-

duced the largest rewards for that program phase. We consider

two versions of instrumentation: static, as in Figure 8(b), and

hybrid, as in Figure 8 (c). The latter can read hardware status

to improve the decision making process.

The static scheduling discussed in Example 3.10 always

maps the same program region to the same hardware con-

figuration. Hybrid scheduling might change decisions, given

enough runtime information. As we show in Section 4, the

static scheduling yields lower runtime overhead than As-

tro’s hybrid scheduling. However, this modus operandi is

unable to adapt the program to its workload; and cannot

recover from bad decisions. A striking example is the bench-

mark ParticleFilter (see Fig. 10 in Section 4.2). In this case,

even with the runtime overhead, the flexibility of hybrid

instrumentation paid off in terms of energy and speed.

4 Evaluation
This section presents an experimental evaluation of the As-

tro system over several parallel benchmarks running on a

big.LITTLE system. In the process of evaluating Astro, we

shall provide answers to the following research questions:

• RQ1: How close can Astro be from an optimal oracle?

• RQ2: How does Astro compare against fixed and im-

mutable best configuration choices?

• RQ3: How does Astro compare against state-of-the-art

schedulers?

• RQ4: How does Astro behave on an actual device?

• RQ5: How much does Astro increase code size?

Experimental Setup.We use two experimental setups: pro-

gram traces, henceforth called simulation; and an actual de-

vice, the Odroid XU4. Experiments in Section 4.1 use simula-

tion because they involve testing exhaustively every hard-

ware configuration. Experiments in Section 4.2 run on an

actual device: the Odroid XU4 development board with a

big.LITTLE ARM processor (Samsung Exynos 5422) featur-

ing 4 big cores (Cortex-A15 2.0 Ghz) and 4 LITTLE cores

(Cortex-A7 1.4 Ghz), running on Linux odroid 3.10.63, us-

ing the “performance" frequency governor, with cores at

maximum speed. This device was also used to produce the

simulation traces. We report CPU power consumption via

PowMon [32]. Astro is implemented on LLVM 3.8.

Benchmarks. The simulation traces used in Section 4.1

were produced on Parsec’s FluidAnimate [4]. Experiments

on Section 4.2 use eight benchmarks from Rodinia and Parsec.

These are the only programs that we can currently instru-

ment, as our LLVM module does not recognize mangled C++

routines yet (to discover program phases such as I/O den-

sity – Sec. 3.1.1). We used FluidAnimate to obtain the initial

learning parameters; hence, we do not use it for validation.

4.1 Results in the Simulated Environment
In this section we report results that are hard to obtain on

an actual device, because they involve exhaustive search

on the universe of valid hardware configurations. We have

approximated the exhaustive execution of configurations by

generating traces for every hardware configuration. These

traces lets us simulate different behaviors, by choosing, at

each checkpoint, the reward offered by one of them. Differ-

ent policies can guide this choice: optimal, best fixed and

random for instance. Producing such traces is time consum-

ing, thus, we have produced them only for fluidanimate. We

took between 410 seconds to up to 7,000 seconds to produce

each trace, depending on the hardware configuration. Fig-

ure 9 compares seven different scheduling strategies built

on top of this simulator, applied on fluidanimate.

2500$

25000$
Time (secs) Energy (joules)

684
6,945 619 416 460 709 684

5,295
20,046

4,672
5,057

5,481
5,265

5,295

4L4b$ 1L0b$ Oracle(E) Oracle(T) Astro$ Hipster$ Oct8Man$

80#

800#

8000#

Figure 9. Comparison between Astro and a system that

chooses the next configuration randomly.

RQ1: how close is Astro to an optimal oracle? The data
collected for every possible configurations lets us know, for

each part of the program, which configuration consumes

less energy and has the best performance. We then combine

these 24 traces into a single trace, choosing, at each check

point, a particular configuration. This “optimal" trace is what

we call the Oracle. Our oracle is not an optimal global so-

lution to SPha. Rather, it is a greedy approximation: given

that at check-point i we are at configuration Hi , what is the

configuration that gives us the best reward at check-point

i + 1. Figure 9 shows two oracles: (E) and (T). The former

yields optimal energy consumption; the latter yields optimal

execution time. Astro’s reward function prioritizes time over

energy; hence, it leads to execution times close to T. If we
schedule Fluidanimate with Astro, its final runtime is only

10% slower than T. However, it is more energy hungry: it

uses 8% more energy than T, and 15% more energy than E.
RQ2:HowdoesAstro compare against immutable best
configuration choices? If we fix the hardware configura-
tion, then 4b4L (4 bit, 4 LITTLE cores) gives us the best

runtime and the best energy consumption for the simulation

8

Compiler-assisted Adaptive Program Scheduling in big.LITTLE Systems ,

of Fluidanimate. This configuration is 45% slower than Astro,

yet it is 4% more energy efficient. The fact that Astro, and

the energy oracle, could beat 4b4L is surprising. We have

found out that 4b4L tends to slowdown programs at critical

sections, due to an excess of conflicts between threads. Astro

eventually learns to use configurations with less cores at

these program phases; hence, speeding up execution. Fig-

ure 9 also shows the configuration that yields the slowest and

more power hungry execution: 1b0L. It is almost 15 times

slower than Astro, and spends 3.6x more energy.

RQ3: How does Astro perform when compared with
state-of-the-art program schedulers?We tried to imple-

ment, on the simulator, two well-known schedulers for big.

LITTLE architectures: Hipster [20] and Octopus-Man [22].

The implementation of Hipster used in Figure 9 differs slightly

from the original description of Nishtala et al, although we

have reused much of their code base. Hipster was originally

conceived to deal with cloud workloads; hence, we had to

customize its state and reward function for multithreaded

programs. In this experiment, both, Hipster and Astro use the

same reward function. Octopus-Man is the profiling mech-

anism used in Hipster; hence, it does not use the notion of

reward. Astro produces code that runs 17% faster than Hip-

ster, and 15% faster than Octopus-Man. However, Astro uses

6% more energy than the former, and 4% more than the latter.

4.2 Results in an Actual Device
RQ4: How does Astro behave on an actual device? Fig-
ure 10 shows the runtime (5 samples) of three different so-

lutions to SPha: Astro (purely static or hybrid), and Global

Task Scheduling (GTS). GTS is a scheduling algorithm de-

veloped by ARM. This scheduler is aware of the different

compute capabilities of big and LITTLE cores in the system.

It uses historical data of the running tasks and active cores

to determine where each individual thread will run. By track-

ing the load information at runtime, GTS migrates tasks that

are compute-intensive to big cores and those that are less

intensive to little cores. Load balancing heuristics are periodi-

cally executed to minimize concentrating compute-intensive

threads excessively on big cores and letting little cores under-

utilized. Numbers reported for Astro include all the overhead

of monitoring and adapting the target application.

Astro, in its static or hybrid flavours, yields faster code

than GTS in six benchmarks, and more energy efficient code

in five. We show two p-values next to each plot: S and H. The

former is the probability that the static and purely dynamic

(GTS) samples come from the same distribution. The latter re-

lates the hybrid and purely dynamic distributions. The closer

to zero, the more statistically significant are our results. We

emphasize that GTS is a state-of-the-art approach, widely

used in operating systems running on ARM hardware, and

the fact that Astro can consistently outperform it testifies

in favour of the benefits of syntax awareness when taking

scheduling decisions. There is no clear winner between the

hybrid and static versions of Astro. We observer that the

former tends to be better in more regular (kernel-like) ap-

plications, such as CFD and sradv2. We also observe strong

correlation between runtime and energy consumption, ex-

cept for Swaptions. In that case, the Static version of Astro

tends to avoid using the high-frequency cores, a fact that

leads to slower runtime, but also to less power dissipation.

In ParticleFilter the static version was penalized for a wrong

scheduling decision: it stays in 1b2L, and the lack of runtime

information prevents it from fixing this choice.

RQ5: How much does Astro increase code size? There
are three different versions of instrumented programs: those

used during Astro’s learning phase; the programs that use

static instrumentation; and the programs that use hybrid

instrumentation. The binary size of the last two is the almost

the same: it consists of code that collects data, plus the As-

tro library. The only different between static and dynamic

instrumentation is the code used to collect dynamic data

in the latter version. This different is too small; hence, in

Figure 11 we include both types of binaries in the same bar:

Instrumented. As the figure shows, most of the size over-

head imposed by Astro is due to its dynamic library. This

increase is constant across benchmarks. The amount of in-

strumentation in binaries grows linearly with the program

size. This growth tends to be very small. As evidence to this

small growth, in the Learning phase, binaries do not use any
dynamically linked library; thus, code size expansion is due

to instrumentation only, and it is small, as seen in Figure 11.

5 Related Work
The problem of scheduling computations in heterogeneous

architectures (Definition 3.1) has attracted much attention

in recent years. Table 1 provides a taxonomy of previous

solutions to this problem. We group them according to how

they answer each of the following four questions:

• Source: is the program’s code modified?

• Auto: is user intervention required?

• Runtime: is runtime information exploited?

• Learn: is there any adaptation to runtime conditions?

Perhaps the most important difference among the several

strategies proposed to solve SPha concerns the moment

when they are used: at compilation time, at runtime, or both.

Purely static approaches work at compilation time. They

might be applied by the compiler, either automatically, i.e.,

without user intervention [8, 12, 16, 24, 26, 29], or not. In

the latter case, developers can use annotations [19], domain

specific programming languages [16, 26] or library calls [1]

to indicate where each program part should run. In Table 1,

techniques implemented at either the compiler or library

levels are purely static. Purely dynamic approaches take into

account runtime information. They can be implemented at

the architecture level [13, 17, 25, 30, 33], or at the virtual

9

, Marcelo Novaes, Vinícius Petrucci, Abdoulaye Gamatié, and FernandoQuintão

G S H

70
80

90
10
0

11
0

Hotspot3D

G S H

21
57

21
59

21
61

21
63

CFD

G S H

60
5

61
0

61
5

62
0

62
5

63
0

63
5 Hotspot

G S H

31
0

32
0

33
0

34
0

sradv2

G S H
80
0

10
00

14
00

18
00

ParticleFilter

G S H

24
0

26
0

28
0

30
0

32
0 BFS

G S H

53
0

54
0

55
0

56
0

57
0

58
0

Swaptions

G S H

24
26

28
30

32
34

Hotspot3D

G S H56
3.
0

56
3.
5

56
4.
0

56
4.
5

CFD

G S H
12
3

12
4

12
5

12
6

12
7

12
8

Hotspot

G S H

62
64

66
68

70
72

sradv2

G S H

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

ParticleFilter

G S H

70
80

90
10
0

11
0

12
0

BFS

G S H

96
98

10
0

10
2

Swaptions

S: 0.14
H: 0.38

S: 0.004
H: 0.034

S: 0.22 H: 0.44

S: 0.003
H: 0.015

S: 0.04 H: 0.55

S: 0.09
H: 0.04

S: 0.53
H: 0.31

S: 0.004
H: 0.022

S: 0.10 H: 0.02 S: 0.97
H: 0.28

S: 0.01
H: 0.44

S: 0.49
H: 1.5e-06

Ti
m

e
(s

ec
on

ds
)

E
ne

rg
y

(jo
ul

es
)

S: 9.5e-11
H: 0.12

S: 7.3e-07
H: 0.76

Figure 10. Time (Top) and Energy (Bottom) comparison between Astro and GTS (G). “Static (S)" is the purely static version of

Astro (Fig. 8b). “Hybrid (H)" is the version that uses runtime information to improve on the static decisions (Fig. 8c). Numbers

in boxes are p-values for the Static and Hybrid approaches, compared to GTS. Grey triangles indicate winning strategies.

0	

20	

40	

60	

80	

Ho
tsp
t3
D	

CF
D	

Ho
tsp
ot
	

pr
tcl
Fil
te
r	

Sw
ap
8o
ns
	

BF
S	

fld
An
im
ate
	

Sra
dv
2	

Original	 Learning	 Instrumented	

Figure 11. Code size increase. Y-axis shows code size (Kb).

machine (VM)/OS level [2, 10, 20, 22, 27, 34]. By leverag-

ing runtime information, the system can use environment

information, unknown at compilation time, to solve SPha.

However, there may be some overhead on accurately collect-

ing and processing runtime data. Besides, because scheduling

decisions are taken on-the-fly, usually the scheduler cannot

spendmuch timeweighting choices. Thus, even though these

algorithms use runtime information, they might still take

suboptimal decisions. Approaches that mix static and dy-

namic techniques are called hybrid. Astro is a hybrid method.

Other hybrid approaches to this problem exist [8, 23, 29].

Work Level Source Auto Runtime Learn

[24] C Yes Yes No Yes

[2] C Yes Yes Yes No

[26] C/L Yes No Yes No

[16] C/L Yes No Yes No

[13] A/L Yes No No No

[17] A No Yes No No

[30] A No Yes No No

[20] O No Yes Yes Yes

[22] O No Yes Yes No

[1] L Yes No No No

[23] O/C Yes Yes Yes No

[29] O/C Yes Yes Yes No

[8] O/C Yes Yes Yes No

Astro O/C Yes Yes Yes Yes

Table 1. Comparison between different solutions to SPha.

Level: at which level the technique is implemented: Ar-

chitecture (A), Operating System (O), Compiler (C) or Li-

brary/Programming model (L). Code: “Yes" if approach re-

quires source code. Auto: “Yes" if it is performed automati-

cally, without user intervention/annotation. Runtime: “Yes"

if technique considers runtime information. Learn: “Yes" if

technique adapts/learns a model from the target architecture.

10

Compiler-assisted Adaptive Program Scheduling in big.LITTLE Systems ,

None of these previous work use any form of learning tech-

nique to adapt the program to runtime conditions, as Table 1

indicates in the column Learn. Once guards are created, they

always behave on the same way. That is the main difference

between these previous approaches and the Astro method.

6 Conclusion
This paper has presented Astro, a program scheduler for

big.LITTLE architectures. Astro uses machine learning to

adapt a program to runtime conditions. However, it departs

from previous approaches, also based on machine learning,

because it takes program characteristics into consideration.

Astro relies on the compiler to identify program regions

that contain similar syntactical features. We classify these

features in sets called program phases, and track, at runtime,

which program phase is currently valid. When combined

with dynamic data, this information lets a neural network

train the program, so to maximize some metric of efficiency,

such as energy or runtime. By combining static and dynamic

information, we are, effectively, building architecture-aware

code optimizations for parallel programs.

References
[1] Cedric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-

AndreWacrenier. 2011. StarPU: AUnified Platform for Task Scheduling

on Heterogeneous Multicore Architectures. Concurr. Comput. : Pract.

Exper. 23, 2 (2011), 187–198.

[2] Rajkishore Barik, Naila Farooqui, Brian T. Lewis, Chunling Hu, and

Tatiana Shpeisman. 2016. A Black-box Approach to Energy-aware

Scheduling on Integrated CPU-GPU Systems. In CGO. ACM, 70–81.

[3] Tarsila Bessa, Pedro Quintão, Michael Frank, and Fernando

Magno Quintão Pereira. 2016. JetsonLeap: A Framework to Measure

Energy-Aware Code Optimizations in Embedded and Heterogeneous

Systems. In SBLP. Springer, 16–30.

[4] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008.

The PARSEC Benchmark Suite: Characterization and Architectural

Implications. In PACT. ACM, 72–81.

[5] David M. Brooks, Pradip Bose, Stanley E. Schuster, Hans Jacobson,

Prabhakar N. Kudva, Alper Buyuktosunoglu, John-DavidWellman, Vic-

tor Zyuban, Manish Gupta, and Peter W. Cook. 2000. Power-Aware Mi-

croarchitecture: Design and Modeling Challenges for Next-Generation

Microprocessors. IEEE Micro 20 (November 2000), 26–44. Issue 6.

[6] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W.

Sheaffer, Sang-Ha Lee, and Kevin Skadron. 2009. Rodinia: A Benchmark

Suite for Heterogeneous Computing. In IISWC. IEEE, 44–54.

[7] Hongsuk Chung, Munsik Kang, and Hyyun-Duk Cho. 2012. Heteroge-

neous Multi-Processing Solution of Exynos 5 Octa with ARM big.LITTLE

Technology. Technical Report. Samsung.

[8] Jason Cong and Bo Yuan. 2012. Energy-efficient Scheduling on Het-

erogeneous Multi-core Architectures. In ISLPED. ACM, 345–350.

[9] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The

program dependence graph and its use in optimization. TOPLAS 9, 3

(1987), 319–349.

[10] Francisco Gaspar, Luis Taniça, Pedro Tomás, Aleksandar Ilic, and

Leonel Sousa. 2015. A Framework for Application-Guided Task Man-

agement on Heterogeneous Embedded Systems. ACM Trans. Archit.

Code Optim. 12, 4, Article 42 (Dec. 2015), 25 pages.

[11] Dominik Grewe and Michael FP O’Boyle. 2011. A static task partition-

ing approach for heterogeneous systems using OpenCL. In Compiler

Construction. Springer, 286–305.

[12] A. Jain, M. A. Laurenzano, L. Tang, and J. Mars. 2016. Continuous

shape shifting: Enabling loop co-optimization via near-free dynamic

code rewriting. In MICRO. ACM/IEEE, 1–12.

[13] José A. Joao, M. Aater Suleman, OnurMutlu, and Yale N. Patt. 2012. Bot-

tleneck Identification and Scheduling in Multithreaded Applications.

In ASPLOS. ACM, 223–234.

[14] Chris Lattner and Vikram S. Adve. 2004. LLVM: A Compilation Frame-

work for Lifelong Program Analysis & Transformation. In CGO. IEEE,

75–88.

[15] Etienne Le Sueur and Gernot Heiser. 2010. Dynamic Voltage and

Frequency Scaling: The Laws of Diminishing Returns. In HotPower.

USENIX Association, Berkeley, CA, USA, 1–8.

[16] Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. 2009. Qilin: Ex-

ploiting Parallelism on Heterogeneous Multiprocessors with Adaptive

Mapping. In MICRO. ACM, 45–55.

[17] A. Lukefahr, S. Padmanabha, R. Das, F. M. Sleiman, R. G. Dreslinski, T. F.

Wenisch, and S. Mahlke. 2016. Exploring Fine-Grained Heterogeneity

with Composite Cores. IEEE Trans. Comput. 65, 2 (2016), 535–547.

[18] Christos Margiolas and Michael F. P. O’Boyle. 2016. Portable and

Transparent Software Managed Scheduling on Accelerators for Fair

Resource Sharing. In CGO. ACM, 82–93.

[19] Gleison Mendonça, Breno Guimarães, Péricles Alves, Márcio Pereira,

Guido Araújo, and Fernando Magno Quintão Pereira. 2017. DawnCC:

Automatic Annotation for Data Parallelism and Offloading. TACO 14,

2 (2017), 13:1–13:25.

[20] Rajiv Nishtala, Paul M. Carpenter, Vinicius Petrucci, and Xavier Mar-

torell. 2017. Hipster: Hybrid Task Manager for Latency-Critical Cloud

Workloads. In HPCA. IEEE, 409–420.

[21] Cedric Nugteren and Henk Corporaal. 2014. Bones: An Automatic

Skeleton-Based C-to-CUDA Compiler for GPUs. TACO 11, 4 (2014),

35:1–35:25.

[22] Vinicius Petrucci, Michael A Laurenzano, John Doherty, Yunqi Zhang,

Daniel Mosse, Jason Mars, and Lingjia Tang. 2015. Octopus-man: QoS-

driven task management for heterogeneous multicores in warehouse-

scale computers. In HPCA. IEEE, 246–258.

[23] Guilherme Piccoli, Henrique N. Santos, Raphael E. Rodrigues, Chris-

tiane Pousa, Edson Borin, and Fernando M. Quintão Pereira. 2014.

Compiler Support for Selective Page Migration in NUMA Architec-

tures. In PACT. ACM, New York, NY, USA, 369–380.

[24] Gabriel Poesia, Breno Guimaraes, Fabricio Ferracioli, and Fernando

Magno Quintao Pereira. 2017. Static Placement of Computation on

Heterogeneous Devices. In OOPSLA. ACM, 1–18.

[25] Krishna K. Rangan, Gu-Yeon Wei, and David Brooks. 2009. Thread

Motion: Fine-grained Power Management for Multi-core Systems. In

ISCA. ACM, 302–313.

[26] Christopher J. Rossbach, Yuan Yu, Jon Currey, Jean-Philippe Martin,

and Dennis Fetterly. 2013. Dandelion: A Compiler and Runtime for

Heterogeneous Systems. In SOSP. ACM, 49–68.

[27] Thannirmalai Somu Muthukaruppan, Anuj Pathania, and Tulika Mitra.

2014. Price Theory Based Power Management for Heterogeneous

Multi-cores. In ASPLOS. ACM, 161–176.

[28] Richard S. Sutton and Andrew G. Barto. 1998. Introduction to Rein-

forcement Learning (1st ed.). MIT Press, Cambridge, MA, USA.

[29] Lingjia Tang, Jason Mars, Wei Wang, Tanima Dey, and Mary Lou

Soffa. 2013. ReQoS: Reactive Static/Dynamic Compilation for QoS in

Warehouse Scale Computers. In ASPLOS. ACM, 89–100.

[30] Kenzo Van Craeynest, Aamer Jaleel, Lieven Eeckhout, Paolo Narvaez,

and Joel Emer. 2012. Scheduling Heterogeneous Multi-cores Through

Performance Impact Estimation (PIE). In ISCA. IEEE, 213–224.

[31] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Igna-

cio Gómez, Christian Tenllado, and Francky Catthoor. 2013. Polyhedral

Parallel Code Generation for CUDA. TACO 9, 4 (2013), 54:1–54:23.

11

, Marcelo Novaes, Vinícius Petrucci, Abdoulaye Gamatié, and FernandoQuintão

[32] Matthew J. Walker, Stephan Diestelhorst, Andreas Hansson, Anup K.

Das, Sheng Yang, Bashir M. Al-Hashimi, and Geoff V. Merrett. 2016. Ac-

curate and Stable Run-Time PowerModeling for Mobile and Embedded

CPUs. TCAD 36, 1 (2016), 106–119.

[33] A. Yazdanbakhsh, J. Park, H. Sharma, P. Lotfi-Kamran, and H. Es-

maeilzadeh. 2015. Neural acceleration for GPU throughput processors.

In MICRO. 482–493.

[34] Huazhe Zhang and Henry Hoffmann. 2016. Maximizing Performance

Under a Power Cap: A Comparison of Hardware, Software, and Hybrid

Techniques. In ASPLOS. ACM, 545–559.

12

	Abstract
	1 Introduction
	2 Empirical Observations
	3 The Astro System
	3.1 Phase Partitioning
	3.2 Actuation
	3.3 Code Scheduling

	4 Evaluation
	4.1 Results in the Simulated Environment
	4.2 Results in an Actual Device

	5 Related Work
	6 Conclusion
	References

